
Hello everyone and welcome. Thanks Alex for having me part of this course. My

name is Colin Barré-Brisebois, and I work at SEED. This talk is a snapshot of the

current state of the art in game raytracing, as well as a bunch of challenges the game

dev community is looking into, and might want some help from its friends in

academia. ☺

In case you don’t know who SEED is, we’re a technical and creative research

division of Electronic Arts. We exist at EA as a cross-disciplinary team to deliver

and foster disruptive innovation, for our games and our players. We focus on long-

term applied research, but also try to stay relevant to the present by delivering

artifacts along the way. Actually you might’ve seen some of our work for the launch

of DirectX Raytracing, in collaboration with NVIDIA and Microsoft. We also have a

bunch of presentations and publications under our belt. Actually, more than 40. I

invite you to check our website, seed.ea.com.

Let’s start with a question: how did a bunch of game developers started taking ray

tracing seriously, and considered it as a robust solution to ship in their game

products?

It should be said that several folks have played with and delivered games that rely on

some aspects of ray tracing, so it’s not a new topic. But one can’t deny that the world

of gamedev was taken by surprise at GDC 2018, when Microsoft announced DirectX

Ray Tracing. A lot of minds were blown, but also a lot of unanswered questions,

especially in terms of what is possible to achieve, at performance?

At SEED we felt very lucky to have been involved early on with Microsoft and NVIDIA,

to see what could be done with this technology. The hybrid rendering pipeline we built

for PICA PICA, allowed us to create visuals that are augmented with ray tracing and

feature an almost path-traced quality look, at 2.5 samples per pixel. This was really
challenging to build, but extremely fun too! One can also not forget about the amazing
demo from the folks at NVIDIA and ILMxLAB built in the Star Wars universe, which
featured film-like visuals in Unreal Engine 4. There was also this really cool demo from

our Finnish friends at Remedy, featuring a bunch of ray tracing techniques in their

Northlight engine, including reflections, ambient occlusion, indirect lighting and ray

traced shadows. There was also this great demo from the folks at Futuremark.

So real-time ray tracing was off to a great start! Especially since a few months later

NVIDIA announced its new architecture titled Turing, which we all know accelerates

ray tracing in hardware.

DICE’s Battlefield 5 was the first game that shipped with real-time hybrid ray tracing

using DXR, powered by EA’s Frostbite engine. It features really awesome hybrid ray-

traced reflections. Make sure to check our Jan and Johannes talk from GDC 2019.

Other big game engines like Unreal 4 also adopted ray tracing, and since release

4.22 ray tracing is now available for all to experiment with. They support both a hybrid

mode, and a path-tracer reference mode, to compare against ground truth.

I’m sure you’ve all seen the amazing demonstration of Unreal’s ray tracing technology,
in collaboration with Goodbye Kansas and Deep Forest films, at GDC 2019.

The Troll demo demonstrated that ray tracing is more than just about reflections, but
also about getting all those subtle lighting interactions together, to create a cohesive
visually-convincing film-quality image on screen.

Unity also announced support for hybrid real-
time ray tracing in their engine, with features
like ambient occlusion, specular reflections,
indirect diffuse lighting, transparency and really
awesome area shadows. All powered by real-
time hybrid ray tracing, for their “Reality vs
Illusion” project.

In this film they rendered at interactive rates on an RTX 2080TI in 4K [it was a 28M

poly car], blurring the line between what is real and what is rendered.

This video shows off some of the effect they support, such as global reflections,

multi-layer transparency with refraction, area lights, shadows, ambient occlusion

and so much more

And here they placed a CG car into the filmed scene with the real-world car.

Unless you look at subtitles, it’s hard to tell which one is real.

14

● A bunch of games have also announced support for ray tracing, including Control,

Metro Exodus, and Shadow of The Tombraider.

● Lately, Quake 2 was modified by Christoph Schied and features real-time path

tracing, with reflections, refraction, shadows, ambient occlusion and GI.

● That’s not the quake 2 I remember, and back then it looked awesome.

● This version just looks amazing. Mind completely blown.

And this is just the beginning of real-time ray tracing making its way into our products.

So no, we’re not done with ray tracing. We’re in for a great ride, and we actually have

quite a lot of work to do, which is super exciting!

● Oh yeah, and let’s not forget that two major console makers have announced

support for ray tracing in their next iteration.

● So awesome!

● The common denominator of these products is that they are mostly all built with a

hybrid rendering pipeline that takes advantage of the best of rasterization, compute

and raytracing

● The idea is that some techniques are built by chaining some stages after another,

because that stage is best at doing what it does. For example, chaining ray tracing

after generating relevant info stored in a UAV from a compute shader. Or grabbing

all the hits from ray tracing, and shading them in a compute shader.

● To do this most have a standard deferred renderer with compute-based lighting,

and a pretty standard post-fx stack.

● Parts of the pipeline are injected with ray tracing.

Let’s first talk about reflections!

● Like I said Battlefield shipped with awesome reflections.

● This short video is an exert from Jan and Johannes’ presentation, and really

shows how much proper reflections add to a scene

21

● The current idea with real-time ray-traced reflections is that we need more than 1

ray per pixel to fully capture the range of rough-to-smooth materials that a

physically-based pipeline can describe.

● This becomes even more complex with multi-layer materials, even for the simple

case like a material that has a base layer, and a finish.

● Perfectly sharp reflections are somewhat easy. The fun really starts when

roughness goes up, or when surfaces become smooth.

● In the context of a hybrid pipeline, reflections rays are launched from the g-buffer

● You can trace in full resolution, but for performance reason people have done it in

half-resolution, which gives you one reflection ray for every 4 pixels.

● Then at the hit point, shadows will typically be sampled with another ray. This

totals to ½ ray per pixel. Alternatively you can sample your existing shadow maps,

if don’t want to launch a recursive rays, for performance reasons.

● If you want to support varying roughness and arbitrary normals, you will have to do

some amount of reconstruction and filtering.

● Some approaches have a maximal roughness level, so you will have to find

another source, like prefiltered environment maps. You can also combine this with

screen space reflections for performance.

● Here’s a high-level summary of a hybrid ray tracing pipeline for reflections.

● First you generate rays via BRDF importance sampling, which gives you rays that

follow the properties of materials.

● Scene intersection can then be done either by screen-space raymarching or ray

tracing. In the video I just showed we only ray trace.

● Once intersections are found, you reconstruct the reflected image. This is either

done in-place, or separately for improved coherency. I’ll talk about this in a few

slides.

● Your upsampling kernel reuses ray hit information across pixels when upsampling

the image to full-resolution.

● Often a last-chance noise cleanup in the form of a cross-bilateral filter runs as the

last step.

Looking only at the reflections, this is the raw results we get at 1 reflection ray

every 4 pixels.

● And this is what the spatial filter does with it. The output is still noisy, but it is

now full rez, and it gives us variance reduction similar to actually shooting 16

rays per pixel.

● Every full resolution pixel basically uses a set of ray hits to reconstruct its

reflection.

● It’s a fancy weighted average where the local pixel’s BRDF is used to weigh

contributions.

● Followed by temporal accumulation

● And finally by a much simpler bilateral filter that removes up some of the

remaining noise.

● It overblurs a bit, but it’s needed for some of the rougher reflections.

● Compared to SSR, ray tracing is trickier because we can’t cheat with a blurred

version of the screen for pre-filtered radiance

● There’s much more noise compared to SSR, so our filters need to be more

aggressive too.

● To prevent it from overblurring, the variance estimate from the spatial

reconstruction pass is used to scale down the bilateral kernel size and sample

count

● And then of course we sprinkle some TAA on top, because TAA ”fixes

everything” and the remaining noise, and we get a pretty clean image.

● Considering this comes from one quarter rays per pixel per frame, and works

with dynamic camera and object movement, it’s quite awesome what can be

done when reusing spatial and temporal data

● Going back to the raw output, for comparison

As mentioned, you can also combine screen space reflections with ray tracing. This is

what Jan and Johannes from DICE have presented back at GDC, and featured in

Battlefield 5.

● The general idea when blending between SSR and ray tracing is that one has to

figure out which pixels can rely on screen-space results. If that’s the case, you can

use that result. Otherwise you trace in the world.

● The challenge here is achieving that fine balance and aligning results from screen

space, with results from world space tracing.

● Once done the results can look great, as shown here. Here’s an overview of their

whole pipeline, with some performance numbers on a 2080TI. This should give you

a good idea of some of the steps needed to achieve this.

● Additionally the folks at DICE have presented an approach that tweaking the ray

count shows significant performance improvement, and binning the rays.

● Red high ray count

● Blue low ray count

● Yellow in Between

● Managing coherency is key for real-time ray tracing performance

● You will get some adjacent rays that perform similar operations and memory

accesses, and those will perform well, while some might trash cache and

affect performance

● Depending on what techniques you implement, you will have to keep this in

mind, as the current hardware won’t do this for you.

● Can’t expect out-of-core ray sorting and coherency construction from total

mess. Still need to tackle coherency upfront in the techniques & algorithms we

develop.

● Here we can take inspiration from offline, and this is what several have

demonstrated.

● You can use shadow maps for reflection shadows, and therefore not do

recursive rays.

● You can bin rays, and split tracing and shading

● You can group shading per material

● And also limit tracing based on roughness.

● Speaking of managing coherency, grouping rays that are directionally aligned to

maximize coherency

● The general idea here is to split the screen in tiles, and sort randomly generated

rays in some kind of space that allows you to bucket them by direction.

● Octahedral space is perfect for this.

● Then, for each bin you launch the rays and gather the hits, and output to a UAV or

Gbuffer

● You can then light and shade those hits results in a compute shader, which gives

you better control over SIMD usage.

● Another technique that maps and scales well to real-time ray tracing is of course

ambient occlusion.

● Being the integral of the visibility function over the hemisphere, we get more

grounded results because all the random directions used during sampling actually

end up in the scene, unlike with screen space techniques where rays can go

outside the screen or behind geometry, where the hitpoint is not visible.

● Just like in the literature, this is done by doing cosine hemispherical sampling

around the normal.

● Rays are typically launched from the gbuffer, and the miss shader is used to figure

out if we’ve hit something

● You can launch more than 1 ray per frame, but if you limit the ray distance distance

even with one ray per frame you should get some nice gradients

● You’ll most likely need to filter and reconstruct, as AO can be a bit noisy.

Remedy’s Ray-traced Ambient Occlusion in Northlight Engine [Aalto2018]

Some really great results from the folks at Remedy, in the Northlight Engine

And if we compare with screen space AO, we can totally see that ray traced AO takes

it to another level

Overall it looks so much more grounded!

● Raytraced shadows is obviously another technique where ray tracing shines.

Those are great because they perfectly ground objects in the scene.

Here a scene from Unreal Engine 4 that shows how perfect shadows really help in

making a visually-convincing and cohesive image.

● This is not too complicated to implement. Just launch a ray towards the light, and if

the ray misses you’re not in shadow

● Hard shadows are great… but soft shadows are definitely better to convey scale

and more representative of the real world

● This can be implemented by sampling random directions in a cone towards the

light, treating it like an area light

● The wider the cone angle, the softer shadows get but the more noise you’ll get, so

we have to filter it

● You can launch more than one ray, but will still require some filtering

● Let’s zoom on some details. We get nice contact hardening and it just works.

● But much better can be done here.

● And to this, Heitz, Hill and McGuire have demonstrated an approach that combined

analytic direct illumination and stochastic shadows.

● This approach is also implemented in Unity, their soft area light shadows.

● In their paper, they propose a ratio estimator that allows correctly combining

analytic illumination techniques with stochastic raytraced shadows.

● By splitting shadowed illumination in two parts -- the analytical part and the

stochastic part -- their method demonstrates how one can obtain sharp and noise-

free shading in the unshadowed part of the image, analytically, and visually-

convincing shadows via stochastic ray tracing.

● The advantage of stochastic evaluation only where needed is that the final result

only has noise in the shadows, whereas the rest is handled analytically.

● They also denoise shadows separately from illumination, so high-frequency

shading details is kept. This technique is really awesome.

● Opaque shadows are cool, but transparent shadows for thick homogenous

mediums are even better!

● Transparency is a hard problem in real-time graphics, but with ray tracing new

alternatives are possible

● In our case we replace the regular shadow tracing code with a recursive ray trace

through transparent surfaces

● As the light travels through the medium we accumulate absorption, multiplicatively

● Our current implementation treats this as a thin film approximation, where we

assume all the color is on the surface, for performance

● Just like our opaque shadows, transparent shadows can also be soft! We filter

them with a similar SVGF-inspired filter.

● This is a simple illustration of what happens

● For any surface that needs shadowing, we shoot a ray towards the light

● If we hit an opaque surface, or if we miss everything, we can stop

● If we hit a transparent surface however, we accumulate absorption based on the

albedo of the object

● We keep doing this until 1. all light is absorbed, or 2. We miss in in the trace. 2. We

hit an opaque surface

● This is not caustics, as we ignore caustic effects with out approach

● We do take Fresnel into account on the boundaries though

● It is also important to note that the regular Schlick approximation falls apart when

the IOR on the incident side of the medium is higher than the far side

● We use Total-Internal-Reflection Fresnel, and filter the results with our tweaked

SVGF that we mentioned in previous talks

Unfiltered results on the left, and filtered results on the right.

Once again, and notice how the colors blend together as the light travels inside the

glass.

Same thing here, but softly filtered.

This allows us to fix super important issues like these, where the shadow of the

pen’s ink tube clearly shows from the light travelling in the plastic casing.

● Ray tracing enables accurate light scattering for both transparency and subsurface

translucency

● It’s now possible to properly represent order independent transparency, variable

roughness, IOR transitions as well as absorption

● For PICA PICA we did this in texture space

Here’s a breakdown of how we compute translucency

Here’s a breakdown of how we compute translucency

Here’s a breakdown of how we compute translucency

Here’s a breakdown of how we compute translucency

Here’s a breakdown of how we compute translucency

Here’s a breakdown of how we compute translucency

This is the kind of results we get. At GDC we talked about how we interpolate

results to make them reactive, so check out the slides on our website for additional

details.

● Transparency on the other hand works both clear and rough glass

● For clear glass no filtering is required

● For rough glass, we use Walter’s parametrization and importance sample GGX

roughness

● For super rough, more samples are needed to get rid of noise, but one can also

use temporal filtering. Easier to do in texture-space!

● The examples here show a very simple material model for glass, but something

more complex can be done

● And so transparent surfaces, you need a model that can handle refraction as well

as reflection

● This is what it looks like with Walter

● Walter handles the rough light interactions on air to object boundaries, but also

provides physically accurate solutions for any surface-to-surface light transport

● We importance sample the GGX distribution, using this method, for both reflected

and refracted rays on internal and external boundaries

● This is obviously more expensive, but still manageable and quite nice. We feel like

we can optimize it more.

● Naïve Implementation @ 512x512 in texture space is 3.5ms on Turing

● A lot of the things I’ve just discussed handle a limited number of lights.

● While one can decide to process all the lights, sometimes that’s not an option, for

performance reasons

● A few approaches are possible here.

● Unity relies on a camera oriented acceleration structure, like the image on the right.

We a hit is shaded, the light of lights from where that hit resides is queried, so you

don’t end up sampling the whole scene. Battlefield 5 relies on a horizontal plane

light list.

● The first kind relies on acceleration structures to tell a pixel which lights are to be

sampled. This is common for deferred and clustered shading.

● The second kind, are importance-sampling based.

● Recently Moreau, Phar and Clarbeg have released a paper at HPG a few weeks

ago. Their paper describes a hierarchical light sampling data structure based on a

two-level BVH, that enables interactive direct lighting from 10,000s emissive

triangles. This enables a future where real-time scenes could be lit with only

emissive meshes, which is really awesome. I really recommend checking it out!

What about particles? Having VFX support for ray tracing is key to make sure

explosions appear in the upside down as they appear in the scene.

The problem is that particles are built as billboards, and expected to be facing the

camera. That doesn’t work in reflections.

72

● The way the folks at DICE have solved this is by orienting the particles towards the

ray.

● The general scheme is to maintain two top level acceleration structures: one for

opaque geometry, and one for particles

● You first shoot a ray in the opaque one, and if there’s a hit you store that length

● You then launch another ray, this time in the particle acceleration structure, and

limit that ray length from the opaque hit length

● You then blend particles in the scene accordingly

● Another trick that seems to have worked for them is to rotate odd particles by 90

degrees.

So again without aligning particles towards the ray

74

● And here’s the final result.

● It’s not perfect, but can work very well for your case as well. Especially for fast

explosions and smoke.

75

● We’ve also seen a bunch of techniques benefit of the ray tracing hardware

capabilities

● These techniques rely on various caching mechanisms to accumulate results over

multiple frames, and accelerate sampling

● Could do a full talk on this, but that will have to be for some other day.

● Culling is another interesting one, since you can’t rely on frustum culling anymore.

For example, you can see reflections from objects behind you

● Also in the case where you can’t have all your objects in the BVH, you have to find

a new heuristic

● Can’t just use distance, as you might want some far away buildings in reflections

● The DICE guys have relied on a projected bounding sphere, which seems to do

the job

● Texture LOD is another interesting one: there is no automatic texture mip

selection with ray tracing, because pixel quad derivatives exist only for

rasterization

● People have often relied on ray differentials, but it has some performance

implications

● In ray tracing gems, we discuss an alternative technique based on cones.

● I’ll talk about this on Wednesday at 2PM

● But you’ll see that it’s not perfect, and we still have some things to improve

● A bunch of performance good practices have emerged from the initial group of

products that have adopted real-time ray tracing.

● Some are obvious, and some are based on limitations of the current hardware and

API implementations

● A lot of it is case by case for your game, but the following should be generally good

advice for now

● Especially minimizing recursion and adopting fire-and-forget tail-recursive

techniques

● And building your own metric for BVH update vs refit

● There’s this great article by Alex Dunn from NVIDIA, and I really recommend

checking it out.

Let’s briefly touch on some open challenges for real-time ray tracing and video

games, where you could possibly have an impact as a researcher.

● In the context of a game we need to support many animated characters, lots of

foliage, potentially in a massive open world that evolves

● Also possibly some user generated content and created experiences that you

might not able to process on the fly, without any art clean-up

● Techniques have to be robust, and constraints well exposed in publications.

This last one really really helps!

● Transparency. Even with real-time raytracing, this is definitely not solved.

● When one looks at the images on the right… we still have work to do to reach

that quality level in real-time, at 1 sample per pixel

● Actually a lot of transparent effects require non-trivial blending with the rest of

the scene, and non-trivial filtering.

● It’s also a challenge when it comes to blending volumetrics, particles and fog

with other effects….

● For transparency we came up with a texture-space OIT technique, but you

have to deal with temporal issues.

● The thing is, with 1 sample per pixel, and throwing some Monte Carlo in there,

most denoising techniques generally don’t work so well with transparency or

partial coverage

● Same thing if we talk about partial coverage

● We can still do alpha testing in the hit shaders, and could use some pre-

filtering. But as soon as it starts moving, it can become a problem both for

performance and visually.

● If you’re building a jungle or a scene like PBRT, or the forest on the island

from Moana, it’s a different story than just a tree here and there.

● Some folks have even considered not using any-hit shaders, and modeled

leaves with triangles. Can work too depending on your case.

● Other types of partial coverage effects that get affected such as DOF and

motion blur also fall into this trap

● And so, current denoising techniques don’t work well with this kind of partial

visibility in real-time. And often this is because we only have 1 sample per

pixel and assume everything is opaque.

● In terms of future ray tracing research, if we talk about literature, literature has

to adjust itself to real-time constraints, and not just “correct raytracing”.

● The metrics listed here become important for papers to get adopted by games

● Ray tracing also funnels exploration of texture space techniques, and variable

rate ray tracing

● We still have a bunch of work to do on sampling and integration strategies,

and reconstruction

● GI is another good one: Real-time raytracing doesn`t completely solve real-

time GI

● It’s still a problem for offline, where scenes can take hours to resolve, with

difficult paths with caustics for example.

● There are many workarounds in offline, but they don’t necessarily map to real-

time.

● For real-time we absolutely have to resort to caching, like techniques I

mentioned a few slides ago. Some techniques work better than others,

especially if artists don’t have to do manual UV unwraps for lightmaps or proxy

geometry for GI.

● We also need to solve GI for user-generated content, where you can’t expect

any upfront parametrization

● So even with RTRT, we’re definitely not done here

● The current model for real-time ray tracing also assumes that ray-triangle

intersection is the end-all-be-all, but what if we stopped the ray higher up the

tree

● This could enable new types of tracing, like beam tracing or ray bundles

● Could unlock a family of algorithms that require broad tracing, in real-time

● Right now, it feels like it’s all there, and one just needs to expose this as a

LOD control for developers.

● Right now it might be a bit duct-tapey for the first round of products, but we

also have a bunch of work on the engine side to evolve our engines to

maximize this hybrid pipeline idea

● Runtime is important, but also pipeline related challenges around the massive

number of shader permutation engines generate

On one last note, we would like to point out that we’re hiring for multiple positions at

SEED. If you’re interested, please give us a shout!

