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Abstract

We introduce an algorithm that consistently and accurately processes arbitrary intersections in tetrahedral
meshes in real-time. The intersection surfaces are modeled up to the current cut tool position at every point in
time. Tetrahedra are subdivided by using a progressive method, which inserts the required sub-structures step
by step. A state machine tracks the topology of each tetrahedron and controls the progressive subdivision. In
order to keep the state machine as small and clear as possible, each topological pattern of a tetrahedral inter-
section appears only once. These topological patterns are mapped onto the actual case of a tetrahedral inter-
section by some given transformation operations. The state transitions, which contain the specific subdivision
operations, are described in a predefined lookup table, which is written in a simple script language. The han-
dling of reverse movements and possible trembling of the users hand, as well as a recursive continuation of the
state machine concept, complement the proposed algorithm. In three examples, covering free form modeling,
volume visualization, and surgery simulation, we indicate the large field of applications in which our algo-
rithm can be utilized.
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1. Introduction

In modern interactive simulation and modeling environ-
ments the ability to cut 3-dimensional geometry in real time
is of fundamental importance. This creates the need for effi-
cient cutting algorithms that process the underlying repre-
sentation. Such methods can be utilized in a wide spectrum
of applications including surgical interventions, free form
modeling, or scientific visualization. In surgery simulation,
for instance, interactive cutting algorithms enable the
dynamic simulation of scalpel intersections that open
immediately behind the scalpel. In the case of free-form
modeling or sculpting, dynamic cutting supports a precise
positioning and guidance of a cutting tool. In scientific
visualization, real-time cutting algorithms create new
opportunities for the interactive analysis of volume data
sets. Seismic data sets, as an example, can be cut arbitrarily
along interesting strata.

The cut of a 3-dimensional solid, however, changes the
topology of the underlying data structure and thus poses a
great technical challenge. The complexity of a cut algo-
rithm largely depends on the underlying discretization. Very
often, 3-dimensional material is represented by an unstruc-
tured tetrahedral mesh.  As opposed to regular voxel cells,
tetrahedral meshes are much more flexible allowing to rep-
resent complex data with less primitives. In addition, such
meshes frequently serve as a basis for physically-based
modeling methods, since they are much more efficient

when calculating realistic deformations. The dynamic mod-
eling of intersections and topological changes in such
meshes, however, is non-trivial.

In this paper, we present a novel algorithm which accu-
rately represents and tracks arbitrary cuts of tetrahedral
meshes in real-time. The algorithm tracks topological
changes and inserts new intersection faces dynamically and
on-the-fly. Central to our approach is a state machine model
to control the topological patterns, where each change
induces a state transition. In order to keep the number of
possible states small, we exploit the symmetry of cut pat-
terns. Our method is robust and can cope with reverse
movements and tremor of the user's hand.

2. Previous Work

Due to the complexity of volume based algorithms, cutting
algorithms were first applied to surface meshes. There
already exist some concepts for dynamically updating sur-
face meshes that handle topological changes. [1] uses a
strategy to determine and duplicate the vertices of the poly-
hedra that are close to the collision points along the line of
cut. Recently, [5] introduced a face subdivision scheme that
enables a more accurate representation of surface cuts.
Additionally, this work supports the simultaneous cutting of
multiple surface layers. Obviously, surface-based methods
do not allow cutting of volumetric models.



An approach to cutting voxel-based representations can
be found in the Chain Mail algorithm [10]. During cutting,
intersected connections between neighboring voxels are
split up. Unfortunately, bumpy intersection faces are
unavoidable when using voxel representations. 

In regards to volume meshes, all previous research has
designed cutting algorithms which work on tetrahedral
mesh decompositions. Considering the number of possible
intersections, tetrahedra are topologically simpler than all
other volumetric primitives. A simple realization of cuts in
tetrahedral meshes is the removal of entire tetrahedra,
examplified in [7]. It is real-time, but generates very uneven
surfaces and a large gap between the two intersection faces.
The procedure introduced in [13] does not create this gap. It
spans the cut surface along existing mesh nodes. However,
the generated surfaces exhibit uneven surfaces which are
similar to [7] where entire tetrahedra are removed. Subse-
quent work [14] and [12] allows existing nodes to be shifted
into the actual intersection surface and thus improves the
previous approach. Nonetheless, the given degrees of free-
dom do not allow for representations of general intersection
surfaces.

To our knowledge, the geometrical subdivision algorithm
presented in [4] was the first algorithm that allowed real-
time cutting of volume meshes. The infinite number of pos-
sible cut topologies of a tetrahedron is reduced by discretiz-
ing permitted intersections on a tetrahedron. The proposed
discretization processes only one intersection per tetrahe-
dral edge and per tetrahedral face. The evolving tetrahedral
subdivisions are established by using a lookup table
approach. The algorithm is effective for arbitrary, irregular
tetrahedral meshes and captivates with a high level of accu-
racy and topological freedom. However, the universal sub-
division scheme proposed in this work may lead to a rapidly
increasing number of tetrahedra for large cuts and may pro-
duce cracks in a physical representation of the model.

An improved algorithm [2] solves these problems by
applying individual subdivision patterns for each cut topol-
ogy. The consistency of the mesh subdivision is achieved
by restricting the allowed subdivisions of tetrahedral faces
to the three types displayed in Fig. 1. An arbitrary combina-
tion of these face types results in the six subdivision pat-
terns presented in Fig. 2. The algorithm demonstrated in [2]
not only remeshes intersections, but also consistently
inserts the entire substructure of the mesh, and provides
correct junctions of neighboring elements. As a result, the
simulation enables topological changes such as intersecting
incisions or the complete severance of a model.

Only recently, [6] integrated the aforementioned cutting
algorithm in their surgical simulator. Additionally, the
approach was extended to multi-resolution grids by [8] and [9].

The cutting algorithms described thus far process the
individual tetrahedral elements only after they have been
completely passed and all intersection positions have been
determined. As a result, the representation of the intersec-
tion surface is not continuous, but contains gaps along the
cut tool. In modeling and visualization applications, the
incomplete intersection surface is unacceptable and compli-
cates the precise guidance of the cutting tool. In regards to
surgery simulation, the intersections are opened too late. At
this point, a progressive construction of the tetrahedral sub-
divisions is desirable. [11] enhanced the original algorithm
described in [4] by such a progressive representation of the
tetrahedral intersections in a simple way. Each intermediate
topology of a tetrahedron in the process of being subdivided
is represented by the corresponding subdivision topology.
For example, the sequence of patterns A, B, C in Fig. 2 is
applied to model the subdivision depicted in pattern C.
After each edge or face intersection, the entire data struc-
ture of the subdivision is removed, only to be replaced by
the next subdivision pattern. Due to the large number of
removal operations, this procedure is computationally
expensive. Furthermore, the algorithm presented in [11]
does not elaborate on successive incisions into a model.

3. Concept

In this paper, we suggest a progressive continuation of the
tetrahedral subdivision algorithm applied in [2]. In contrast
to [11] our subdivision of a tetrahedron is built incremen-
tally from an undivided tetrahedron up to a complex subdi-
vision with minimal removal operations. A state machine
thereby tracks the topological pattern and controls neces-
sary updates of each tetrahedron. This results in a fast algo-
rithm for the dynamic simulation of very accurate
volumetric trajectories in real-time. At every point in time,
it presents the intersection surface up to the current position
of the cut tool and allows intersecting trajectories.

In order to handle all possible cut trajectories, the pro-
gressive algorithm is continued in a recursive way. It subdi-
vides a tetrahedron and continues the subdivision on the
next lower subdivision level whenever the subdivision rules
are not general enough to handle a particular tetrahedralFigure 1: Allowed subdivisions of tetrahedral faces
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Figure 2: Individual subdivision patterns for each subdivi-
sion topology of a tetrahedron
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Figure 3: State machine diagram
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incision. Thereby, a correct continuation of intercepted
intersection surfaces on the sub tetrahedra level has to be
guaranteed.

The pseudo code below sketches our intersection algo-
rithm. Before any geometric modifications can be pro-
cessed, the intersections between a cut tool and the
tetrahedral mesh have to be registered by a collision detec-
tion algorithm. The algorithm described in [2] and [3] con-
sistently determines all edge and face intersections, even for
dynamically deforming tetrahedral meshes. As long as no
new edges or faces are intersected for a tetrahedron, the
existing face intersection points of the tetrahedron are
adjusted to the current intersection positions. When a new
edge or face intersection occurs, the new subdivision state
is checked for validity (only one intersection per edge and
face). For valid states, the subdivision of the tetrahedron is
performed by calling the procedure SubdivideTetrahe-
dron(). This procedure first determines the transformation
between the new topological pattern of the tetrahedron and
its actual geometric representation, and then applies the
state transition as predefined in the state machine. In the
rare cases of invalid subdivision states, the tetrahedron gets
completely subdivided according to its last valid subdivi-
sion state. Then, a repeated collision detection step marks
all intersections between the cut tool and the sub tetrahedra.

Each sub tetrahedron affected by the intersection also gets
subdivided after the transition from its parent tetrahedron is
completed.

mark all tetrahedra currently affected by the cut;
for (all these tetrahedra)

if (tetrahedron has new intersections)
determine new subdivision state; 
if (new subdivision state is valid)
| SubdivideTetrahedron();
else

determine last valid state; 
subdivide tetrahedron completely;
mark all sub tetrahedra affected by the cut;
for (all these sub tetrahedra)

handle transition from parent to
  subtetahedron;

SubdivideTetrahedron();
else
| adjust face intersection positions;

procedure SubdivideTetrahedron()
determine transformation of topological pattern;
apply state transition;

The following sections describe the algorithm in detail.
Section 4 explains the functionality of the state machine,
which is the core of our algorithm. Section 5 describes
some extensions that handle reverse movements of a cut
tool, and Section 6 introduces the recursive continuation of
the state machine concept. Finally, Section 7 presents three
applications of the introduced intersection algorithm.



4. State Machine Based Tetrahedral Subdivision

The key of our approach is a state machine which tracks the
modification of a tetrahedron from an undivided state to a
particular subdivision. This state machine clearly and effi-
ciently handles the complex problem of arbitrary progres-
sive subdivisions. In the state machine of Fig. 3, each state
depicts a combination of edge and face intersections, defin-
ing a particular topology of an intersected tetrahedron. The
states are labeled uniquely with a letter fixing the topology
of the edge intersections and a number representing the
topology of the face intersections. In the depicted state
machine the states are sorted by the number of edge inter-
sections from the left to the right and by the number and
type of face intersections from top to bottom. Each tetrahe-
dron stores its current subdivision state. The state O0 stands
for the initial state of a tetrahedron. Whenever an additional
edge or face is cut, the tetrahedron changes its state. The
corresponding state transition describes the modification of
the current subdivision. After some state transitions each
tetrahedron arrives at one of the end states labeled with “3”
where the cut tool has left the tetrahedron. The subdivisions
of the states A3 to E3 correspond to the subdivision patterns
already depicted in Fig. 2. 

The consideration of all combinations of edge and face
intersections would result in a state machine of more than
3000 states. Thus, we implement a state machine exclu-
sively for the topological pattern of the subdivision. This
approach results in a much smaller state machine, but
requires the correct handling of all transformations from the
general pattern to the particular subdivision. In Fig. 3, the
transformation type that has to be considered for each state
transition is denoted. The indicated transformations are
explained in more detail in Section 4.4.

4.1. Basic Cut Functionalities

In a first step, the transformations are ignored and the oper-
ational sequence is explained with the help of the generic
subdivision depicted in Fig. 3. The following example
exemplifies the functionality of the progressive subdivision.

example 1: state transition without transformations

As mentioned, the final subdivision of a tetrahedron is con-
structed incrementally, where in each intermediate state the
tetrahedron has a consistent mesh representation. Remove
operations in a state transition are minimized for the sake
of efficiency. In the example shown in Fig. 4 an intersection
starts with an untouched tetrahedron (a), whose state is O0.
When the first collision between the cut tool and one of the
tetrahedra’s faces occurs in (b), the state of the tetrahedron
is changed to O1 and the first new elements are inserted in
the tetrahedron. At this position one node has to be inserted
to store the entry point of the cut tool and another new node
(named ENP as an abbreviation for entry point) will move
with the current intersection position of the cut tool inside
the face. Both nodes are strut to the surrounding face nodes.
As long as no further edge collision is registered the ENP
moves along the face (c).

When the cut tool crosses one of the edges of the tetrahe-
dral face, as depicted in (d), the corresponding edge has to
be cut and the tetrahedral face is split in order to model the
cut. The tetrahedron’s state changes to the next state A1.
The ENP moves over to the next face and some connecting
edges, faces, and tetrahedra have to be inserted. Then the
cut tool continues moving inside the new face (e). 

In (f) a second edge has been cut. Now, the previous tet-
rahedral face has to be split completely. The processing of
the tetrahedron continues in this way until the cut tool
leaves the tetrahedron entirely. 

The described procedure presents one major complica-
tion. For a partially intersected face it is not known in
advance, if the cut may be continued and which edge will
be affected. Since a consistent face subdivision has to be
guaranteed at all times, the face has to be triangulated
before its exact end-state is known. In order to illustrate
this, a partially intersected face (A,B,C) is depicted in Fig. 5
(b). The current cut tool intersection is marked by the node
n1 in the center of the face. The cut tool has entered the
face over the edge (A,C). The cut tool has two means for
leaving the face, it can either leave it without cutting any
further edge, over the edge (B,C) as depicted in Fig. 5 (c), or
it can leave the face over the edge (A,B) (Fig. 5 (d)). If in an
implementation the two faces (B,C,n1) and (A,B,n1) were
created by using the straight forward method of storing their
vertices as references to the tetrahedral nodes, then compli-
cated retrieval functions would be required in order to
remove one of these faces shortly after. It would be compu-
tationally expensive to decide which of the two faces has to
be removed when one of the tetrahedron‘s faces is changing
from the state depicted in Fig. 5 (b) to the state in Fig. 5 (c)
or (d). Additionally, it would be difficult to decide which of
the already inserted faces, edges and tetrahedra have to be
reassigned to the new face node n2 in Fig 5 (c) and (d). 

Figure 4: Generic example for state transitions (without
transformations)
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This problem can be solved by introducing an indirection at
data-structure level. For this purpose one can think of a tet-
rahedral face to be virtually presplit (Fig. 5 (a)). In such a
virtually presplit face the three potentially new mid nodes
ABC1, ABC2, and ABC3 (virtual nodes) are included in the
data structure. When entering the face there is still only one
real face mid node n1 created. The three virtual nodes point
to n1 as depicted in Fig. 5 (b). All elements that are con-
structed at this stage reference the virtual nodes and do not
reference the real node n1. At this time, if a mid node is
split, a second real node n2 is inserted and referenced by
the corresponding virtual node. As a result, all references of
objects attached to the virtual node are reassigned automati-
cally.

4.2. Transformation Operations

Since the state machine depicted in Fig. 3 only describes the
topological pattern of the tetrahedral intersections for one
given example, one has to incrementally determine the

transformation between this generic pattern and a particular
case of intersection. The transformations, that have to be
performed before applying the state transitions from the
generic pattern to a particular intersection case, are
restricted to specific types of rotations and mirror opera-
tions. Fig. 6 lists all types of transformations as they occur
in the state machine of Fig. 3. All transformation types are
described by the transformation from a source object to its
destination object. The source object is the edge or face that
is cut next according to the topological pattern of the state
machine, whereas the destination object is the most recently
intersected edge or face of the current tetrahedral represen-
tation. Thus, the transformation realizes the mapping of the
object, for which the intersection is described in the generic
state machine, to the object that has been actually inter-
sected.

If multiple state transitions are performed for a tetrahe-
dron, a sequence of transformations is applied to the tetra-
hedron. The current transformation state of a tetrahedron is
built incrementally and has to be stored. For this reason,
correspondences between the original and transformed ver-
tices are stored. So, in our implementation, transformation
operations are mapped to reassignments of vertices.

example 2: state transition including transformations
In the state machine shown in Fig. 3, the transformations to
be considered are noted along each state-transition by use
of the abbreviations defined in Fig. 6. If one looks again at
the state transitions of example 1, the transformations are rf
for O0→O1, rif for O1→A1 and m for A1→B1. These
are relative transformations between two states. Fig. 7
gives a closer look at the incremental construction of the
pattern’s absolute transformation. The left column shows
the tetrahedron’s topological state, as it appears in the
generic state machine pattern of Fig. 3. In the right column,
a particular state of a tetrahedron in the process of being
cut is drawn. The figures located in the middle column
depict the pattern on the left after they have been trans-
formed according to the needs of the particular intersection
case which is shown on the right. 

Figure 5: Virtual Nodes for a progressive face subdivision

Figure 6: Transformations: (a) identity, (b) mirror, (c)
double mirror, (d) rotate inside face, (e) rotate over edges,
and (f) rotate over faces
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The pattern on the top left describes the first face inter-
section to appear in the face (A,B,D). Note that in reality
any of the four tetrahedral faces could be intersected first.
Thus, the source face (A,B,D) has to be mapped onto the
face where the first intersection occurs. In the example
shown on the right, this is the face (C,B,D). Therefore the
nodes of the tetrahedron have to be transformed accord-
ingly. This is done by a rotation over tetrahedral faces,
namely rf((A,B,D), (C,B,D)). Similarly, for the state transi-
tion O1→A1, the transformed pattern O1 only describes
the cut of edge (A,B), although the intersected face could be
left over each of the three edges of the face. So the already
rotated pattern has to be transformed again. The edge
(A,B) has to be mapped onto the edge (A,D) which was
actually cut in the particular cut situation (image in the bot-
tom right corner) by applying a rotation inside the face
(A,B,D), namely rif((A,B,D), (A,B), (A,D)). The accumu-
lated incremental transformation of a tetrahedron during its
presence in the state machine, named absolute transforma-
tion, is stored in the tetrahedron together with its current
state. The absolute transformation of our example after the
edge cut is rif(rf(...)) with parameters for rf(...) and rif(...)
as given above.

4.3. Multiple State Transitions

Thus far, it has been assumed that a tetrahedron’s state
always changes to the immediate successor state in the state
machine, which is caused by one atomic cut event. In prac-
tice, the movement of the cut tool from one registered posi-
tion to the next can simultaneously intersect several edges
or faces of an individual tetrahedron. If the current state of a
tetrahedron is not reachable from the previous state within a
single state transition, the modification of the tetrahedron is
split up into a sequence of state transitions. The path in the
state machine from the previous to the current state is then
determined by some fix traversal rules. If an untouched tet-
rahedron is completely split during one time step, direct
state transitions exist in which all operations can be per-
formed more efficiently. If multiple state transitions affect
more than one edge, the correct sequence of edge selections
has to be found for the individual state transitions. In the
state machine shown in Fig. 3, a direct neighbor of the
already processed edges is always chosen.

4.4. Lookup Table Based Topology Processing

The actual topological modifications of the tetrahedra are
processed by using a lookup table that contains an entry for
every state transition. In order to deal with the complex
construction of the tetrahedral subdivisions, a simple script
language supports various instructions for inserting tetrahe-
dra, different types of faces, edges, as well as instructions
for placing and splitting nodes. Even conditional branches
are required for some subdivisions. The script language is
built upon a clear nomenclature referring to a presplit refer-
ence tetrahedron including all potential edge and face splits.
The clearly aligned and comment script file is parsed and
translated into a fast, dynamic lookup table data structure at
program start. 

5. Reverse Movement
Up to this point, the movement of the cut tool has been
restricted to forward movement, but in various situation the
cut tool will cut edges or faces in reverse direction. A user
may tear the cut tool back, after he has already performed
an incision into the model. This case is depicted in Fig. 8
(a). Furthermore, the user’s hand can tremble which causes
several direction changes in the trajectory of the cut tool.
This behavior is crucial when the cut tool is located very
near to an edge of the tetrahedral mesh and will, therefore,
cut the edge several times, as visualized in Fig. 8 (b). The
described situations are very difficult to handle since the
backwards movement is not a state of the entire cut tool, but
rather a state of a section of the cut tool. Fig. 8 (c) depicts
the situation of a cut tool that is turning around its cross
axis. The cut tool section from the tip to the rotation axis is
moving forward, whereas the other section of the cut tool is
moving backward. 

In order to overcome this problem the direction of the cut
has to be determined for every single edge. To this end the
position of the edge intersection is projected onto the previ-
ous and the current cut tool line. The projections are named
Pprev and Pcurr and depicted in Fig. 8 (c). The vector pointing
from Pprev to Pcurr is then compared to the direction of the
cut tool’s movement vtool. As long as the scalar-product
between the cut tool’s movement direction and the direction
of the edge cut is larger than zero, the edge has been cut by
forward motion. In the other case, it has been cut back-
wards.

(1)

Any backward movements should not alternate the vol-
ume model because only the front side of the cut tool’s
blade has a sharp edge. Consequently, edges and faces of
the volume mesh are cut only if the cut tool touches them
by forward movement. 

5.1. Trembling
Trembling of the users hand can cause abrupt directional
changes leading to many edge subdivisions. In order to sup-
press unnecessary edge subdivisions, intersections resulting
from a backward movement get registered in the respective

Figure 8: Reverse cuts
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edges. A further cut in forward direction is then allowed for
these edges, still without any subdivision. 

example 3: trembling

Fig. 9 shows an example of a multiple cut over an edge.
Figure (a) depicts the situation after a first cut of the edge
(B,C). The cut tool currently intersects face (B,C,D) and has
the face’s mid node BCD attached. The cut tool moves back-
wards in figure (b) over the edge (B,C) already cut once,
and the backwards intersection gets marked in edge (B,C).
The cut tool now intersects face (A, B, C) and the mid node
ABC is attached again to the cut tool. Shortly after (c) the
cut tool is moving forward again and cuts the edge (B,C) a
third time. The intersection position of edge (B,C) is
replaced by the newer intersection, and the intersection
state of this edge is reset to one forward cut. A renewed cut
of the same edge, thus, results in a repetition of the
described procedure.

The trembling of the cut tool not only generates multiple
edge intersections, but it can also affect faces. The tip of the
cut tool can possibly penetrate a tetrahedron’s face in quick
succession. When entering a tetrahedron for the first time,
its entry face has to be subdivided. If the tetrahedron is left
again shortly afterwards, the introduced face subdivision
does not yield much profit. Therefore, it is reversed as long
as none of the edges of the face have been intersected. This
procedure decreases the number of newly created mesh
simplices and is integrated in the lookup table as the state
transition from state O1 to state O3 and the state transitions
O2→O1, A2→A1, B2→B1, and F2→F1 depicted in Fig.
3 as dotted arrows.

5.2. Pulling Cut Tool Back

When performing an incision it should be possible to stop
the cut and pull the cut tool back. Most of the solution for
this task is already provided by suppressing unnecessary
edge subdivisions, as described at the beginning of this sec-
tion. However, the faces in which the cut trajectory of the
cut tool changes its direction to leave through the same
edge as it entered have to be treated specially in order to
find a practical turning point. For that purpose the trajectory
of the intersection point between cut tool and face is sam-
pled, and its incrementally calculated average position
serves as a turning point. Fig. 10 (a) shows an example of
an averaged position for the turning point.

Although one could try to determine the farthest point
inside the face as turning point, the averaged mid node has
the additional advantage, that it can be used for all other
face mid nodes too. In each completely split face, there
exists a mid node that is used as long as the cut tool inter-
sects the face, but has to be set to a meaningful position
after the cut tool has left the face. The averaged position is
practical for this purpose, it increases the smoothness of the
modeled trajectory of the cut tool. Fig. 10 (b) compares the
averaged mid node in a completely split face to an arith-
metic middle point.

6. Recursive Continuation

While the described approach is effective for the large
majority of tetrahedral intersections, it fails when the dis-
cretization assumption of only one intersection per edge and
face is not met. In order to handle these cases as well, the
algorithm continues the introduced state machine concept
recursively. Whenever an intersection occurs that could not
be handled with the basic state machine (i. e. a double cut
edge) the affected tetrahedron gets completely subdivided,
and the modeling of the intersections is continued on the
sub tetrahedra level. The difficulty is guaranteeing the cor-
rect continuation of the interrupted cut surfaces on the sub
tetrahedral level.

example 4: hierarchical subdivision

An example of a very simple hierarchical subdivision illus-
trates the idea of the hierarchical continuation of the state
machine concept. Fig. 11 (a) shows a tetrahedron that is
intersected over one edge. According to the state machine
shown in Fig. 3, the corresponding state is A0. A second
intersection of the edge already cut, as shown in Fig. 11 (b),
does not appear in the state diagram. For this reason the
tetrahedron has to be completely subdivided to the end state

Figure 9: Trembling over edges: (a) first edge cut, (b)
backwards movement, second edge cut, (c) forward again,
third edge cut
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Figure 11: Simple example for hierarchical subdivision
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6.2. Mapping onto States of the Basic State Machine
In order to avoid the costly implementation of eight addi-
tional state machines, the new state machines and their
topologies are mapped onto the tetrahedral states of the
basic state machine described in Section 4. The idea is to
interpret the intersection topologies of the additional state
machines as tetrahedral states, as they appear in the initial
state machine diagram of Fig. 3. The split corner nodes of
the new tetrahedral topologies are represented by nodes of
an edge split that are shifted into the corner, and by shifted
face mid nodes. One of the initial edge or face mid nodes is
thereby merged with the corner node of the tetrahedron.
Both of these merge operations are depicted in Fig. 13.

example 5: mapping a basic topological state A1 to the new
topologies AN1 and ANF1

Fig. 13 (a) contains the state A1 as it appears in the basic
state machine of Fig. 3. As illustrated in Fig. 13 (b) the edge
mid node AB1 is first mapped onto the corner node A, and
then (c) the face mid node ABD is mapped onto corner node
D. The achieved topology corresponds then, as desired, to
that of state ANF1.

The described mapping onto states of the basic state
machine certainly simplifies the algorithms for the recursive
continuation of the state machine considerably, but it also
introduces a disadvantage. The inverse mapping from the
detected new topologies to the topologies of the state
machine of Fig. 3 is not unique for certain topologies. As a
consequence the resulting algorithm is not able to consis-
tently handle all situations of recursive subdivisions. In
order to reach a closed algorithm, all eight additional state
machines have to be realized separately by introducing the
mentioned node split operator.

7. Applications
Various applications require the
sort of accurate modeling of
intersections which is described
in this work. The following
examples illustrate possible
applications in the areas of visu-
alization, surgical simulation and
virtual sculpting.

Figure 13: Mapping of basic state to new state: (a) basic
state A1, (b) merge edge mid-node, (c) merge face mid node 
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A3 of the last valid state A0. By applying the correspond-
ing state transition, the tetrahedron is subdivided into six
sub tetrahedra. A repeated collision detection step shows
that the cut tool has left the tetrahedron and none of the
sub tetrahedra is intersected with the cut tool anymore.
Before processing the sub tetrahedra, the positions of the
started intersection surface are marked as interconnection
nodes, from where the intersection surface will be contin-
ued. In the given example, only the subtetrahedron, from
which the cut tool has left, is affected and has to be
updated. In order to construct a continuous intersection
surface as depicted in Fig. 11 (c), the separated tetrahe-
dron has to be split away from the two interconnection
nodes. 

As one can see in this example, the continuation of the
intersection surface involves a new topology of a tetrahe-
dral intersection. Whereas tetrahedra have always been cut
over edges, they can now be split along edges or over
nodes. 

6.1. Additional Types of Tetrahedral Subdivisions

Fig. 12 enumerates all additional topologies required for a
consistent handling of the transitions between two hierar-
chy levels of tetrahedra. Two categories of topologies are
distinguished: The first category includes tetrahedra that
contain two interconnection points. Their intersections start
along the edge that contains the two interconnection points.
All tetrahedra that contain only one interconnection point
fall into the second category, whose intersections begin
over a tetrahedral node. Further differences between the
depicted tetrahedra intersections depend on the number and
position of the registered face intersections.

The continued intersection from example 4 corresponds
to the intersection topology BNN0 of Fig. 12 and its fol-
lowing state CNN0 in which the opposite edge is cut as
well. The example shows that the cut topologies depicted
in Fig. 12 are only the start states of the new topologies. If
one includes all further possible edge and face intersec-
tions, each of the topologies of Fig. 12 results in a separate
state machine, which has a similar structure as the basic
state machine already described in Section 4. The realiza-
tion of these additional state machines is a large effort and
would require a new operator that splits existing corner
nodes. 

Figure 12: Additional cut topologies
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7.1. Interactive Visualization of Volume Data
The 3D visualization of volume data-sets is a popular com-
ponent in various application scenarios. In these scenarios,
an interactive cutting of volume data-sets introduces a new
intuitive interaction paradigm for volume data. It allows to
clearly and simply create new interior views of a given
data-set. In particular, the oil industry is interested in a fast
and accurate method for processing large amounts of seis-
mic data. The introduced intersection algorithm enables
them to arbitrarily cut seismic volume data-sets along spe-
cific strata. Fig. 14 illustrates a sequence of interactions
with a seismic data-set. After performing a first intersection
(Fig. 14 (a)), the separated pieces can be selected and repo-
sitioned as depicted in Fig. 14 (b). The repositioning pro-
vides new views and enables further intersections.
Intersection and realigning procedures can be continued
until the region of interest is reached (Fig. 14. (c)-(e)). Fig.
14 (a) and (c) demonstrate that the intersection surface
dynamically follows the cut tool. The intersection surface
thereby is modeled up to the actual position of the cut-tool.
Thus, the user gets a precise feedback of the cut-tool’s cur-
rent position within the volume. Additionally, the surround-
ing surface is transparent during an intersection in order to
support the navigation in the data-set. Fig. 14 (c) illustrates
the dynamic mesh subdivisions by displaying the underly-
ing tetrahedral mesh. 

7.2. Surgery Simulation
In surgical interventions, cutting is one of the most impor-
tant tasks. The correct and precise execution of intersec-
tions is the basis for a successful surgical outcome, e.g. in
tumor removal. There is a large need for simulators that
enable physicians to train and rehearse operations, espe-
cially in the area of minimal invasive surgery. Fig. 15 pre-
sents the opening of skin tissue with a surgical scalpel,
which is a task in open surgery. In this example, the skin tis-
sue is simulated as prestressed deformable model.

7.3. Virtual Sculpting
The presented intersection algorithm is an intuitive tool for
interactively processing meshed volumetric models, as they
are used in many simulation environments. With such a
tool, a mechanical component can be rapidly prototyped or
adjusted. Fig. 16 presents the processing of an irregular tet-
rahedral model consisting of 3000 tetrahedra. In Fig. 16 (a)
a first notch is cut-off. The intersection surface is drawn up
to the current position of the cut-tool and the surface of the
model is transparent during cutting. Fig. 16 (b) depicts the
tetrahedral mesh representation after two further intersec-
tions. It is clearly visible how the node densitiy increases
towards the intersection surfaces. This provides sufficient
degrees of freedom for the accurate modeling of the per-
formed intersections. In conclusion, Fig. 16 (c) presents the
resulting model.

8. Conclusion and Future Work
We have presented an algorithm that consistently and accu-
rately processes arbitrary intersections in tetrahedral

meshes in real-time. The algorithm is based on a state
machine, that tracks the topology of tetrahedra and controls
their progressive subdivision. Three examples have exhib-
ited the large field of applications for this algorithm.

The recursive continuation of the algorithms, that breaks
the discretization assumption of only one intersection per
edge and face could still be improved to ensure the conver-
gence of the algorithm in all cases. Future work will mainly
focus on this problem.
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Figure 14: Interactive visualization of a seismic volume data-set

Figure 15: Simulation of open surgery

Figure 16: Virtual sculpting
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