
Real–Time Volumetric Intersections of Deforming Objects

Bruno Heidelberger Matthias Teschner Markus Gross

Computer Graphics Laboratory
ETH Zurich

Abstract

We present a new algorithm for the computation of
volumetric intersections of geometrically complex
objects, which can be used for the efficient detection
of collisions. Our approach requires neither expen-
sive setup nor sophisticated spatial data structures
and is specifically suitable for handling deformable
objects with arbitrarily shaped, closed surfaces. The
algorithm employs a Layered Depth Image (LDI)
decomposition of the intersection volume.

Currently, we have implemented two types of
collision queries. The first one comprises an ex-
plicit representation of the intersection volume. The
second one computes vertex-in-volume tests. All
queries are processed on the LDI-based representa-
tion of the intersection volume. Our algorithm is
very easy to implement and can be accelerated in
graphics hardware by using OpenGL.

1 Introduction

The detection of collisions of geometric ob-
jects constitutes a fundamental problem in com-
puter graphics, computational geometry, modeling,
robotics, and many other areas. For complex ob-
jects, the detection of interfering surfaces is com-
putationally expensive, because the testing of many
individual graphics primitives is required. Efficient
collision detection algorithms are accelerated by
spatial data structures including bounding–box hi-
erarchies, distance fields, or other ways of spatial
partitioning. Such object representations are built
in a pre–processing stage, and once they are cre-
ated, perform very well for rigid objects.

Modern physics–based simulations for games
and computational surgery require the detection of
collisions of objects deforming over time. In the
case of deformable objects, the aforementioned ac-
celeration structures have to be updated to adapt ge-
ometry changes. While some of these algorithms

have been successfully employed in such cases,
the acceleration structures constitute an overhead in
memory consumption and computational efficiency.

We propose a simple and efficient algorithm
based on Layered Depth Images (LDI) [22] as the
fundamental representation to accelerate collision
detection of rigid and deformable objects. While
many existing approaches consider object surfaces,
our method is inherently volumetric. Rather than
explicitly detecting surface intersections, the LDI
provides a discrete representation of the intersec-
tion volume and allows for volume–based collision
queries. The generation of LDIs can be acceler-
ated by graphics hardware and various optimiza-
tions minimize buffer read–backs.

Our algorithm proceeds in three stages. First, we
calculate the intersection of axis–aligned bounding
boxes of pairs of objects. If an intersection is non–
empty, a second stage computes an LDI representa-
tion of each object within the bounding–box inter-
section. Finally, we obtain the overall intersection
volume by simple Boolean operations on the LDI
representation.

The simplicity of the algorithm, the absence of
expensive setup and the ease of implementation in
OpenGL makes it especially attractive for real–time
simulations of deformable objects.

The contributions of this work can be summa-
rized as follows:

• We present a new algorithm for the compu-
tation of volumetric penetrations of geometri-
cally complex, deformable objects in real time.
Our method handles arbitrarily shaped, closed
surfaces of manifold geometry.

• We currently process two different types of
collision queries: The first one includes the
explicit computation of the intersection vol-
ume of two objects. The second one performs
vertex-in-volume tests. Our approach is also
robust in cases where one object lies com-
pletely inside another object.

VMV 2003 Munich, Germany, November 19–21, 2003



• Unlike most existing approaches, our method
does not require an involved setup or the im-
plementation of a sophisticated spatial data
structure. It is memory efficient, computation-
ally economical and performs on deformable
models of up to hundred thousands of primi-
tives.

2 Background and Related Work

Collision algorithms. In graphics, efficient col-
lision detection is an essential component in
physically–based simulation or animation [2], [4],
including cloth modeling [25], [24], [3]. Further
applications can be found in robotics, computer an-
imation, medical simulations, computational biol-
ogy, and games.

Collision detection algorithms based on
bounding–volume (BV) hierarchies have proven to
be very efficient and many types of BVs have been
investigated. Among the acceleration structures
we find spheres [11], [20], axis–aligned bounding
boxes [12], [23], oriented bounding boxes [8], and
discrete–oriented polytopes [15].

Initially, BV approaches were designed for rigid
objects. In this context, the hierarchy is computed
in a pre–processing step. In the case of deforming
objects, however, this hierarchy must be updated
at run time. While effort has been spent to opti-
mize BV hierarchies for deformable objects [17],
they still pose a substantial computational burden
and storage overhead for complex objects. As an
additional limitation for some applications, BV ap-
proaches typically detect intersecting surfaces. The
computation of the intersection volume requires an
additional step.

As an alternative to object partitioning, other ap-
proaches employ discretized distance fields as volu-
metric object representation for collision detection.
The presented results, however, suggest that this
data structure is less suitable for real–time process-
ing of geometrically complex objects [9].

Recently, various approaches have been intro-
duced that employ graphics hardware for colli-
sion detection. In [1] and [19], multi–pass ren-
dering methods are proposed for collision detec-
tion. However, these algorithms are restricted to
convex objects. In [18], the interaction of a cylin-
drical tool with deformable tissue is accelerated
by graphics hardware. The method is restricted

to collisions of simplified surgical tools with ob-
ject surfaces. [10] proposes a multi–pass render-
ing approach for collision detection of 2–D ob-
jects, while [14] and [13] perform closest–point
queries using bounding–volume hierarchies along
with a multipass–rendering approach. The afore-
mentioned approaches decompose the objects into
convex polytopes. In [16], the intersection of edges
with another object can be detected using an image–
space approach. However, this approach is not ap-
plied to deformable objects, does not compute the
intersection volume, and fails in cases, where edges
occlude each other in image space.
Layered Depth Images (LDI). LDIs have been
introduced as an efficient image–based rendering
technique. The LDI data structure essentially stores
multiple depth values per pixel. Thus, an LDI can
be used to approximate the volume of an object.

A method for generating LDIs is presented, for
instance, in the depth–peeling approach to order–
independent transparency [5]. This implementa-
tion, however, demands a complex setup including
two active depth buffers and texture shaders. In con-
trast, our approach to LDI generation is much sim-
pler by employing a more efficient rendering setup
based on plain OpenGL 1.4.

Hardware–based approaches to interactive CSG
rendering, e. g. [7] and [21], could also be em-
ployed for LDI generation. However, since such
CSG rendering implementations have to handle
more complex modeling operations they feature
more involved rendering setups. Furthermore, these
CSG rendering approaches do not explicitly com-
pute the resulting solid.

3 Method

This section presents an overview of our algo-
rithm followed by a detailed description of its three
stages.
Input. Our approach takes 3–D closed objects of
manifold geometry as an input. Although the ap-
proach is not confined to triangular meshes, we re-
quire a watertight object surface to perform volu-
metric collision queries. In addition, a rendering
method for the object is needed for LDI generation.
Output. The algorithm computes an explicit rep-
resentation of the intersection volume as an output.
Alternatively, the LDI structure facilitates the fast
detection of vertices which penetrate the object.

666



(a) Stage 1. (b) Stage 2. (c) Stage 3a.

Figure 1: Algorithm overview in 2–D and 3–D. (a)
AABB intersection. (b) LDI generation within the
VoI. (c) Computation of the intersection volume.

Algorithm overview. Our approach proceeds in
three stages.

Stage 1 computes the AABB intersection for a
pair of objects. If the intersection is empty, the two
objects do not overlap. If it is not, stages 2 and 3 are
applied to the AABB intersection volume. We will
refer to it as Volume-of-Interest (VoI).

Stage 2 computes two LDIs, one for each object.
LDI generation is restricted to the VoI. The depth
values of the LDI can be interpreted as the inter-
sections of parallel rays or 3–D scan lines entering
or leaving the object. Thus, an LDI classifies the
VoI into inside and outside regions with respect to
an object. Likewise, we classify the corresponding
intersections into entry points and leaving points.
The concept is similar in spirit to well–known scan–
conversion algorithms to fill concave polygons [6],
where intersections of a scan line with a polygon
represent transitions between interior and exterior.

Stage 3 performs the actual collision detection.
Currently, we distinguish two different types of
queries: a) Both LDIs are combined using Boolean
intersection. If the intersection of all inside regions
is not empty, a collision is detected. This operation
also provides an explicit representation of the inter-
section volume. b) Individual vertices within the
VoI of one object are transformed into the LDI of
the second object. If such a vertex lies in an inside
region, a collision is detected. This query can also
be used to check atomic or point–sampled objects
for intersection.

Fig. 1 illustrates the three stages of our algorithm.
For a detailed description of all stages, refer to Sec-
tions 3.1–3.3.

3.1 AABB Intersection

AABB intersections are computed for pairs of ob-
jects. If two AABBs do not overlap, the corre-
sponding objects cannot interfere. Otherwise, the
intersection volume provides a VoI, which is con-
sidered for further processing. Although AABBs
do not provide an optimal, i. e. smallest, bounding
volume, they can be computed very efficiently. Fur-
thermore, the intersection of two AABBs is again
an AABB which keeps subsequent stages of the al-
gorithm simple.

Alternative BVs, such as oriented bounding
boxes [8] or discrete–oriented polytopes [15], pro-
vide tighter fitting object approximations. How-
ever, the computation of these representations is
more involved and the resulting intersection volume
can have a more complex shape making it much
more difficult for further processing. In addition,
such structures are impractical for deforming ob-
jects, which require a dynamic adaptation of the
bounding box.

In order to simplify and accelerate further com-
putations, the VoI has to meet the following require-
ments: Firstly, to guarantee proper boundary con-
ditions, we have to render the LDI for each object
from the outside. We select one of the six faces
of the VoI, the so–called outside face, as the near
rendering plane for each object (see Fig. 2). If a
sorted LDI is generated with respect to this face, en-
try points and leaving points alternate. For closed
objects, the first layer is assumed to contain entry
points, the second layer leaving points and so on.
Secondly, outside faces for both objects should cor-
respond to opposite sides of the VoI (see Fig. 2(a)).
This simplifies the combination of both LDIs for the
computation of the intersection volume.

A

B

outside faces A

outside faces B

(a) VoI for A and B.

A

B

(b) Extended VoI to ob-
tain an outside face for A.

Figure 2: The intersection of the AABBs of two
objects A and B provides the VoI.

666



The intersection volume of two AABBs, i. e. the
VoI, is bounded by parts of their faces. Fig. 2(a)
shows a VoI with corresponding outside faces. In
some cases, for instance when one box is entirely
within another box, appropriate outside faces for
both objects cannot be found. This problem is
solved by extending the VoI. If the outside face of
one object is fixed, the opposite face of the VoI can
be scaled to touch the bounding box of the other
object (see Fig. 2(b)).

If several eligible pairs of outside faces exist, we
choose the ones with the smallest distance between
them. This criterion is a fast heuristic to optimize
depth complexity for LDI generation assuming that
depth complexity scales with the distance between
the two outside faces.

3.2 LDI Generation

LDIs are computed within the VoI for both objects.
This provides an explicit volumetric representation
discretized at a predefined LDI resolution. The
LDIs will be used for subsequent collision queries.
The concept of a volumetric representation using
LDIs is exemplified in Fig. 3.

inside region

entry point

leaving point

outside region

outside face

Figure 3: LDIs are computed for objects within the
VoI. LDI values are entry or leaving points and clas-
sify the VoI into inside and outside regions.

In order to generate an LDI, the object is rendered
multiple times. The viewing parameters for the ren-
dering process are determined by the selected out-
side faces of the VoI defining the near planes, and
their opposite faces defining the far planes. The re-
maining faces define top, bottom, left, and right of
the rendering volume. Orthographic projection is
used for rendering. The LDI resolution, which de-
fines the accuracy of the object approximation, is
specified by the user. Objects are rendered nmax

times for LDI generation, where nmax denotes the
depth complexity of the relevant part of the object
within the VoI. Thus, the computational complex-
ity of the LDI generation is O(nmax). For de-

tails regarding the OpenGL implementation, refer
to Sec. 4.

The first rendering pass generates a single LDI
layer and computes nmax. Depth testing and face
culling are disabled. Only the stencil test is em-
ployed to discard fragments. The stencil test con-
figuration allows the first fragment per pixel to
pass, while the corresponding stencil value is in-
cremented. Subsequent fragments are discarded by
the stencil test, but still increment the stencil buffer.
Hence, after the first rendering pass the depth buffer
contains the first object layer per pixel and the sten-
cil buffer contains a map representing the depth
complexity per pixel. Thus, nmax is found by
searching the maximum stencil value. Note, that the
max() computation constitutes a very small com-
putational burden, given the typical LDI resolution.

If nmax > 1, additional rendering passes 2 to
nmax generate the remaining layers. The rendering
setup is similar to the first pass. However, during
the n-th rendering pass, the first n fragments per
pixel pass the stencil test and, as a consequence, the
resulting depth buffer contains the n-th LDI layer.
During these passes, the stencil buffer is not incre-
mented, if the stencil test fails.

Since fragments are rendered in arbitrary order,
the algorithm generates an unsorted LDI. For fur-
ther processing, the LDI is sorted per pixel. Only
the first np layers per pixel are considered, where
np is the depth complexity of this pixel. np is taken
from the stencil buffer as computed in the first ren-
dering pass. If np is smaller than nmax, layers
np + 1 to nmax do not contain valid LDI values
for this pixel and are discarded (see Fig. 4).

222314

641235

224321

654321

1 2 3 4 5 6

1 2 3 4
VoI

unsorted LDI

sorted LDI

Figure 4: LDI for two pixels, unsorted and sorted
with respect to depth values.

Although the order in which the fragments of an
object are rendered is arbitrary, our algorithm relies
on consistency across the individual passes. Our
LDIs store normalized values. For advanced colli-
sion queries, additional information, such as view-

666



ing direction and viewing volume are stored as well.
The accuracy of the method can be adjusted.

In (x, y)-direction, accuracy corresponds with the
user–defined LDI resolution. The accuracy in z-
direction is given by the depth–buffer resolution.

Compared to alternative data structures, such as
bounding–volume hierarchies or distance fields, the
LDI representation is very memory efficient. Both
the memory consumption and the performance of
the LDI generation depend on the geometric com-
plexity and the depth complexity of the objects.
However, our results presented in Sec. 5 suggest,
that the number of LDI layers does not exceed rea-
sonable values even for complex objects. Further,
collision queries performed on the generated LDIs
are very efficient even in the case of a large number
of LDI layers.

3.3 Collision Detection

The computed LDIs can be utilized to process a
variety of collision queries in an efficient way.
Our current implementation comprises two differ-
ent types of collision queries:
Intersection volume. Two LDIs can be combined
to compute an intersection volume. The LDIs
for two colliding objects are discretized with the
same resolution on corresponding sampling grids,
but with opposite viewing directions. Hence, pix-
els in both LDIs represent corresponding volume
spans. Therefore, intersection volumes can be com-
puted by a pixelwise intersection of the inside re-
gions of both LDIs. If the resulting intersection
is non–empty, a collision is detected. The sum of
all pixelwise intersection regions constitutes a dis-
crete representation of the intersection volume (see
Fig. 5(a)).

(a) Intersection volume. (b) Vertex-in-volume.

Figure 5: Two types of collision queries. Pixelwise
intersection and testing of the LDIs.

Vertex-in-volume. Individual vertices can also be
tested against an LDI. To this end, the vertex is
transformed into the local coordinate system of the
LDI. If the transformed vertex intersects with an in-
side region, a collision is detected (see Fig. 5(b)).
As demonstrated in Fig. 10 and Fig. 11, this query
can be used to compute collisions with atomic ob-
jects, such as particles.

4 Implementation

The implementation of VoI computation (stage 1)
and collision queries (stage 3) can be easily accom-
plished by following the descriptions in Sec. 3.1 and
Sec. 3.3, respectively. This section describes some
details regarding the efficient implementation of the
LDI generation (see Sec. 3.2) using core OpenGL
1.4 functionality.

The LDI generation is performed in a multi–pass
rendering process following the rendering setup as
described in Sec. 3.2. To improve performance, the
color buffer and z–tests are disabled. The algorithm
just performs a plain rasterization of depth values.
Each LDI layer is generated in one rendering pass.
Except for the first pass, which computes the depth
complexities per pixel, all passes are identical. Our
actual OpenGL implementation is very similar to
the following pseudo code.

rendering setup;
// pass 1 computes nmax and the first LDI layer
glClear(GL DEPTH BUFFER BIT |

GL STENCIL BUFFER BIT);
glStencilFunc(GL GREATER, 1, 0xff);
glStencilOp(GL INCR, GL INCR, GL INCR);
render object;
depth complexities← stencil buffer;
nmax ← max(depth complexities);
layer [1]← depth buffer;
// passes 2 to nmax for remaining LDI layers
n← 2;
while n ≤ nmax begin

glClear(GL DEPTH BUFFER BIT |
GL STENCIL BUFFER BIT);

glStencilFunc(GL GREATER, n, 0xff);
glStencilOp(GL KEEP, GL INCR, GL INCR);
render object;
layer [n]← depth buffer;
n← n + 1;
end;

Each rendering pass actually requires a buffer
read–back. Reading back buffers from the GPU,
however, can be expensive depending on the ac-
tual architecture. We propose two methods for opti-
mizing the data transfer using OpenGL extensions.

666



Firstly, depth and stencil values of a pixel are usu-
ally stored in the same 32–bit word in the frame-
buffer. This allows to read–back both buffers in
a single pass using an OpenGL extension, such as
GL NV packed depth stencil. Secondly, all ren-
dering passes can be performed independently from
each other except for the first pass. We exploit this
fact to render individual layers into different regions
of the framebuffer. Once finished, the whole frame-
buffer is read back in a single pass. This optimiza-
tion reduces the number of read–backs to a maxi-
mum of two, assuming that the framebuffer memory
is sufficiently large. It reduces stalls in the render-
ing pipeline and substantially improves the perfor-
mance of the algorithm.

5 Results

All of the experiments described in this section have
been performed on a PC with 2.8 GHz Intel Pentium
4, 2 GB memory, and NVidia GeForce 4 Ti 4600
graphics card with 128 MB memory. Results for the
two types of collision queries are presented using
five different test objects (see Fig. 6).

Intersection volume. In Tab. 1, computing times
for six cases are given. Since the performance of
our algorithm depends on the geometrical complex-
ity of the object and on the depth complexities of
both objects within the VoI, we have carried out ex-
periments as shown in Fig. 7 and Fig. 8. In the
worst case, when both AABBs coincide, the VoI
and the depth complexity are maximal. Hence, both
LDIs are computed for the entire object. The per-
formance of these cases can be derived from Tab. 2,
where timings for the LDI generation for entire ob-
jects are given.

An additional scenario with a very complex in-
tersection volume is illustrated in Fig. 9. The Knot
and the Dragon have 12k faces and 520k faces, re-
spectively. Depth complexities within the VoI are
7 and 8. With an LDI resolution of 128x128 the
intersection volume can be computed in 256ms.

Vertex-in-volume. Computing times for the vertex-
in-volume test are given in Tab. 2. For each ob-
ject, 100,000 arbitrarily positioned vertices within
the AABB of an object are tested. Fig. 10 illustrates
the experiment for one of the test objects.

The vertex-in-volume test is shown in Fig. 11.

Objects Faces
Depth
Com-
plexity

Stage
1+2
[ms]

Stage
3a

[ms]
Fig.

Knot / Rabbit 12k / 50k 3 / 1 19 1 7
Knot / Rabbit 12k / 50k 4 / 6 56 1 8
Rabbit / Rept. 50k / 110k 7 / 5 36 1 7
Rabbit / Rept. 50k / 110k 4 / 2 48 1 8
Rept. / Santa 110k/150k 1 / 3 25 1 7
Rept. / Santa 110k/150k 8 / 6 114 1 8

Table 1: Computation of the intersection volume
using various object pairs as shown in Fig. 7 and
Fig. 8. The resolution of the LDI is 128x128. The
depth complexities are given for both objects within
the VoI. Stage 1 and 2 compute the AABBs, the VoI,
and both LDIs. Stage 3a generates the intersection
volume. In the case of rigid objects, stages 1 and 2
can be pre–computed.

The simulation environment includes 20,000 parti-
cles and the deforming Santa with 10k faces. The
object deformation, the particle dynamics, the col-
lision detection and response can be computed and
rendered in real time with 29 fps.

Object Faces
Depth

Complex-
ity

Stage
1+2 [ms]

Stage 3b
[ms]

Knot 12k 8 11 26
Rabbit 50k 8 29 27
Reptile 110k 12 83 28
Santa 150k 8 79 26
Dragon 520k 10 307 27

Table 2: Vertex-in-volume test for various objects.
The VoI computed in stage 1 coincides with the
AABB of the object. Stage 2 computes the LDI rep-
resentation for the entire object with a resolution of
128x128. In stage 3, 100,000 vertices with arbitrary
positions within the AABB of the object are tested.
In the case of rigid objects, stages 1 and 2 can be
pre–computed. Fig. 10 illustrates the test for one
object.

6 Conclusions

We have presented a fast, hardware–accelerated
method for volumetric collision detection. As a cen-

666



tral acceleration structure our algorithm computes
an LDI that approximates the intersection volume.
Unlike many existing collision detection schemes,
our method does not require expensive setup or
pre–processing and is, hence, specifically suited for
deformable objects and dynamic simulation. Cur-
rently, we have implemented two different types of
collision queries and demonstrated that the method
performs at interactive rates up to very complex ge-
ometry.

As a limitation, our collision detection approach
is restricted to objects with closed, watertight sur-
faces, since it relies on the notion of inside and out-
side.

7 Ongoing Work

While we compute an explicit representation of
the intersection volume, additional queries, such as
penetration depth or closest point, are needed for
advanced collision response.

At this point, self–collisions are not detected.
Actually, our algorithm could be extended towards
self–collisions by treating the front and back faces
separately during the rendering process. This would
allow us to efficently detect an invalid ordering of
front and back faces.

8 Acknowledgements

This project is funded by the National Cen-
ter of Competence in Research “Computational
Medicine” (NCCR Co–Me).

Figure 6: Test objects: Dragon, Santa, Rabbit, Rep-
tile, Knot.

References

[1] G. Baciu, W. Sai-Keung Wong, and H. Sun.
RECODE: an image–based collision detection algo-

Figure 7: Computation of the intersection volume.
AABBs, VoI, and intersection volume are shown for
three examples with simple intersections.

Figure 8: Computation of the intersection volume.
AABBs, VoI, and intersection volume are shown for
three examples with complex intersections.

rithm. The Journal of Visualization and Computer
Animation, 10:181–192, 1999.

[2] D. Baraff. Collision and contact. SIGGRAPH 2001
Course Notes, 2001.

[3] R. Bridson, R. Fedkiw, and J. Anderson. Robust
treatment of collisions, contact and friction for cloth
animation. Proceedings of SIGGRAPH ’02, pp 594–
603, 2002.

[4] G. Debunne, M. Desbrun, M.-P. Cani, and A. H.
Barr. Dynamic real-time deformations using space &
time adaptive sampling. Proceedings of SIGGRAPH
’01, pp 31–36, 2001.

[5] C. Everitt. Interactive order–independent trans-
parency. Technical report, NVIDIA Corporation,
2001.

[6] J. D. Foley, A. van Dam, S. K. Feiner, and J. F.
Hughes. Computer Graphics: Principles and Prac-
tics. Addison-Wesley Publishing Company, 1990.

666



Figure 9: Intersection volume for Knot and Dragon.

Figure 10: Vertex-in-volume test. The LDI repre-
sentation is computed for the entire object. VoI and
AABB coincide. The vertex-in-volume test is pro-
cessed for 100,000 arbitrarily positioned vertices.

[7] J. Goldfeather, J. P. M. Hultquist, and H. Fuchs. Fast
constructive–solid geometry display in the pixel–
powers graphics system. Proceedings of SIGGRAPH
’86, pp. 107–116, 1986.

[8] S. Gottschalk, M. C. Lin, and D. Manocha. Obbtree:
a hierarchical structure for rapid interference detec-
tion. Proceedings of SIGGRAPH ’96, pp. 171–180,
1996.

[9] G. Hirota, S. Fisher, and M. C. Lin. Simulation of
non–penetrating elastic bodies using distance fields.
Technical Report TR00-018, UNC, 2000.

[10] K. E. Hoff III, A. Zaferakis, M. C. Lin, and
D. Manocha. Fast and simple 2d geometric prox-

Figure 11: Deforming Santa and particles. Red
color on the right–hand side indicates actual or re-
cent contact.

imity queries using graphics hardware. Proceedings
of 2001 Symp. on I3D, pp. 145–148, 2001.

[11] P. M. Hubbard. Interactive collision detection. Pro-
ceedings of IEEE Symposium on Research Frontiers
in Virtual Reality, pp. 24–31, 1993.

[12] M. Hughes, C. DiMattia, M. C. Lin, and
D. Manocha. Efficient and accurate interference de-
tection for polynomial deformation and soft object
animation. Proceedings of Computer Animation, pp.
155–166, 1996.

[13] Y. J. Kim, K. E. Hoff III, M. C. Lin, and
D. Manocha. Closest point query among the union
of convex polytopes using rasterization hardware.
Journal of Graphics Tools, to appear, 2003.

[14] Y. J. Kim, M. A. Otaduy, M. C. Lin, and
D. Manocha. Fast penetration depth computation for
physically-based animation. Proc. of SIGGRAPH
Symp. on Computer Anim., pp. 23–31, 2002.

[15] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sow-
izral, and K. Zikan. Efficient collision detection us-
ing bounding volume hierarchies of k–DOPs. Pro-
ceedings of the SIGGRAPH ’96, pp. 171–180, 1996.

[16] D. Knott, D. Pai. CinDeR: Collision and interference
detection in real–time using graphics hardware. Pro-
ceedings of Graphics Interface ’03, to appear, 2003.

[17] T. Larsson and T. Akenine-Moeller. Collision detec-
tion for continuously deforming bodies. Proceedings
of Eurographics ’01, pp. 325–333, 2001.

[18] J. C. Lombardo, M.-P. Cani, and F. Neyret. Real–
time collision detection for virtual surgery. Proceed-
ings of Computer Animation ’99, pp. 33–39, 1999.

[19] K. Myszkowski, O. Okunev, T. Kunii. Fast collision
detection between complex solids using rasterizing
graphics hardware. The Visual Computer. 11(9):497–
512, 1995.

[20] S. Quinlan. Efficient distance computation between
non–convex objects. Proc. IEEE Int. Conf. on
Robotics and Automation, pp. 3324–3329, 1994.

[21] A. Rappoport and S. Spitz. Interactive boolean oper-
ations for conceptual design of 3–D solids. Proceed-
ings of SIGGRAPH ’97, pp. 269–278, 1997.

[22] J. Shade, S. Gortler, Li wei He, and R. Szeliski. Lay-
ered depth images. Proceedings of SIGGRAPH ’98,
pp. 231–242, 1998.

[23] G. van den Bergen. Efficient collision detection of
complex deformable models using aabb trees. Jour-
nal of Graphics Tools, 2(4):1–13, 1997.

[24] T. Vassilev, B. Spanlang, Y. Chrysanthou. Fast cloth
animation on walking avatars. Proceedings of Euro-
graphics ’01, pp. 260–267, 2001.

[25] P. Volino, M. Courchesne, and N. Magnenat-
Thalmann. Versatile and efficient techniques for
simulating cloth and other deformable objects. Pro-
ceedings of SIGGRAPH ’95, pp. 137–144, 1995.

666


