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Quasi-Monte Carlo Methods in Computer Graphics:The Global Illumination ProblemAlexander KellerAbstract. The main part of the global illumination problem of computergraphics is given by a Fredholm integral equation of the second kind, describ-ing the light distribution in a closed environment. Calculating photorealisticimages from that equation requires its kernel to be very complex and discontin-uous. Due to this complexity Monte Carlo methods are an interesting tool forestimating a solution. In this article we investigate the application of determin-istic quasi-Monte Carlo methods, as compared to pure Monte Carlo methods,for global illumination calculations in very complex environments and givenumerical evidence for the superiority of the quasi-Monte Carlo methods.1. IntroductionIn photorealistic rendering in computer graphics a scene usually is given as aBREP (boundary representation). In addition to this geometry description, thesurface properties such as roughness, texture and light emission are provided. Theglobal illumination problem now consists in calculating an image from that descrip-tion, taking into consideration all physical e�ects that emerge from this speci�ca-tion. The problem can be described by a second kind Fredholm integral equation.The kernel of that integral equation covers visibility, which is very expensive tocompute and in addition makes the complexity of the integral equation stronglydepend on the complexity of the BREP model of the scene. The visibility functionhas discontinuities, which are not aligned to any axis. So Monte Carlo methodsseem to be a very useful approach for solving the equation. Instead of randomsample points as used in the Monte Carlo method, we apply quasi-random samplepoints. These deterministic points lead to the quasi-Monte Carlo method, promis-ing a faster convergence than the Monte Carlo rate. For a profound introductionto such points and quasi-Monte Carlo integration, see [Nie92b].In the next section we will give a short introduction to quasi-Monte Carlo inte-gration, followed by a brief description of the physical facts leading to the integralequation to solve. In section 4 we present an algorithm for the solution of the globalillumination problem and �nally come to the conclusion, that quasi-Monte Carlo1991 Mathematics Subject Classi�cation. Primary 65Y25, 65C05; Secondary 65R20.c0000 American Mathematical Society0075-8485/00 $1.00 + $.25 per page1



2 ALEXANDER KELLERmethods are superior to Monte Carlo methods for the global illumination prob-lem, con�rming the results of recent information based complexity theory issues[TWW88] [Wo�z91].2. Quasi-Monte Carlo IntegrationMonte Carlo integration is a powerful means whenever functions with unknowndiscontinuities have to be integrated. TheMonte Carlo method estimates an integralby the mean value of N function values of the integrand f taken at the pointsPN = fx0; : : : ; xN�1g: ZIs f(x) dx � 1N N�1Xi=0 f(xi)(2.1)where Is = [0; 1)s is the s-dimensional unit cube and PN � Is. If the points PNare chosen at random the error is expected to beE �����ZIs f(x) dx� 1N N�1Xi=0 f(xi)����� � �(f)pN(2.2)where �(f) is the variance of the function f .Since computers are deterministic machines, we are only able to generatepseudo-random numbers, approximating real random numbers. Their quality ischecked by several statistical tests [Nie92b] [Knu81] and they are usually gener-ated using the linear congruential method (for several other methods see [Nie92a]).The most important property of the sampling point set PN is uniform distri-bution, which also guarantees the convergence of the integration scheme (2.1) if fis Riemann-integrable [Hla71]. The deviation of the point set PN from uniformdistribution is measured by its discrepancyD�(PN ) := supJ=Qsj=1[0;aj)�Is �����ZIs �J (x) dx� 1N N�1Xi=0 �J(xi)����� .So the discrepancy is the worst integration error for integrating the volume of allaxis-aligned subcubes J =Qsj=1[0; aj) � Is by using PN . A sequence of point setsPN is called to be uniformly distributed modulo Is if and only iflimN!1D�(PN ) = 0 .It can be proved, that the discrepancy of any point set PN is bounded from belowby D�(PN ) � Bs log s�12 NN(2.3)where Bs > 0 is a constant depending on the dimension s. When using randompoints in (2.1) we only haveD�(P randomN ) 2 O r log logNN !by the law of the iterated logarithm. This roughly is the rate (2.2) of the MonteCarlo method. But in fact there exist point sets and sequences, which acquireabout the order of magnitude of (2.3) and therefore are called low discrepancypoints. Using low discrepancy point as sample points in (2.1) is called quasi-Monte



QUASI-MONTE CARLO METHODS IN COMPUTER GRAPHICS 3Carlo integration. The construction of low discrepancy points is mostly based onthe radical inverse function:�b(i) := 1Xj=0 aj(i) b�j�1 , i = 1Xj=0 aj(i) bjFor base b = 2 the radical inverse of some natural number i 2 IN0 simply is its binaryrepresentation mirrored at the decimal point. The most simple sequences are theHalton sequence and the Hammersley point set. The in�nite Halton sequence in sdimensions is built by xi = (�b1(i); : : : ;�bs(i))where b1; : : : ; bs are the �rst s prime numbers, so as to reduce corellations betweenthe components. Note that the number N of samples easily can be incremented byreusing all samples taken before. For the Halton points we haveD�(PHaltonN ) < sN + 1N sYj=1� bj � 12 log bj logN + bj + 12 � .The Hammersley point set is �nite, that is the sample number N has to be �xedand adaptive sampling results in having to discard all samples taken so far:xi = ( iN ;�b1(i); : : : ;�bs�1(i))The disadvantage of being �nite is paid o� by the slightly superior rate ofD�(PHammersleyN ) < sN + 1N s�1Yj=1� bj � 12 log bj logN + bj + 12 � .Since those point sets are designed to minimize discrepancy, i.e. for integrationor optimization purposes, they do not have random properties and therefore failalmost any statistical test. Using deterministic point sets for integration results inTheorem 2.1. The Koksma-Hlawka inequality:�����ZIs f(x) dx� 1N N�1Xi=0 f(xi)����� � V (f) D�(PN )where V (f) is the variation in the sense of Hardy and Krause.So if the variation can be bounded by a constant, using low discrepancy pointsets will result in a faster quadrature than using random numbers. But in computergraphics the integrands often are of the formf(x) = g(x) �Ak(h(x)) p(x)where 0 � g 2 L2 is a bounded function, p is a probability density and �Ak is thecharacteristic function of the set Ak � S, telling whether the endpoint of the pathh(x) is in the set. Since �Ak usually is not aligned to any axis we have V (f) =1.In consequence theorem 2.1 is not applicable for integrals in computer graphics.Instead we aim to make the integrand more smooth by using the importancesampling technique of Monte Carlo integration, which also applies to quasi-MonteCarlo integration for smooth functions [SM94]. In our case we are only able to



4 ALEXANDER KELLERintegrate the probability density function p. Let � be the measure for the probabilitydensity p, then the integral can be rewritten:ZIs g(x) �Ak(h(x)) p(x) dx = ZIs g(y) �Ak(h(y)) d�(y) � 1N N�1Xi=0 g(yi) �Ak(h(yi))The sample point cloud CN = fy0; : : : ; yN�1g used for the Monte Carlo estimateapproximates the density p. It is constructed out of the uniformly distributedpoint set PN by means of the multi-dimensional inversion method (also known asHlawka-M�uck transformation [HM72]):Fj(t1; : : : ; tj) := R tj0 R 10 � � � R 10 p(t1; : : : ; tj�1; �j ; : : : ; �s) d�j � � � d�sR 10 R 10 � � � R 10 p(t1; : : : ; tj�1; �j ; : : : ; �s) d�j � � � d�sFrom the equations x(j) = Fj(y(1); : : : ; y(j))we successively determiney(1) using x(1) = F1(y(1)) ,y(2) using x(2) = F2(y(1); y(2)) : : :Then the inverse ��1 is ��1(x) := (y(1); : : : ; y(s)) = y .We now de�ne the deviation of CN from p, i.e. the discrepancy with respect tosome density, byD�(p; CN ) := supJ=Qsj=1[0;aj)�Is �����ZIs �J(x) p(x) dx� 1N N�1Xi=0 �J(yi)����� .Due to [Wic74] we have the following two theorems on the modeling of discretedensities:Theorem 2.2. The discrepancy with respect to the probability density p isD�(p; CN ) � V (��1) D�(PN ) .(2.4)Theorem 2.3. If p is separable, i.e. p(x) =Qsj=1 p(j)(x(j)), we haveD�(p; CN ) = D�(PN ) .(2.5)Since the variation of f is unbounded in computer graphics, we are not ableto use theorem 2.1 for providing an error bound on the quadrature (2.1), althoughthere exist deterministic point sets with lower discrepancy than random samplepoints. But theorems 2.4 and 2.5 apply for modeling densities. Using low discrep-ancy points then results in a better approximation than using random numbers.In consequence the quasi-Monte Carlo integration is faster than the Monte Carlomethod, even in the setting of computer graphics.



QUASI-MONTE CARLO METHODS IN COMPUTER GRAPHICS 53. The Global Illumination ProblemThe global illumination problem consists of calculating an image of a three-dimensional scene description, taking into consideration all physical e�ects. Thescene description is given by a boundary representation (BREP) of the objects tobe illuminated. Usually this two-dimensional domain S = [Kk=1Ak is given by adisjoint union of surface primitives like for example triangles Ak. To guaranteeenergy preservation, the scene S must be closed. Photorealistic rendering requiresrealistic scene models. Such models usually consist of a very large number K ofsurface primitives (up to 106). In addition we are given the radiance emissionL0 : S � 
 ! IR+ from a point on the surface into a direction of the hemisphere
 in that point and the bidirectional reectance distribution function (BRDF)fr : 
 � S � 
 ! IR+, depending on the incoming, outgoing direction, and thelocation, characterizing the reectivity, roughness and color of the surfaces. Forsake of simplicity we restrict ourselves to only the reectance function in this paperand omit transluscent e�ects. The global illumination problem is given by twoequations: The radiance equation describes the distribution of light in a scenewhereas the pixel equation calculates the exposure of the radiances on an image.Throughout this paper we use radiometric units, that is radiance L is given inelectromagnetic power per unit projected area per unit solid angle. Usually L isgiven as a vector of some color primaries. In our simulation we selected the RGB -color system (red, green, blue). This system could easily be replaced by any othersystem without changing the algorithms described in the sequel. So L = (r; g; b),where r, g and b are the intensities for the selected wavelengths of red, green andblue used for �ring the electron guns of a CRT. For simplicity we use L as scalarin the algorithmic explanations. So whenever we write an equation using L, this ismeant to be one equation for each component of the color base.3.1. The radiance equation. The radiance equation describes the radiancedistribution in the scene. It is given by a second kind Fredholm integral equation.The radiance L, which leaves from a point x 2 S on the surface of the scene indirection ! 2 
, where 
 is the hemisphere in point x, is the sum of the sourceradiance L0 and all reected radiance (see �gure 1 for the geometry):L(x; !) = L0(x; !) + Z
 L(h(x; !0);�!0) fr(�!0; x; !) cos �0 d!0(3.1) := L0 + TfrLHere h(x; !0) 2 S is the �rst point that is hit when shooting a ray from x intodirection !0. This function accounts for visibility in the three-dimensional environ-ment. Its calculation is the most expensive in the whole illumination process and isbounded from below by O(logK). Minimizing the number of calls to h promises thefastest algorithms for the solution of (3.1). So the reected radiance is the integralof the radiance of all points which can be seen through the hemisphere 
 in point xattenuated by the BRDF fr and the projection term cos �0, which puts the surfaceperpendicular to the ray (x; !0). �0 is the azimuth angle between the surface normalin x and the direction !0. Due to physical reasons we have kTfk < 1, because anyreal scene is reecting less than 100% of the radiance. Another important propertyused for the solution of the radiance equation is the Helmholtz principle:fr(�!0; x; !) = fr(�!; x; !0)



6 ALEXANDER KELLER
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@I 6����������:�������0̂n ĥh(x; !0) !0 !xFigure 1. The geometry for the radiance equation.This property allows to reverse all light paths.3.2. The Pixel Equation. In order to calculate an image from the solutionof the radiance equation (3.1), we have to simulate a camera lens. In our case werestrict ourselves to the most simple model of the pinhole camera. The radianceLP of a pixel P of the rectangular image matrix then is the mean value integral ofthe radiance that is radiated through the area of that pixel into the eye:LP = 1jP j ZP L(xEye; x) dx � OS�1Xi=0 L(xEye; xi)(3.2)Here L(xEye; x) is the radiance, which emerges from the point seen from the eye-point xEye through the pixel position x into the direction of the viewpoint xEye.For a more realistic camera model we refer to [KMH95]. Choosing the set POS =fx0; : : : ; xOS�1g is called antialiasing. For a survey on this subject and the appli-cation of quasi-Monte Carlo integration see [HK94].4. Solving the Global Illumination ProblemThe algorithm for the solution of the radiance equation (3.1) is split in twopasses. The preprocessing step distributes the radiation starting from the light-sources by a random walk simulation. Then the rendering phase uses this informa-tion to reconstruct the radiances for the pixels in the image matrix.4.1. Surface Properties. The surface properties are given by bidirectionalreection distribution functions (BRDF) of the kindfr(�!0; x; !) = fd(x) + fs(�!0; x; !)= 1� ��d(x) + �s(x) 14� 1cos �0 cos � e� tan2 ��2 �which were introduced by [War92]. fd = �d(x)� is the di�use part of the BRDF,that is the fraction of radiance, which is reected independently of incoming andoutgoing direction. � is the root mean square of the surface slope. The fs termaccounts for specular reection like mirrors (� = 0) or glossy (0 < � <1) objects.



QUASI-MONTE CARLO METHODS IN COMPUTER GRAPHICS 7The surface S is characterized by the reectivities �d and �s (�d and �s, like L, aregiven in the color base (r; g; b) and account for the color of the reection), and theroughness �. � is the angle between the normal n̂ and the half vector ĥ = !+!0k!+!0kof the directions ! and !0 in point x. � is the angle between n̂ and !. Although thestructure of the BRDFs is simple, the model is su�cient for photorealistic imagegeneration, �ts physical experiments and is similar to theoretical derivations. Manymore details like transparency or anisotopy can be added to the model but areomitted in this context.A very important property of Ward's model is that the inversion method isapplicable to fr (see [War92]). So the process of photon scattering can be simulatedin a very natural way. The reected radiance hence isZ
 L(h(x; !0);�!0) fr(�!0; x; !) cos �0 d!0 = Z
 L(h(x; !0);�!0) dFr(!0)In a simulation Fr then is modeled by choosing di�use or specular scatteringby the composition method and then scattering with the densities fd(x) cos �0 orfs(�!0; x; !) cos �0, respectively, by using the inversion method. Note, that thedistribution functions already include the projection term. Since we assumed allsurfaces to be isotropic, the density fr is separable in (�0; �0) = !0 and by theorem(2.5) using Fr for scattering does not change the discrepancy of the point set PNused for modeling CN . (Note, that Fr includes the projection term cos �0.)4.2. Algorithm. Each sample L of the pixel equation (3.2) now is calculatedby the following decomposition of (3.1) :L = L0 + Tfd+fsL= L0 + TfsL+ Tfd(L0 + Tfd+fsL)= L0 Source radiation+ TfdL0 Direct illumination+ TfdTfdL Indirect di�use illumination+ TfsL Specular e�ects+ TfdTfsL CausticsL0 is given, TfdL0 is evaluated by standard algorithms (see [War91b]). The re-maining terms are evaluated using functionals of the formhL;	D(�1; �2; !)i = ZS Z
 L(y; !0) 	D(!0; h(y; !0); !) cos �0 d!0 dy(4.1)Depending on the "detector function" 	D : 
 � S � 
 ! IR+, those functionalsreturn a part of radiance leaving in direction ! averaged over a domain D.Indirect Di�use Illumination. To calculate the indirect di�use illumination, weproceed similar to [Kel94] by selecting	Ak(�1; �2; !) = 1jAkj�Ak(�2) fd(�2)resulting inLAk := hL;	Ak(�1; �2; !)i= 1jAkj ZS Z
 L(y; !0) �Ak(h(y; !0)) fd(h(y; !0)) cos �0 d!0 dy .



8 ALEXANDER KELLERLAk is the mean radiance reected by the di�use part of fr of the surface elementAk. Using (TfdL)(x) � L(x) := KXk=1LAk �Ak(x)we approximate the indirect di�use illumination by(TfdTfdL)(x) � (TfdL)(x) = Z
 KXk=1LAk �Ak(h(x; !0))! fd(x) cos �0 d!0(4.2)Specular E�ects. The specular e�ects are treated using another functional:	Br(x)(�1; �2; !) = 1�r2 �Br(x)(�2) fd(�2)Here Br(x) is the ball around the point x with radius r and �Br(x)(y) tells whetherpoint y lies inside or outside this ball. �r2 is approximately the area of the ballprojected onto S. Hence(TfdL)(x)� hL;	Br(x)(�1; �2; !)i= 1�r2 ZS Z
 L(y; !0) �Br(x)(h(y; !0)) fd(h(y; !0)) cos �0 d!0 dyapproximates the mean radiant ux through Br reected by fd in direction !. Thespecular e�ects are treated by recursion:TfsL = (Tfs(L0 + TfrL) max. levelTfs(L0 + TfdL+ TfsL) else(4.3)If the maximum level of recursion is reached we will estimate(TfrL)(x; !)� hL;	0Br(x)(�1; �2; !)i= 1�r2 ZS Z
 L(y; !0) �Br(x)(h(y; !0)) fr(!0; h(y; !0); !) cos �0 d!0 dyby using the complete BRDF fr.Caustics. The e�ect of bright surface elements that are mirrored by specularonto di�use surface elements is called caustic. Their detection and evaluation is avery hard problem in computer graphics. The caustics are approximated by:(TfdTfsL)(x)(4.4) � 1�r2 ZS Z
(TfsL)(y; !0) �Br(x)(h(y; !0)) fd(h(y; !0)) cos �0 d!0 dy4.3. Implementation. The implementation is done in C++. The object ori-ented program system uses an extremely fast binary space partition (BSP) for theray shooting h(x; !). For specifying S, L0 and fr the material and geometry �leformat (MGF, see [War95]) is used.



QUASI-MONTE CARLO METHODS IN COMPUTER GRAPHICS 9Calculation of the Functionals. The preprocessing is a particle simulation oflight, i.e. a random walk. Since kTfk < 1 the Neumann series converges and canbe cut o� at a certain degree M , leaving a little underestimation since Tf and Lare positive: L = L0 + TfL = 1Xi=0 T ifL0 � MXi=0 T ifL0We transform the functionals (4.1) into a sum of integrals on the unit cube, whichthen can be evaluated by random walk simulation using Monte Carlo methods:hL;	D(�1; �2; !)i� h MXj=0 T jfr L0;	D(�1; �2; !)i= MXj=0hT jfr L0;	D(�1; �2; !)i= MXj=0 ZS Z
(T jfr L0)(y; !0) 	D(!0; h(y; !0); !) cos �0 d!0 dy= MXj=0 Z
j+1 ZS0 L0(x0; !1) 	D(!j+1; xj+1; !)jYl=1 fr(�!l; xl; !l+1) j+1Yl=1 cos �l dx0 d!1 � � � d!j+1= MXj=0 ZQj+1 ZS0 L0(x0; !1) 	D(!j+1; xj+1; !)jYl=1 fr(�!l; xl; !l+1) j+1Yl=1 sin 2�l2 dx0 d�1 d�1 � � � d�j+1 d�j+1= MXj=0 jS0j �2j+2 ZI2j+4 L0(x0(u0; u1); !1) 	D(!j+1; xj+1; !)jYl=1 fr(�!l; xl; !l+1) j+1Yl=1 sin�u2l2 du0 � � � du2j+3(4.5)= MXj=0 jS0j �j+1 ZI2j+4 L0(x0(v0; v1); !1) 	D(!j+1; xj+1; !)jYl=1 fr(�!l; xl; !l+1) dv0 dv1 dF (v2; v3) � � � dF (v2j+2; v2j+3)(4.6)= MXj=0 jS0j �j+1 ZI2j+4 L0(x0(v0; v1); !1) 	D(!j+1; xj+1; !)dv0 dv1 dF (v2; v3) dFr(v4; v5) � � � dFr(v2j+2; v2j+3)(4.7)



10 ALEXANDER KELLERwhere xl = h(xl�1; !l) for l > 0 ,Q = [0; �2 ]� [0; 2�] and!l = (�l; �l) = (�2 u2l; 2�u2l+1) in xl�1 .S0 is the surface of the lightsources where L0 > 0. By (v0; v1) we access the pointx0 on S0, using an area preserving mapping. For the Monte Carlo evaluation wenow use a (2M + 4)-dimensional low discrepancy sequence (ui) for all decisions ofthe random walk. The random walk consists of N paths. For the generation of onepath a particle with radiance L0N is started in point x0, modeled by (ui;0; ui;1), andtraced in direction !1, modeled by (ui;2; ui;3). In x1 = h(x0; !1) its data (direction,position, radiance) is recorded. Then the particle is scattered and attenuated byusing (ui;4; ui;5). This process is repeated for M reections of the particle withthe surface S. The particles are stored in an enhanced photon map similar to[JC95] and [Jen95]. A very compact representation is used, by compressing theparticle information with the technique of [War91a]. The particles are arrangedin a 3d-tree suited for range searching. For memory issues and fast traversal, thistree is balanced and stored without pointers in array representation. This approachavoids higher order FEM using spherical harmonics or similar attempts. Insteadthe storage usually needed for a �ne tesselation and the basis coe�cients is usedfor storing particles, which provide a more accurate information.The formulation (4.5) is very ine�cient, since many samples will be weightedby small values of the projection term. Importance sampling (or inversion) is usedto avoid this e�ect in (4.6). The directions (�2 v2l; 2�v2l+1) are modeled with respectto the projection term: dF (v2l; v2l+1) := d sin2 �2 v2l dv2l+1In the experiments we will compare this kind of sampling to (4.7), where we alsoinverted the BRDF fr. For the calculation of Fr, see [War91b]. This inversionprevents the samples to be strongly attenuated by specular BRDF, if the directiondoes not lie in the main reection direction.Indirect Di�use Illumination. The LAk are calculated during the random walk.So whenever a particle hits S its radiance attenuated by the di�use part of theBRDF fr is added to the surface element in that point. The mean di�use reectedradiance is used as a termination criterion. For two numbers N1 and N2 of iteratedpaths, we determine an error by4(N1; N2) := 1PKk=1 L0;k jAkjvuutPKk=1 d(LAk (N1); LAk(N2))2 jAkjPKk=1 jAkjwhere the LAk(Ni) is the approximation by Ni paths and L0 is the radiance of thedi�erent light sources. Further we select an interval 4N for the measurements.The distance d is the Euclidean distance between the two color vectors LAk(Ni).The process is terminated if for a �xed T and the smallest n 2 IN4((n+ t) 4N; (n+ t+ 1) 4N) < � for 0 � t < T .Since the error is weighted by the size of the triangles, after termination the biggerareas Ak are integrated more exactly than the smaller areas. This makes sense,



QUASI-MONTE CARLO METHODS IN COMPUTER GRAPHICS 11because in the resampling step the bigger areas are hit more often than the smallerones. The Monte Carlo evaluation of the indirect di�use illumination (4.2) is(TfdL)(x) = � Z
 KXk=1LAk �Ak(h(x; !0))! fd(x) dF (v0; v1)� �SCR fd(x) SCR�1Xi=0  KXk=1LAk �Ak(h(x; !0i))!The Monte Carlo calculation shoots SCR rays from the point x distributed overthe hemisphere with respect to the cos �0-distribution. The mean radiance of theelement hit then contributes to the sum. The calculation is further enhanced by thediscontinuity bu�er (see [Kel94]). This techniques augments the sample numberby using the samples of neighbouring pixels and so reduces the calls to h(x; !) byroughly the factor 8.Specular E�ects. The specular illumination (4.3) is evaluated by taking onesample !0 in the reection cone of the specular object generated by the density fs.At the location hit in that direction we sample the source radiance and evaluate thedi�use reected light by using the particles stored in the preprocessing step. Formathematical notation the P particles are accessible as (Lp; !p; xp)Pp=1, where Lpis the radiance, !p is the incoming direction and xp is the point where the particlehit the surface. The specular illumination is calculated by recursion:(TfsL)(x; !) � �s L0(y;�!0) + fd(y)�r2 PXp=1Lp �Br(y)(xp) + (TfsL)(y;�!0)!where y = h(x; !0) is the point hit when tracing the specular sample. If the max-imum level of recursion is reached, we use the full BRDF fr to estimate the totalreected radiance:(TfsL)(x; !) � �s L0(y;�!0) + 1�r2 PXp=1Lp �Br(y)(xp) fr(!p; y;�!0)!To evaluate these functionals, we sum over all particles, which fall into the ballBr(y). They are found using range searching.Caustics. Particles which cause caustics are reected by fs and then hit adi�use surface. Those particles' indices are recorded in the index set C in thepreprocessing step. The evaluation of (4.4) now averages over the contribution ofall caustic-particles in ball Br(x):(TfdTfsL)(x) � fd(x)�r2 Xp2CLp �Br(x)(xp)This approximation is very crude and only for reasons of completeness. The majordisadvantage of this method is, that small specular areas may not be hit in thepreprocessing step, and that caustics from them are omitted although they mayhave very important contribution to the image.Summary and Discussion. The algorithm and its implementation presented inthis paper provide a full solution for the global illumination problem. The imple-mentation uses a random walk preprocessing. Instead of a �ne FEM-tesselation ofthe scene, particles of this step are stored in a very e�cient structure. This struc-ture enables the fast calculation of several kinds of radiance with very few calls



12 ALEXANDER KELLERto the costly ray tracing function h(x; !). As can be seen in the following sectionthe number of paths, when using adaptive termination, is about the same order ofmagnitude for various scenes. So it would make sense to discard the LAk attachedto the surface elements and to evaluate them by balls, too. Then the storage of theillumination information would become independent of the scene S and recursiveand procedural scene modeling will be possible, allowing very complex scenes to bestored in very compact memory. The disadvantage of the algorithm, that causticscaused by small surface elements are likely to be missed, will be subject of furtherwork. By omitting all contributions containing fs, this algorithm also applies to theradiosity problem where fr � fd. It is then very similar to [Kel94] (the di�erencelies in the treatment of fd in the functional for the indirect di�use illumination).4.4. Numerical Evidence. The main interest of this work now is the evalu-ation of the functionals, especially the particle generation phase. For this part ofthe algorithm we want to compare the use of random numbers and quasi-randomnumbers, i.e. low discrepancy points for modeling particle densities with a largenumber of particles. All calculations were performed on an HP9000/735 99MHzworkstation with 64MBytes of main memory in double precision.For the experiments we used the UNIX random generator drand48() and theexplicit inversive method [Nie92a] for the generation of pseudo-random numbersand the Halton and Faure [SP87] sequence for the low discrepancy sequences.To �rst illustrate the power of using low discrepancy points (see also [Kel95]),we simplify the integral equation, so that an analytical solution exists for use asbenchmark. Let L0 = 14 and fr = �d� = 12� then we haveL = L0 + Z
 �d� L cos �(!) d!= L0 + TfrL = 1Xi=0 T ifrL0= 1Xi=0 � 12��i 14T i = 14 1Xi=0 12i = 12where T = Z
 cos � d! = Z 2�0 Z �20 cos �(!) sin � d� d� = �simply is the projection of the unit-hemisphere onto the plane. Then the solutionis independent of the scene geometry ! For an illustration we used an empty 3-dimensional unit cube. In table 1 we see the number of paths needed with theparameters � = 10�4, 2M + 2 = 16, �N = 1000, and T = 2. The mean squaredeviation �a(N) and the weighted mean square deviation �aw(N) are de�ned as�a(N) := sPKk=1(LAk(N)� 12 )2K�aw(N) := vuutPKk=1(LAk(N)� 12 )2jAkjKPKk=1 jAkj



QUASI-MONTE CARLO METHODS IN COMPUTER GRAPHICS 13where LAk(N) is the mean radiance after N paths of the random walk simulation.Obviously the low discrepancy points perform superior in this setting, i.e. theyneed less samples for the same accuracy than random sampling.Table 1. Monte Carlo vs. quasi-Monte Carlo: Analytical SolutionMonte Carlo quasi-Monte CarloCongr. Inversive Halton FaureN 59000 64000 45000 50000�a(N) 0:00599011 0:00632058 0:00536554 0:00543581�aw(N) 0:000724511 0:00076198 0:000647638 0:000659806In table 2 we show the comparison of Monte Carlo and quasi-Monte Carlointegration with and without importance sampling. It clearly can be seen, that thelow discrepancy points lead to a faster convergence when using adaptive terminationwith the same values for �, M and �N as above. In addition the importancesampling (the rows are marked by inv. for inversion) increases performance inspecular scenes (the o�ce and the cabin scene are mainly di�use, and therefore noimprovement is visible). The consequence is that modeling discrete densities, i.e.inverting as much of the integrand as possible, by low discrepancy points is superiorto using random samples even for non-smooth integrands. The application of lowdiscrepancy points even saves storage, since less particles are necessary to acquirethe same level of accuracy when using random samples.Table 2. Monte Carlo vs. quasi-Monte Carlo: Realistic ScenesNMonte Carlo quasi-Monte CarloElements Lights Congr. Inversive Halton Faureo�ce 6070 5 48000 51000 39000 41000inv. 48000 51000 39000 38000cabin 35346 8 30000 32000 25000 28000inv. 30000 32000 25000 28000doll 3604 89 80000 87000 86000 73000inv. 60000 55000 48000 46000soda 41420 5 70000 71000 65000 66000inv. 54000 64000 55000 49000To give an impression of the rendering results, we show some pictures of thescenes used for the measurements in �gure 2.
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Figure 2. Sample views of the scenes.5. ConclusionWe presented an algorithm for the full solution of the global illumination prob-lem in computer graphics. The design of the algorithm was guided by means ofvariance reduction techniques from the Monte Carlo method. By experimental ev-idence we showed, that those techniques, which also can be applied for variationreduction in quasi-Monte Carlo methods, can be applied even if the integrandshave in�nite variation. The experiments also showed, that the quasi-Monte Carlomethods are superior to Monte Carlo methods, i.e. they converge faster.References[HK94] S. Heinrich and A. Keller, Quasi-Monte Carlo methods in computer graphics, Part I:The QMC-Bu�er, 242/94, University of Kaiserslautern, 1994.[Hla71] E. Hlawka, Discrepancy and Riemann Integration, Studies in Pure Mathematics (NewYork) (L. Mirsky, ed.), Academic Press, New York, 1971, pp. 121{129.[HM72] E. Hlawka and R. M�uck, �Uber eine Transformation von gleichverteilten Folgen II,Computing (1972), no. 9, 127{138.[JC95] H. Jensen and N. Christensen, Photon maps in birdirectional monte carlo ray tracingof complex objects, Computer Graphics 19 (1995), no. 2, 215{224.
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