
© 2019 SIGGRAPH. ALL RIGHTS RESERVED.!1

PROGRESSIVE MULTI-JITTERED
SAMPLE SEQUENCES

Per Christensen

Joint work with Andrew Kensler and Charlie Kilpatrick

Pixar Animation Studios

MOTIVATION

 RenderMan used to be off-line rendering (final movie frames)
 But lately: also interactive rendering for faster feedback:
modeling, animation, lighting, …
 This has consequences for sample pattern choices. Rethink!

!2

final frame interactive animation

OVERVIEW

 Survey + evaluation of existing sample sequences
 3 new algorithms: generate pj, pmj, pmj02 samples
 More evaluations: pixel sampling, area lights
 Extensions: blue noise, multi-class
 Speed-ups by Matt Pharr
 Higher dimensions, better visual quality

!3

SAMPLE PATTERNS: SETS VS SEQUENCES

 Sets:
• finite (fixed size)
• no particular order
• need to know how many samples
• no good for incremental rendering, adaptive sampling
 Sequences:
• infinite
• every prefix has a good distribution
• no need to know how many samples
• great for incremental rendering, adaptive sampling

!4

SAMPLE PATTERNS: SETS VS SEQUENCES

 Incremental rendering: area light sampling

!5

100 samples from set with 400 100 samples from sequence
(same render time)

SAMPLE SETS

!6

regular grid multijitterjitter correlated
multijitter

Hammersley Larcher-
Pillichshammer

[Chiu94] [Kensler13] quasi-random (“qmc”) sets

SAMPLE SETS

!7

regular grid multijitterjitter correlated
multijitter

Hammersley Larcher-
Pillichshammer

[Chiu94] [Kensler13] quasi-random (“qmc”) sets

SAMPLE SEQUENCES

!8

random [Ahmed17]SobolHaltonblue noise [Perrier18]

(best candidate/
Poisson disk)

quasi-random sequences blue noise + stratification

SAMPLE SEQUENCES: RANDOMIZED QUASI-RANDOM

!9

Halton rot Sobol Owen scrSobol rotHalton scr

Cranley-Patterson rotations
[Cranley76]

bit-wise exclusive-or
[Kollig02]

[Owen97]

Sobol xor scr

FIRST COMPARISON OF SEQUENCES

!10

COMPARING SAMPLE SEQUENCES

 How to measure “best”?
 Definitely not lowest discrepancy -- don't get me started!
 Better:
• measure error when sampling various functions
• confirm results in actual rendering: sample pixel positions, area lights, …

!11

INITIAL TESTS OF 2D SEQUENCES

 Sample simple discontinuous and smooth functions on [0,1)2
 Known analytical reference values

!12

INITIAL TESTS: DISCONTINUOUS FUNCTIONS

 Disk function: f(x,y) = 1 if x2 + y2 < 2/pi, 0 otherwise

!13

10
x

y

1

reference value: 0.5

INITIAL TESTS: DISCONTINUOUS FUNCTIONS

!14

bad: O(N-0.5)

 0.001

 0.01

 0.1

 100 1000

er
ro

r

samples

Disk function: sampling error
random

N-0.5

INITIAL TESTS: DISCONTINUOUS FUNCTIONS

!15

bad: O(N-0.5)

 0.001

 0.01

 0.1

 100 1000

er
ro

r

samples

Disk function: sampling error
random

best cand
N-0.5

INITIAL TESTS: DISCONTINUOUS FUNCTIONS

!16

bad: O(N-0.5)

 0.001

 0.01

 0.1

 100 1000

e
rr

o
r

samples

Disk function: sampling error
random

best cand

Perrier rot

Ahmed

Halton rot

Halton scr

Sobol rot

Sobol xor

Sobol owen

N-0.5

N-0.75

okay: O(N-0.75)

INITIAL TESTS: DISCONTINUOUS FUNCTIONS

 Similar tests for triangle function and step function shows high error for
Sobol rot and Sobol xor, and Ahmed and Perrier

!17

10
x

y

1

reference value: 0.5 reference value: 1/pi
0 1

1

INITIAL TESTS: SMOOTH FUNCTIONS

 2D Gaussian function: f(x,y) = exp(-x2-y2)

!18

10
x

y

1

reference value: ~0.557746

INITIAL TESTS: SMOOTH FUNCTIONS

!19

bad: O(N-0.5)

 1×10-5

 1×10-4

 1×10-3

 1×10-2

 1×10-1

 100 1000

er
ro

r

samples

Gaussian function: sampling error
random

best cand
N-0.5

INITIAL TESTS: SMOOTH FUNCTIONS

!20

bad: O(N-0.5)

 1×10-5

 1×10-4

 1×10-3

 1×10-2

 1×10-1

 100 1000

er
ro

r

samples

Gaussian function: sampling error
random

best cand
Perrier rot

Ahmed
Halton rot
Halton scr
Sobol rot
Sobol xor

N-0.5

N-1

good: O(N-1)

INITIAL TESTS: SMOOTH FUNCTIONS

!21

bad: O(N-0.5)

good: O(N-1)

 1×10-5

 1×10-4

 1×10-3

 1×10-2

 1×10-1

 100 1000

e
rr

o
r

samples

Gaussian function: sampling error
random

best cand

Perrier rot

Ahmed

Halton rot

Halton scr

Sobol rot

Sobol xor

Sobol owen

N-0.5

N-1

N-1.5

excellent: O(N-1.5)

INITIAL TESTS: SMOOTH FUNCTIONS

 Bilinear function f(x,y) = xy: similar results

!22

10
x

y

1

reference value: 0.25

SUMMARY OF INITIAL TESTS

 Owen-scrambled Sobol is best:
• no pathological error for discontinuities at certain angles
• extraordinarily fast convergence for smooth functions

!23

PROGRESSIVE (MULTI)JITTERED SEQUENCES

!24

PROGRESSIVE (MULTI)JITTERING

 Framework for stochastic sample generation
 Three simple algorithms that progressively fill in holes in increasingly fine
stratifications
 Build on jittered [Cook84] and multijittered [Chiu94] sample sets — but
sequences

!25

PROGRESSIVE JITTERED SEQUENCES

 No multi-jitter
 Stratification goal: increasingly fine squares

!26

2x2 4x4

PROGRESSIVE JITTERED SEQUENCES

 Sample 1: random position

!27

PROGRESSIVE JITTERED SEQUENCES

 Sample 2: opposite diagonal square

!28

PROGRESSIVE JITTERED SEQUENCES

 Sample 3: one of the empty squares

!29

PROGRESSIVE JITTERED SEQUENCES

 Sample 4: last empty square

!30

PROGRESSIVE JITTERED SEQUENCES

 Samples 5-8: opposite squares

!31

PROGRESSIVE JITTERED SEQUENCES

 Samples 9-12: one of remaining squares

!32

PROGRESSIVE JITTERED SEQUENCES

 Samples 13-16: last remaining squares

!33

PROGRESSIVE JITTERED SEQUENCES

 And so on …
 Simple! Similar to [Dippe85,Kajiya86]
 See pseudocode in EGSR 2018 paper

!34

PROGRESSIVE MULTIJITTERED — PMJ

 Stratification goal: squares, rows, and columns

!35

4 samples

16 samples

8 samples

PROGRESSIVE MULTIJITTERED — PMJ

 Sample 1: random position

!36

PROGRESSIVE MULTIJITTERED — PMJ

 Sample 2: opposite diagonal square

!37

PROGRESSIVE MULTIJITTERED — PMJ

 Sample 3: one of the empty squares + empty 1D strips

!38

PROGRESSIVE MULTIJITTERED — PMJ

 Sample 4: remaining square + 1D strips

!39

PROGRESSIVE MULTIJITTERED — PMJ

 Samples 5-8: opposite squares + empty 1D strips

!40

PROGRESSIVE MULTIJITTERED — PMJ

 Samples 9-12: one of remaining squares + empty 1D strips

!41

PROGRESSIVE MULTIJITTERED — PMJ

 Samples 13-16: last remaining squares + empty 1D strips

!42

PROGRESSIVE MULTIJITTERED — PMJ

 And so on …
 Similar to multijittered sets [Chiu94], but for sequences
 Pseudocode in EGSR 2018 paper

!43

PROGRESSIVE MULTIJITTERED (0,2) — PMJ02

 Stratification goal: all base-2 elementary intervals

!44

4 samples

16 samples

8 samples

PROGRESSIVE MULTIJITTERED (0,2) — PMJ02

 Very similar to pmj, but reject samples if in elementary interval stratum
that is already occupied
 See pseudo-code in EGSR 2018 paper for details
 Speed: 39,000 samples/sec (1 CPU thread)
• too slow during rendering, so pre-generate tables

!45

SECOND COMPARISON OF SEQUENCES

!46

PIXEL SAMPLING

 Each pixel is a “function” we sample
 Image resolution: 400x300
 Reference images: 5002 = 250,000 jittered samples/pixel
 Each error curve: average of 100 sequences

!47

PIXEL SAMPLING: CHECKERED TEAPOTS

!48

checkered teapots on checkered ground plane

PIXEL SAMPLING: CHECKERED TEAPOTS

!49

 0.001

 0.01

 100 1000

rm
s

e
rr

o
r

samples per pixel

Checkered teapots: pixel sampling rms error
random

best cand

Perrier rot

Ahmed

Halton rot

Halton scr

Sobol rot

Sobol xor

Sobol owen

pj

pmj

pmj02

N-0.5

N-0.75

bad: O(N-0.5)

okay: O(N-0.75)

PIXEL SAMPLING: TEXTURED TEAPOTS

!50

textured teapots on textured ground plane

discontinuities due to
object edges

smooth (texture filtering)

PIXEL SAMPLING: TEXTURED TEAPOTS (1)

!51

discontinuous

 0.001

 0.01

 100 1000

rm
s

e
rr

o
r

samples per pixel

Textured teapot: pixel sampling rms error
random

best cand

Perrier rot

Ahmed

Halton rot

Halton scr

Sobol rot

Sobol xor

Sobol owen

pj

pmj

pmj02

N-0.5

N-0.75

bad: O(N-0.5)

okay: O(N-0.75)

PIXEL SAMPLING: TEXTURED TEAPOTS (2)

!52

smooth

bad: O(N-0.5)

good: O(N-1)

 1×10-6

 1×10-5

 1×10-4

 1×10-3

 100 1000

rm
s

e
rr

o
r

samples per pixel

Textured groundplane: pixel sampling rms error
random

best cand

Perrier rot

Ahmed

Halton rot

Halton scr

Sobol rot

Sobol xor

Sobol owen

pj

pmj

pmj02

N-0.5

N-1

N-1.5

excellent: O(N-1.5)

SQUARE AREA LIGHT SAMPLING

!53

teapots on ground plane illum by square light source
(no pixel sampling)

smooth illum

penumbra: shadow
discontinuities

SQUARE AREA LIGHT SAMPLING (1)

!54

 0.001

 0.01

 100 1000

rm
s

e
rr

o
r

samples per pixel

Square light: penumbra sampling rms error
random

best cand

Perrier rot

Ahmed

Halton rot

Halton scr

Sobol rot

Sobol xor

Sobol owen

pj

pmj

pmj02

N-0.5

N-0.75

discontinuous

bad: O(N-0.5)

okay: O(N-0.75)

SQUARE AREA LIGHT SAMPLING (2)

!55

smooth
 1×10-5

 1×10-4

 1×10-3

 1×10-2

 100 1000

rm
s

e
rr

o
r

samples per pixel

Square light: full illum sampling rms error
random

best cand

Perrier rot

Ahmed

Halton rot

Halton scr

Sobol rot

Sobol xor

Sobol owen

pj

pmj

pmj02

N-0.5

N-1

N-1.5

bad: O(N-0.5)

good: O(N-1)

excellent: O(N-1.5)

VARIATIONS AND EXTENSIONS

!56

VARIATIONS AND EXTENSIONS

 Status: up until this point, we’ve only shown that pmj02 samples are
as good as Owen-scrambled Sobol
 So what ??
 BUT: within pmj framework we can add blue noise, generate multi-
class samples, …

!57

PMJ WITH BLUE NOISE

 Simple variation: when generating a new pj/pmj/pmj02 sample,
generate N candidate points and pick the one that’s most distant from
previous samples
 For example:

!58

plain pmj pmj w/ blue noise

FOURIER SPECTRA

!59

plain pmj pmj w/ blue noise

PMJ WITH BLUE NOISE

 Not clear whether blue noise reduces error?
 But at least the patterns look more pleasing

!60

PMJ WITH INTERLEAVED MULTICLASS SAMPLES

 pj/pmj/pmj02 samples can be divided into two classes on the fly
 Each class almost as well stratified as the full sequence
 For example:

!61

4 64 256 102416

PMJ WITH INTERLEAVED MULTICLASS SAMPLES

 Two classes can provide two independent estimates for each pixel
 Can be useful for adaptive sampling

!62

FASTER SAMPLE GENERATION [PHARR19]

 Faster sample generation by better data structure -- keeping track of
unoccupied elementary intervals
 Reference: Matt Pharr, “Efficient generation of points that satisfy two-
dimensional elementary intervals”, JCGT 2019
 Speed: 333,000 points / sec (1 CPU thread)

!63

HIGHER DIMENSIONS: 3D, 4D, 5D, …

 For depth-of-field (DOF), motion blur (MB)
 DOF: need 2D samples for pixel pos + 2D for lens pos
 If we just use two pmj02 sequences: correlation
 Better: randomly shuffle sample order of one of the 2D sequences
(similar to [Cook84] for sample sets). Avoids correlation
 Even better: carefully shuffle sample order such that 2D+2D points are
stratified in 4D. Implementation: swap order of two points and check if
that improves 4D stratification; stop when fully stratified.
 MB: similar for 2D pixel pos + 1D time samples
 Combined: 2D+2D+1D table

!64

BETTER VISUAL QUALITY

 Better placement of 1st sample/pixel: fully stratify in 4x4 pixel blocks.
Similar in spirit to [Georgiev16] “Blue noise dithered sampling”
 New, better technique:
• Heitz et al, “A low-discrepancy sampler that distributes Monte Carlo

errors as blue noise in screen space” -- this afternoon!
• shuffles and xor-scrambles Sobol samples to improve visual quality

for all samples
• we could/should do that with pmj02 samples, too!

!65

CONCLUSION + FUTURE WORK

 Two main contributions:
• fresh assessment of existing sample sequences
• framework for stochastic progressive sample generation
 Error equal to best quasi-random sequence, but allows blue noise,
multiclass, future variations
 More info: EGSR 2018 paper + supplemental material
 Future: hopefully even more optimal sample sequences?

!66

A “FREEBIE”: FUNCSAMP2D PROGRAM

 C++ program to integrate 2D functions with various sample sequences
 For comparison of error and convergence rates of sequences
 Polished version of program I used for plots in this talk
 Different function classes: discontinuous, continuous, smooth, …
 Available at GitHub: github.com/perchristensen/funcsamp2D
 Feel free to extend it: more functions, higher dimensions, …

!67

 0.001

 0.01

 0.1

 100 1000

e
rr

o
r

samples

Disk function: sampling error
random

best cand

Perrier rot

Ahmed

Halton rot

Halton scr

Sobol rot

Sobol xor

Sobol owen

N-0.5

N-0.75

 1×10-5

 1×10-4

 1×10-3

 1×10-2

 1×10-1

 100 1000

e
rr

o
r

samples

Gaussian function: sampling error
random

best cand

Perrier rot

Ahmed

Halton rot

Halton scr

Sobol rot

Sobol xor

Sobol owen

N-0.5

N-1

N-1.5

ACKNOWLEDGEMENTS

 Alexander Keller for organizing this course
 Colleagues in Pixar’s RenderMan team
 Brent Burley @ Disney: efficient Owen scrambling code
 Matt Pharr @ Nvidea: much faster implementation
 Victor Ostromoukhov, Christophe Hery, Ryusuke Villemin,
Emmanuel Turquin, Andre Mazzone, …

!68

!69

“The generation of random samples
is too important to be left to chance”

— R. Coveyou

!70

Thank you !

!71

© 2019 SIGGRAPH. ALL RIGHTS RESERVED.!72

© 2019 SIGGRAPH. ALL RIGHTS RESERVED.

© 2019 SIGGRAPH. ALL RIGHTS RESERVED.

© 2019 SIGGRAPH. ALL RIGHTS RESERVED.

© 2019 SIGGRAPH. ALL RIGHTS RESERVED.

SOME SLIDE HEADER HERE

!76

© 2019 SIGGRAPH. ALL RIGHTS RESERVED.!77

© 2019 SIGGRAPH. ALL RIGHTS RESERVED.!78

© 2019 SIGGRAPH. ALL RIGHTS RESERVED.!79

