
Physically-Based Simulation of Objects Represented by Surface Meshes

Matthias Müller Matthias Teschner Markus Gross

Computer Graphics Laboratory
ETH Zurich

muellerm@inf.ethz.ch

Figure 1: Interactively fractured surface mesh with dy-
namically generated closing surface.

Abstract
Objects and scenes in virtual worlds such as 3-d com-

puter games are typically represented by polygonal sur-
face meshes. On the other hand, physically-based sim-
ulations of deformations or fracture effects require vol-
umetric representations such as tetrahedral meshes. In
this paper we propose techniques to generate volumetric
meshes dynamically for objects represented by surface
meshes allowing the simulation of physical effects such
as motion, deformation and fracture.

We use the Finite Element Method based on cubical
elements of uniform size. Regular cube meshes have sev-
eral advantages over geometrically more complex repre-
sentations. Because of their simplicity, cube meshes can
be generated quickly by voxelizing objects while neither
geometry nor stiffness information needs to be stored ex-
plicitly. The low memory consumption makes physically-
based animation possible for large scenes even on game
consoles. We animate the original high resolution surface
mesh by coupling it to the underlying volumetric mesh.
This way, the regular structure of the volumetric mesh
is hidden from the user. We also propose a technique to
fracture the surface mesh along with the cube mesh which
keeps the surface watertight and results in realistic frac-
ture patterns.

Key words: Physically Based Animation, Finite Element
Method, Deformation, Fracture

1 Introduction
1.1 Motivation
Virtual environments in which the user can interact with
a virtual world have become very popular in recent years.
Three dimensional computer games are an important ex-
ample. They represent the largest market in this field.
Besides computer games, there is a large number of other
examples for interactive virtual environments such as
medical-, car- and flight simulators or caves for virtual
collaboration.

To give the user the impression of a physical world,
it is important that objects behave like they do in the
real world. Virtual scenes such as those encountered
in computer games are composed of a large number of
objects most of which are typically represented by sur-
face meshes only. To give the impression of solid physi-
cal objects – especially when these objects are deformed
or shattered into pieces – volumetric representations are
needed. The generation of such representations is expen-
sive and usually not part of today’s game developing art
pipelines.

In this paper we present a method to generate such vol-
umetric representations automatically for given surface
meshes. As representation we chose meshes of uniformly
sized cubes. Because of their simplicity, their genera-
tion is very fast and their memory consumption low. The
mesh geometry is obtained via voxelization of the surface
mesh. We animate the resulting regular hexahedral mesh
using the Finite Element Method (FEM) and/or a rigid
body simulator. The original surface mesh is deformed
and fractured according to the simulation performed on
the underlying volumetric cube mesh.

1.2 Related Work
In recent years, physically-based animation for interac-
tive systems has been an active research field in computer
graphics with many important contributions. Among the
physical phenomena that have been simulated in real-
time are rigid-body-dynamics [1, 16]), deformable ob-
jects [7, 4, 17, 8, 2, 12], fluids [14], fracture [13, 9],
just to mention a few contributors out of a much longer
list. Most of these methods use volumetric representa-



tions to simulate volumetric effects. Exeptions are rigid
body simulators and the boundary element method used
by James and Pai.

MathEngine1 and Havok2, the market leaders for
physically-based animation engines for computer games
have included quite a number of these techniques into
their physics engine. However, physically-based defor-
mations or fracture effects for large scenes are not in-
cluded yet and have not appeared in computer games so
far. One of the reasons is the fact that models and meth-
ods used in computer graphics research become more and
more sophisticated and complex. On the other hand the
complexity of the geometry of scenes in computer games
increases as well. To animate such complex scenes sim-
ple and efficient methods in terms of memory and time
consumption are needed. The method we present in this
paper tries to bridge this gap.

1.3 Contribution
We propose the use of regularly shaped cube meshes as
volumetric representations for scenes and objects defined
by surface meshes only. We also describe simulation
methods for cube meshes and methods to animate the as-
sociated surfaces which hide the simplicity of the under-
lying mesh structure.

2 Cube Mesh
2.1 Mesh Generation
A cube mesh is a set of equally sized cubical elements
that are linked via shared vertices. The cube size h is a
global parameter of the simulation. Tables 1 and 2 show
the attributes of cube elements and vertices respectively.

Attributes Description

x, y, z Integer position indices with respect to the
bounding box of the surface

v[8] Pointers to vertices
triangles Pointer to the list of triangles that intersect

the element

Table 1: Cube element attributes.

Attributes Description

position Position in the deformed mesh
velocity Velocity for dynamic simulations
mass Mass lumped from all adjacent cubes

Table 2: Vertex attributes.

After a surface mesh is loaded, the cube mesh is gener-
ated automatically. First, the axis aligned bounding box

1www.mathengine.com
2www.havok.com

(0,0,0) (1,0,0) (2,0,0) (3,0,0) (4,0,0)

(4,1,0)(3,1,0)(2,1,0)(1,1,0)(0,1,0)

(0,2,0) (1,2,0) (3,2,0) (4,2,0)

(0,3,0) (1,3,0)h

Figure 2: A 2-d cut through a cube mesh. The cube ele-
ments are generated inside the bounding box (red) of the
surface mesh (blue). Three integer indices define their
positions with respect to the bounding box.

of the surface mesh is divided into cubes of size h. Then,
for all cubes that either contain part of the surface mesh
or lie completely inside the surface, a cube element ci is
generated. For each of the eight corners, a vertex is gener-
ated in case no vertex exists at that location yet and a link
to the new or existing vertex is stored in ci. All cube ele-
ments store integer position indices x, y, z which number
them along the coordinate axes. Together with the loca-
tion of the bounding box of the surface mesh these indices
determine the location of the element and the locations of
its vertices in space (see Fig. 2).

We store all cube elements c1 . . . cN in a hash table.
With this table the element ci that corresponds to a given
index (x, y, z) can be found in O(1) time. Since each
cube element keeps a list with references to all triangles
that intersect it, spatial queries concerning triangles can
be answered in O(1), too. This is important for the sur-
face animation and surface fracturing procedures.

2.2 Mesh Animation

We use the linear Finite Element Method in connection
with hexahedral elements for deformation and internal
stress computations. To avoid visual artifacts in con-
nection with large rotational deformations we apply the
warped stiffness method [8] which is a corotational for-
mulation [6] that computes forces in local rotated coordi-
nate frames.

Since all elements have the same geometry, their stiff-
ness matrices only depend on material properties, e.g.
Young’s Modulus and Poisson’s ratio (see Appendix A).
Thus, only one stiffness matrix per material rather than
one per element needs to be stored which saves a sub-
stantial amount of memory for large scenes. In our im-
plementation we use a single set of material parameters
for the entire mesh and, thus, only one stiffness matrix.
Even though implicit Euler integration is used, the global



(4,
0,0
)

(4,
1,0
)

(3,
1,0
)

(2,
1,0
)

(3,
2,0
)
(4,
2,0
)

(0,0,0)
(1,0,0)

(2,0,0)
(3,0,0)

(1,1,0)

(0,1,0)

(0,2,0)
(1,2,0)

(0,3,0)
(1,3,0)

Figure 3: Connected parts of the cube mesh are animated
as separate rigid bodies.

stiffness matrix of the mesh does not need to be stored ex-
plicitly either. The Conjugate Gradient solver [11] only
needs to multiply the global stiffness matrix with a vector.
This global multiplication is computed as the sum of mul-
tiplications with the element’s stiffness matrices which is
a common way to save space in connection with the finite
element method.

In order to animate a small part of a scene, only a sub-
set of vertices and cube elements are passed to the solver.
The computational cost is then only dependent on the size
of the active region and not on the size of the entire mesh.

2.3 Fracturing

The internal stress tensors of each cube provided by the
finite element method can be used to fracture the mesh.
Our fracture method is based on the ideas of Terzopou-
los [15], O’Brien [10] and Müller [9]. The largest posi-
tive eigenvalue of the stress tensor represents the largest
tensile stress and the corresponding eigenvector its direc-
tion. If the tensile stress exceeds a material threshold,
the mesh is fractured perpendicular to the stress direction
along element boundaries within a local neighborhood.
We put a virtual plane through the center of the element
of high stress perpendicular to the stress direction and la-
bel the elements in the neighborhood with a plus or mi-
nus sign depending on the side of the plane they lie on.
Each vertex that is linked by cubes of both signs is dupli-
cated and the cubes with a minus sign are relinked to the
duplicated vertex. No other updates are necessary in con-
nection with our FEM computations. Of course fracture
operations within the cube mesh need to trigger updates
in the surface mesh (see Section 3).

2.4 Rigid Body Animation

In virtual environments such as computer games, stiff and
brittle materials (e.g. stone or metal) play an important
role. FEM-based techniques are not very well suited to
animate those types of materials in real-time since the
corresponding equations get stiff and only small times

steps can be taken. In case of rigid materials we animate
the mesh as a series of rigid bodies based on the idea
of Müller et al.[9]. Hereby each connected set of cubes
forms its own rigid body (see Fig. 3). Only when external
forces (e.g. collision forces) exceed a certain threshold,
deformations are computed instantaneously and the mesh
is fractured if necessary. Between those events, a rigid
body simulator [16] animates the connected parts of the
mesh. The fracture process can split bodies into two or
more pieces, an event we detect by traversing connected
sets of cubes after each fracture call.

3 Surface Animation
The way the cube mesh is generated guarantees that ev-
ery surface vertex lies within a certain cube element. The
deformed positions of surface vertices can, thus, be com-
puted from the deformed positions of the eight vertices
of the corresponding cube element via trilinear interpola-
tion.

3.1 Surface Fracturing
In this section we present our algorithm to fracture the
surface mesh and to generate new surface in order to keep
objects watertight. We explain the process in detail be-
cause the algorithm constitutes one of the main contribu-
tions of this paper.

In Section 2.3 we described how the cube mesh is frac-
tured when internal stresses exceed the material thresh-
old. The basic event that needs to trigger surface mesh
updates is the separation of two cubes c1 and c2 where
their common face f gets exposed. This situation is de-
picted in Fig. 4. Two tasks have to be completed. First,
the surface mesh needs to be fractured near face f and
second, a new closing surface needs to be generated in
order to keep the mesh watertight.

We do not cut any surface triangles during the fracture
process. This can yield artifacts when only a few big tri-
angles are used to represent parts of the surface. One way
to solve this problem is to subdivide large triangles as a
preprocessing step while the mesh is loaded (see Section
3.3). Not splitting surface triangles along f during the
simulation has several advantages:

• Rendering is not slowed down by many new (some-
times tiny) triangles.

• No interpolation of positions and texture coordinates
is needed which accelerates the fracture process.

• The artist can influence the fracture behavior
through the design of the surface mesh.

• Since our elements are regularly shaped, they would
produce regularly shaped fracture lines. Fracturing
along triangle boundaries hides this regularity.



c1

f
nt

nf

n1n2

2-d polygon

c2

c1

f
nt

nf

n1n2

c2

closing surface

Figure 4: When two cubes c1 and c2 are separated along
their common face f , a new closing surface needs to be
generated. If the original surface was cut along f , the 2-d
polygon shown on the left would be the closing surface.
Since triangles are not cut, the closing surface is non pla-
nar as shown on the right.

In order to fracture along triangle boundaries, each of
the surface triangles is assigned to the cube element its
center lies in. When two cubes are separated, the surface
is separated along edges that connect triangles assigned
to two different cubes.

3.2 Surface Generation
The simple surface fracture process comes at a price.
Closing the surface is more complex than it would be if
we had cut the surface along the exposed common face f .
In this case, the closing surface would be the subset of f
that lies inside the surface. Now the closing surface is not
planar anymore because its boundary needs to coincide
with the surface fracture line (see Fig. 4). The procedure
we describe in the remainder of this section can handle
arbitrary fracture lines. The basic steps are:

• Compute the subset of f that lies inside the surface
mesh. This 2-d region is surrounded by polygons.
The polygons are cycles in a directed graph com-
posed of nodes and directed edges in f (see Fig. 5).

• Assign each node n a vertex v of the surface mesh.

• Triangulate the polygons based on the positions of
the nodes using a 2-d triangulation algorithm.

• For each triangle (n1,n2,n3) that is enumerated by
the triangulation process, generate a surface triangle
(v1,v2,v3) using the assigned surface vertices.

We will now look at these steps in more detail: If f lies
completely inside the surface the entire face becomes the
closing surface. Otherwise the area of f that lies inside
the surface is determined. In general this area is bounded
by a set of simple non-convex polygons, possibly with

f

Figure 5: Front view of face f : The intersection of the
surface mesh with f generates a series of oriented poly-
gons. The positively oriented polygons surround the frac-
tion of f that lies inside the surface mesh. Each inner in-
tersection point is generated by two triangles resulting in
two nodes at the same location both of which are needed
later in the process.

holes. The line segments that form the polygonal bound-
aries are generated by triangles that intersect the face f
(see Figs. 4 and 5).

To generate the bounding polygons, all triangles that
intersect cube c1 are tested against face f . Our data struc-
ture allows for fast enumeration of these triangles (see
Section 2.1). All the geometric computations are done
with original (non-deformed) coordinates. The fact that
f – as a face of a cube element – is parallel to either the
x−y, the y−z or the x−z plane speeds up the following
computations significantly. Each triangle t that intersects
face f generates two nodes n1 and n2 on f either when
an edge of t intersects f or when an edge of f intersects
t. A directed edge from node n1 to n2 is generated if

[nt × (n2 − n1)] · nf > 0 (1)

or from n2 to n1 otherwise, where nt is the normal on
triangle t and nf the outward normal of face f with re-
spect to cube c1. This guarantees that polygons which
are positively oriented with respect to nf are the ones
that surround part of the closing surface (see Fig. 4).

So far all intersecting triangles generate a directed
edge. Because each intersecting triangle edge is adjacent
to two intersecting triangles it generates two nodes, one
without an outgoing edge and one with an outgoing edge.
All these pairs are connected via a directed edge originat-
ing at the node without the outgoing edge.

To complete the polygons, four nodes at the corners
of face f are generated. These four corner nodes and all
nodes on the edges of f are now visited by walking along
the boundary of f in the mathematically positive sense.
Two consecutive nodes are connected by a directed edge
if the first node has no outgoing edge yet (Fig. 5).



c1

c2

f

Figure 6: Top view on face f with the intersecting trian-
gles in red (assigned to c1) and white (assigned to other
cubes): The original nodes at the intersection points (gray
points) are moved towards each other (black and yellow
points). Each node is associated with a vertex of the sur-
face mesh (red points). Only one node per vertex is kept
for triangulation (yellow points).

If we had cut the surface mesh along f , the polygons
generated above would close the surface perfectly. To
close the surface that is fractured along triangle bound-
aries, we assign to each node a vertex of the surface mesh.
Then the original locations of the nodes on f are used to
compute a 2-d triangulation of the polygons (using ear-
cutting [5]) while the triangles that are generated during
the triangulation are spanned between the assigned sur-
face vertices. This is the key idea behind the algorithm.
The 2-d triangulation process operates in the plane of f
using the coordinates of the nodes but generates a non-
planar triangulation because is outputs the assigned ver-
tex positions instead of the nodes themselves.

Node n is assigned a vertex v of the surface mesh ac-
cording to the following rules (see Fig 6):

• If n is generated by a triangle edge e = (v1,v2) and
the corresponding triangle t is assigned to cube c1,
then the vertex of e which does not lie on the c1 side
of f is selected. If triangle t is not assigned to cube
c1 then the vertex of e which lies on the c1 side of f
is selected.

• If n is generated by the intersection of an edge of
face f with triangle t = (v1,v2,v3), we choose the
vertex depending on the second node n′ generated
by t. If n′ is generated by an edge (v1,v2) of t, we
select the third vertex v3 of t. If n′ is also generated
by the intersection of an edge of f with t, we choose
the vertex v of t closest to n.

As for regular nodes, it is also possible to assign sepa-
rate coordinates to corner nodes. Here we use a random
delta vector that is computed for every vertex in the cube
mesh prior to the simulation. These random vectors are
chosen such that they do not cross the surface mesh. This

Figure 7: Planar parts of a surface are typically repre-
sented by a few large triangles. To get realistic results, the
mesh is subdivided in a preprocessing step which yields
evenly sized triangles.

step makes sure that inner fracture faces look random,
too.

There are three remaining issues:
First, if two adjacent triangles t1 and t2 generate the

four nodes n1,n2 and n3,n4, the nodes n2 and n3 are
generated by the common edge of t1 and t2 and, thus,
have the same location on f (see Fig. 5). However, these
two nodes might represent different surface vertices. To
make sure the 2-d triangulation process generates all the
necessary triangles, each pair of nodes n1,n2 of a trian-
gle t is moved towards each other on f by one third of the
segment length (see Fig. 6).

Second, several consecutive nodes on the connected
paths that form the polygons on f may represent the same
surface vertex v. In this case, only one node is kept while
all others are deleted or otherwise, zero area triangles
would be generated (see Fig. 6).

Third, whenever a new triangle t is generated, a du-
plicate t′ with opposite orientation is generated as well.
Triangle t is assigned to cube c1 while t′ is assigned to
c2.

3.3 Surface Preprocessing
Planar regions of a surface mesh as the bottom of the car
in Fig. 7 are usually represented by a few large triangles.
For reasons of speed we do not subdivide triangles during
the fracture process. In order to still get realistic results
for arbitrary meshes we subdivide large triangles in a pre-
processing step that guarantees that no edge is longer than
the cube size h. To this end, we propose the following
simple and fast algorithm that runs in O(n log n) time,
where n is the number of triangles of the final mesh:

1. Generate a lexicographically sorted list of all possi-
ble triples (v1, v2, t) where (v1, v2) is an edge of a
triangle with index t and v1 > v2 are vertex indices.

2. Traverse the list iteratively. If the current edge is
shorter than cube size h skip the entry.



3. Otherwise there are two cases. Triple (v1, v2, t) is
either followed by a triple (v1, v2, t

′) or not. In the
first case the edge is shared by two triangles t and t′

while in the second case the edge only belongs to t.

4. In both cases, a new vertex v3 near the center of the
edge is generated. Triangle t and, if present, triangle
t′ are each split in two new triangles containing v3.

5. Finally the list of triples has to be updated. The
edges of the newly generated triangles that contain
v3 are added at the end of the list. If the new entries
are added in lexicographical order at the end of the
list, the entire list remains sorted, because v3 is the
largest vertex index of the mesh.

6. The edges of the newly generated triangles that do
no contain v3 are already in the list but need to be
updated since they contain the old triangles t and t′.
They can be found in logarithmic time via a binary
search on the sorted list.

7. Skip all entries containing v1 and v2 and go to step
2.

4 Results
All the animations described in this section were com-
puted and rendered in real time on a 1.8 GHz Pentium IV
PC with a GForce 4 graphics card. Fig. 8 shows an ea-
gle surface mesh composed of 23, 000 triangles for which
a cube mesh of about 800 elements was generated. The
object deforms elastically under gravity and user applied
forces at 10 − 15 frames per second.

Figure 8: Eagle surface mesh (right) for which a cube
mesh was generated (left) to simulate elastic deformation.

The pig shown in Fig. 9 is animated as a rigid body.
When it hits the ground a static Finite Element step is
computed which yields the internal stresses used to frac-
ture the model. New rigid bodies are generated while the
surfaces are closed dynamically. The simulation runs at
over 40 frames per second.

The examples in Figures 1 and 10 show that the frac-
ture procedure works robustly for more complex geome-
tries as well (see also accompanying video sequences).

Figure 9: A pig model fractures as it hits the ground. New
surface triangles are generated dynamically to keep the
surface mesh closed.

Figure 10: A more complex model shows the robustness
of the fracture procedure.

5 Conclusions and Future Work

We have presented a method for the physically-based an-
imation of scenes that are defined by their surfaces only.
Objects are voxelized and the resulting regular hexahe-
dral meshes are animated using Finite Element or rigid
body simulations. The associated surface mesh is de-
formed and fractured according to the simulation per-
formed on the underlying volumetric mesh.

At the time we only use one material per cube mesh
even though the simulation can handle multiple materials.
With a separate tool or process different materials could
be applied to different parts of the cube mesh.

Another way to improve our method could be to use
cube elements of more than one size. Instead of using
cubes of uniform size h, a structure similar to an oct-
tree could be used to reduce the number of elements or
to subdivide the mesh in regions of high stress. Since all
elements would still be cubes, properly scaled versions of
the same stiffness matrix could be used.

Sometimes independent small features of the surface
mesh are associated with the same cube element. Subdi-
vision of elements could solve this problem as well.



6 Acknowledgements
This project was funded by the Swiss National Commis-
sion for Technology and Innovation (KTI) project no.
6310.1 KTS-ET.

References
[1] David Baraff. Fast contact force computation for nonpen-

etrating rigid bodies. In Proceedings of the 21st annual
conference on Computer graphics and interactive tech-
niques, pages 23–34. ACM Press, 1994.

[2] S. Capell, S. Green, B. Curless, T. Duchamp, and
Z. Popovic. Interactive skeleton-driven dynamic defor-
mations. In Proceedings of SIGGRAPH 2002, Computer
Graphics Proceedings, Annual Conference Series, pages
586–593. ACM, ACM Press / ACM SIGGRAPH, 2002.

[3] R. D. Cook. Finite Element Modeling for Stress Analysis.
John Wiley & Sons, NY, 1995.

[4] G. Debunne, M. Desbrun, M. P. Cani, and A. H. Barr. Dy-
namic real-time deformations using space & time adap-
tive sampling. In Computer Graphics Proceedings, An-
nual Conference Series, pages 31–36. ACM SIGGRAPH
2001, August 2001.

[5] H. ElGindy, H. Everett, and G.T. Toussaint. Slicing an ear
in linear time. Pattern Recognition Letters, pages 719–
722, 1993.

[6] C. A. Felippa. A systematic approach to the element-
independent corotational dynamics of finite elements.
Technical Report Report CU-CAS-00-03, University of
Colorado, 2000.

[7] D. James and D. K. Pai. Artdefo, accurate real time
deformable objects. In Computer Graphics Proceed-
ings, Annual Conference Series, pages 65–72. ACM SIG-
GRAPH 99, August 1999.

[8] M. Müller, J. Dorsey, L. McMillan, R. Jagnow, and
B. Cutler. Stable real-time deformations. Proceedings of
2002 ACM SIGGRAPH Symposium on Computer Anima-
tion, pages 49–54, 2002.

[9] M. Müller, L. McMillan, J. Dorsey, and R. Jagnow. Real-
time simulation of deformation and fracture of stiff mate-
rials. EUROGRAPHICS 2001 Computer Animation and
Simulation Workshop, pages 27–34, 2001.

[10] J. F. O’Brien and J. K. Hodgins. Graphical modeling
and animation of brittle fracture. In Proceedings of SIG-
GRAPH 1999, Computer Graphics Proceedings, Annual
Conference Series, pages 287–296. ACM, ACM Press /
ACM SIGGRAPH, 1999.

[11] C. Pozrikidis. Numerical Computation in Science and En-
gineering. Oxford Univ. Press, NY, 1998.

[12] C. Shen, K.K. Hauser, C.M. Gatchalian, and J.F. O’Brien.
Modal analysis for real-time viscoelastic deformation.
ACM SIGGRAPH 2002 Conference Abstracts and Appli-
cations, 2002.

[13] J. Smith, A. Witkin, and D. Baraff. Fast and controllable
simulation of the shattering of brittle objects. Computer
Graphics Interface, pages 27–34, May 2000.

[14] Jos Stam. Stable fluids. In Proceedings of the 26th annual
conference on Computer graphics and interactive tech-
niques, pages 121–128. ACM Press/Addison-Wesley Pub-
lishing Co., 1999.

[15] Demetri Terzopoulos and Kurt Fleischer. Modeling in-
elastic deformation: viscolelasticity, plasticity, fracture.
In Proceedings of the 15th annual conference on Com-
puter graphics and interactive techniques, pages 269–278.
ACM Press, 1988.

[16] A. Witkin and D. Baraff. Physically based modeling: Prin-
ciples and practice. Siggraph Course Notes, August 1997.

[17] X. Wu, M. S. Downes, T. Goktekin, and F. Tendick. Adap-
tive nonlinear finite elements for deformable body simu-
lation using dynamic progressive meshes. Eurographics,
pages 349–358, September 2001.

A Appendix
Stiffness Matrix of a Cube Element

To ease the implementation of our method, we give the
entries of the stiffness matrix for a cube element explic-
itly. The stiffness matrix of a finite element linearly re-
lates the displacement vectors at the element’s nodes to
the force vectors they cause. In the case of a cube ele-
ment, the stiffness matrix K relates eight three dimen-
sional displacement vectors to eight three dimensional
force vectors and is, thus, 24 × 24 dimensional. Once
K is known, the forces can simply be computed as

f = K · ∆x, (2)

where f ∈ R24 contains the eight force vectors at the
corners and ∆x ∈ R24 the displacement vectors.

We compute the stiffness matrix for a cube analogous
to the derivation of the stiffness matrix for constant strain
triangles in [3] pp 46–47. First, we consider a cube cen-
tered at the origin with edge length h and r = h/2 (see
Fig. 11).

h

x

y

z

1 2

30

4

5 6

7

Figure 11: A cube element of size h centered at the ori-
gin.



The following shape functions

φ0 = (r − x)(r − y)(r − z)/h3

φ1 = (r + x)(r − y)(r − z)/h3

φ2 = (r + x)(r + y)(r − z)/h3

φ3 = (r − x)(r + y)(r − z)/h3

φ4 = (r − x)(r − y)(r + z)/h3

φ5 = (r + x)(r − y)(r + z)/h3

φ6 = (r + x)(r + y)(r + z)/h3

φ7 = (r − x)(r + y)(r + z)/h3

have the property that φi = 1 at corner i and zero at
all other corners. Using these basis functions, Cauchy’s
linear strain tensor and assuming an isotropic Hookean
material, we get a constant stiffness matrix K. For this
regular element, although the shape functions are non-
linear, the integrals for the coefficients of K can be solved
analytically and turn out to be simple expressions. We use
the following auxiliary variables

a = h · E · 1−ν
(1+ν)(1−2ν)

b = h · E · ν
(1+ν)(1−2ν)

c = h · E · 1
2(1+ν) ,

where E is Young’s Modulus and ν the Poisson ratio of
the material to be modeled [3]. The stiffness matrix K
can naturally be devided into 3 × 3-dimensional sub ma-
trices Kij with i, j ∈ [0..7].

For the sub matrices corresponding to the nodes of the
cube K00, K11, K22, K33, K44, K55, K66, K77, we get



d o o
o d o
o o d


 ,




d n n
n d o
n o d


 ,




d o n
o d n
n n d


 ,




d n o
n d n
o n d


 ,




d o n
o d n
n n d


 ,




d n o
n d n
o n d


 ,




d o o
o d o
o o d


 ,




d n n
n d o
n o d


 ,

where d = a+2c
9 , o = b+c

12 and n = −o.
The submatrices corresponding to edges in x-direction

K01,K23,K45,K67, y-direction K03,K12,K47,K56

and in z-direction K04,K15,K26,K37 are



d1 o1 o1

n1 d2 o2

n1 o2 d2


 ,




d1 o1 n1

n1 d2 n2

o1 n2 d2


 ,




d1 o1 n1

n1 d2 n2

o1 n2 d2


 ,




d1 o1 o1

n1 d2 o2

n1 o2 d2


 ,




d2 n1 o2

o1 d1 o1

o2 n1 d2


 ,




d2 o1 n2

n1 d1 o1

n2 n1 d2


 ,




d2 n1 n2

o1 d1 n1

n2 o1 d2


 ,




d2 o1 o2

n1 d1 n1

o2 o1 d2


 ,




d2 o2 n1

o2 d2 n1

o1 o1 d1


 ,




d2 n2 o1

n2 d2 n1

n1 o1 d1


 ,




d2 o2 o1

o2 d2 o1

n1 n1 d1


 ,




d2 n2 n1

n2 d2 o1

o1 n1 d1


 ,

where d1 = −a+c
9 , d2 = a−c

18 , o1 = b−c
12 , o2 = b+c

24 ,
n1 = −o1 and n2 = −o2.

The submatrices corresponding to face diagonals K05,
K14, K16, K25, K27, K36, K07, K34, K02, K13, K46

and K57 are



d1 o2 n1

n2 d2 n2

n1 o2 d1


 ,




d1 n2 o1

o2 d2 n2

o1 o2 d1


 ,




d2 o2 o2

n2 d1 n1

n2 n1 d1


 ,




d2 n2 o2

o2 d1 o1

n2 o1 d1


 ,




d1 o2 o1

n2 d2 o2

o1 n2 d1


 ,




d1 n2 n1

o2 d2 o2

n1 n2 d1


 ,




d2 n2 n2

o2 d1 n1

o2 n1 d1


 ,




d2 o2 n2

n2 d1 o1

o2 o1 d1


 ,




d1 n1 o2

n1 d1 o2

n2 n2 d2


 ,




d1 o1 n2

o1 d1 o2

o2 n2 d2


 ,




d1 n1 n2

n1 d1 n2

o2 o2 d2


 ,




d1 o1 o2

o1 d1 n2

n2 o2 d2


 ,

where in this case d1 = −2a−c
36 , d2 = a−4c

36 , o1 = b+c
12 ,

o2 = b−c
24 , n1 = −o1 and n2 = −o2.

Finally, the submatrices corresponding to cube diago-
nals K06, K17, K24 and K35 are



d n n
n d n
n n d


 ,




d o o
o d n
o n d


 ,




d n o
n d o
o o d


 ,




d o n
o d o
n o d


 ,

where d = −a−2c
36 , o = b+c

24 and n = −o. Since K is
symmetric, the remaining sub matrices can be computed
as Kij = KT

ji.


