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MOTIVATION

 RenderMan used to be off-line rendering (final movie frames) 
 But lately: also interactive rendering for faster feedback:     
modeling, animation, lighting, … 
 This has consequences for sample pattern choices.  Rethink!
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final frame interactive animation



OVERVIEW

 Survey + evaluation of existing sample sequences 
 3 new algorithms: generate pj, pmj, pmj02 samples 
 More evaluations: pixel sampling, area lights 
 Extensions: blue noise, multi-class 
 Speed-ups by Matt Pharr 
 Higher dimensions, better visual quality
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SAMPLE PATTERNS: SETS VS SEQUENCES

 Sets: 
•  finite (fixed size) 
•  no particular order 
•  need to know how many samples 
•  no good for incremental rendering, adaptive sampling 
 Sequences: 
•  infinite 
•  every prefix has a good distribution 
•  no need to know how many samples 
•  great for incremental rendering, adaptive sampling
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SAMPLE PATTERNS: SETS VS SEQUENCES

 Incremental rendering: area light sampling
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100 samples from set with 400 100 samples from sequence
(same render time)



SAMPLE SETS
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regular grid multijitterjitter correlated 
multijitter

Hammersley Larcher- 
Pillichshammer

[Chiu94] [Kensler13] quasi-random (“qmc”) sets



SAMPLE SETS
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SAMPLE SEQUENCES
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random [Ahmed17]SobolHaltonblue noise [Perrier18]

(best candidate/ 
Poisson disk)

quasi-random sequences blue noise + stratification



SAMPLE SEQUENCES: RANDOMIZED QUASI-RANDOM
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Halton rot Sobol Owen scrSobol rotHalton scr

Cranley-Patterson rotations 
[Cranley76]

bit-wise exclusive-or 
[Kollig02]

[Owen97]

Sobol xor scr



FIRST COMPARISON OF SEQUENCES
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COMPARING SAMPLE SEQUENCES

 How to measure “best”? 
 Definitely not lowest discrepancy -- don't get me started! 
 Better: 
• measure error when sampling various functions 
• confirm results in actual rendering: sample pixel positions, area lights, …
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INITIAL TESTS OF 2D SEQUENCES

 Sample simple discontinuous and smooth functions on [0,1)2 
 Known analytical reference values
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INITIAL TESTS: DISCONTINUOUS FUNCTIONS

 Disk function: f(x,y) = 1 if x2 + y2 < 2/pi, 0 otherwise
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INITIAL TESTS: DISCONTINUOUS FUNCTIONS
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INITIAL TESTS: DISCONTINUOUS FUNCTIONS

!15

bad: O(N-0.5)

 0.001

 0.01

 0.1

 100  1000

er
ro

r

samples

Disk function: sampling error
random

best cand
N-0.5



INITIAL TESTS: DISCONTINUOUS FUNCTIONS
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bad: O(N-0.5)
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INITIAL TESTS: DISCONTINUOUS FUNCTIONS

 Similar tests for triangle function and step function shows high error for 
Sobol rot and Sobol xor, and Ahmed and Perrier
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INITIAL TESTS: SMOOTH FUNCTIONS

 2D Gaussian function: f(x,y) = exp(-x2-y2)
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INITIAL TESTS: SMOOTH FUNCTIONS
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INITIAL TESTS: SMOOTH FUNCTIONS
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INITIAL TESTS: SMOOTH FUNCTIONS
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bad: O(N-0.5)

good: O(N-1)
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INITIAL TESTS: SMOOTH FUNCTIONS

 Bilinear function f(x,y) = xy: similar results
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SUMMARY OF INITIAL TESTS

 Owen-scrambled Sobol is best: 
•  no pathological error for discontinuities at certain angles 
•  extraordinarily fast convergence for smooth functions
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PROGRESSIVE (MULTI)JITTERED SEQUENCES
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PROGRESSIVE (MULTI)JITTERING

 Framework for stochastic sample generation 
 Three simple algorithms that progressively fill in holes in increasingly fine 
stratifications 
 Build on jittered [Cook84] and multijittered [Chiu94] sample sets — but 
sequences
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PROGRESSIVE JITTERED SEQUENCES

 No multi-jitter 
 Stratification goal: increasingly fine squares
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2x2 4x4



PROGRESSIVE JITTERED SEQUENCES

 Sample 1: random position
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PROGRESSIVE JITTERED SEQUENCES

 Sample 2: opposite diagonal square
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PROGRESSIVE JITTERED SEQUENCES

 Sample 3: one of the empty squares
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PROGRESSIVE JITTERED SEQUENCES

 Sample 4: last empty square
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PROGRESSIVE JITTERED SEQUENCES

 Samples 5-8: opposite squares
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PROGRESSIVE JITTERED SEQUENCES

 Samples 9-12: one of remaining squares
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PROGRESSIVE JITTERED SEQUENCES

 Samples 13-16: last remaining squares

!33



PROGRESSIVE JITTERED SEQUENCES

 And so on … 
 Simple!  Similar to [Dippe85,Kajiya86] 
 See pseudocode in EGSR 2018 paper
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PROGRESSIVE MULTIJITTERED — PMJ

 Stratification goal: squares, rows, and columns
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4 samples

16 samples

8 samples



PROGRESSIVE MULTIJITTERED — PMJ

 Sample 1: random position
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PROGRESSIVE MULTIJITTERED — PMJ

 Sample 2: opposite diagonal square
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PROGRESSIVE MULTIJITTERED — PMJ

 Sample 3: one of the empty squares + empty 1D strips
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PROGRESSIVE MULTIJITTERED — PMJ

 Sample 4: remaining square + 1D strips
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PROGRESSIVE MULTIJITTERED — PMJ

 Samples 5-8: opposite squares + empty 1D strips
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PROGRESSIVE MULTIJITTERED — PMJ

 Samples 9-12: one of remaining squares + empty 1D strips
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PROGRESSIVE MULTIJITTERED — PMJ

 Samples 13-16: last remaining squares + empty 1D strips
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PROGRESSIVE MULTIJITTERED — PMJ

 And so on … 
 Similar to multijittered sets [Chiu94], but for sequences 
 Pseudocode in EGSR 2018 paper
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PROGRESSIVE MULTIJITTERED (0,2) — PMJ02

 Stratification goal: all base-2 elementary intervals
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PROGRESSIVE MULTIJITTERED (0,2) — PMJ02

 Very similar to pmj, but reject samples if in elementary interval stratum 
that is already occupied 
 See pseudo-code in EGSR 2018 paper for details 
 Speed: 39,000 samples/sec   (1 CPU thread) 
•  too slow during rendering, so pre-generate tables
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SECOND COMPARISON OF SEQUENCES
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PIXEL SAMPLING

 Each pixel is a “function” we sample 
 Image resolution: 400x300 
 Reference images: 5002 = 250,000 jittered samples/pixel 
 Each error curve: average of 100 sequences
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PIXEL SAMPLING: CHECKERED TEAPOTS
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checkered teapots on checkered ground plane



PIXEL SAMPLING: CHECKERED TEAPOTS
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PIXEL SAMPLING: TEXTURED TEAPOTS
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textured teapots on textured ground plane

discontinuities due to 
object edges

smooth (texture filtering)



PIXEL SAMPLING: TEXTURED TEAPOTS (1)
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PIXEL SAMPLING: TEXTURED TEAPOTS (2)
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SQUARE AREA LIGHT SAMPLING
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teapots on ground plane illum by square light source 
(no pixel sampling)

smooth illum

penumbra: shadow 
discontinuities



SQUARE AREA LIGHT SAMPLING (1)
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SQUARE AREA LIGHT SAMPLING (2)
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VARIATIONS AND EXTENSIONS
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VARIATIONS AND EXTENSIONS

 Status: up until this point, we’ve only shown that pmj02 samples are 
as good as Owen-scrambled Sobol 
 So what ?? 
 BUT: within pmj framework we can add blue noise, generate multi-
class samples, …
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PMJ WITH BLUE NOISE

 Simple variation: when generating a new pj/pmj/pmj02 sample, 
generate N candidate points and pick the one that’s most distant from 
previous samples 
 For example:
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plain pmj pmj w/ blue noise



FOURIER SPECTRA
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plain pmj pmj w/ blue noise



PMJ WITH BLUE NOISE

 Not clear whether blue noise reduces error? 
 But at least the patterns look more pleasing
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PMJ WITH INTERLEAVED MULTICLASS SAMPLES

 pj/pmj/pmj02 samples can be divided into two classes on the fly 
 Each class almost as well stratified as the full sequence 
 For example:
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PMJ WITH INTERLEAVED MULTICLASS SAMPLES

 Two classes can provide two independent estimates for each pixel 
 Can be useful for adaptive sampling
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FASTER SAMPLE GENERATION [PHARR19]

 Faster sample generation by better data structure -- keeping track of 
unoccupied elementary intervals 
 Reference: Matt Pharr, “Efficient generation of points that satisfy two-
dimensional elementary intervals”, JCGT 2019 
 Speed: 333,000 points / sec   (1 CPU thread)
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HIGHER DIMENSIONS: 3D, 4D, 5D, …

 For depth-of-field (DOF), motion blur (MB) 
 DOF: need 2D samples for pixel pos + 2D for lens pos 
 If we just use two pmj02 sequences: correlation 
 Better: randomly shuffle sample order of one of the 2D sequences 
(similar to [Cook84] for sample sets).  Avoids correlation 
 Even better: carefully shuffle sample order such that 2D+2D points are 
stratified in 4D.  Implementation: swap order of two points and check if 
that improves 4D stratification; stop when fully stratified. 
 MB: similar for 2D pixel pos + 1D time samples 
 Combined: 2D+2D+1D table
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BETTER VISUAL QUALITY

 Better placement of 1st sample/pixel: fully stratify in 4x4 pixel blocks.  
Similar in spirit to [Georgiev16] “Blue noise dithered sampling” 
 New, better technique:  
•  Heitz et al, “A low-discrepancy sampler that distributes Monte Carlo 

errors as blue noise in screen space” -- this afternoon! 
•  shuffles and xor-scrambles Sobol samples to improve visual quality 

for all samples 
•  we could/should do that with pmj02 samples, too!
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CONCLUSION + FUTURE WORK

 Two main contributions: 
•  fresh assessment of existing sample sequences 
•  framework for stochastic progressive sample generation 
 Error equal to best quasi-random sequence, but allows blue noise, 
multiclass, future variations 
 More info: EGSR 2018 paper + supplemental material 
 Future: hopefully even more optimal sample sequences?
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A “FREEBIE”: FUNCSAMP2D PROGRAM

 C++ program to integrate 2D functions with various sample sequences 
 For comparison of error and convergence rates of sequences 
 Polished version of program I used for plots in this talk 
 Different function classes: discontinuous, continuous, smooth, … 
 Available at GitHub:   github.com/perchristensen/funcsamp2D 
 Feel free to extend it: more functions, higher dimensions, …
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“The generation of random samples 
is too important to be left to chance”

— R. Coveyou
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Thank you !
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