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Abstract collided mass points. The penalty force depends on
the penetration depth of the point, and it accelerates

We introduce a new collision response scheme thahe point out of the volume of the collided object.
handles collisions between deformable objects witlThe penetration vectors can be approximated such
triangulated surfaces. Based on internal forces anghat magnitude and direction change smoothly, even
penetration depth information, the approach comfor deep penetrations and coarsely sampled objects
putes the contact surface of interpenetrating object$10]. However, this method introduces physically
In particular, we address discontinuity problemsinplausible states. In particular, resting contact of
that arise in discrete-time simulations with coarsestacked objects is a problem. Further, the applied
surface representations. penalty forces do not correspond to the stress re-

The approach is independent of the actual deforsulting from the object deformation. Instead, the
mation model and the applied collision detectionpenalty forces are weighted with a user-defined pa-
algorithm, and in contrast to penalty-based colli-rameter. The choice of this scalar is difficult, espe-
sion response schemes, the method does not requigiilly when simulating bodies with different elastic-
any user-defined parameters. We compare the coities. Moreover, penetrations tend to be deep at high
tact surface method to a penalty-based collision repressures and for large relative velocities.

sponse scheme to illustrate the conceptual advan- Contribution. We present a method that over-

tages of the proposed technique. comes problems inherent to penalty-based ap-
proaches. Instead of applying penalty forces to col-
1 Introduction liding points, we compute an explicit representation

of the contact surface between flexible objects with

Handling collisions of rigid or deformable objects is triangulated surfaces. Thus, penetrations between
a challenging problem in physically-based simula-Simulated objects are avoided and a physically cor-
tions. Collision handling involves two steps: First, rect contact state is provided in every simulation
a collision between bodies has to be detected. Se®aSs.
ond, the collided bodies have to be separated in or- In contrast to existing contact surface ap-
der to provide a physically correct state. This sepproaches, we address discontinuity problems due
aration results from the exchange of momentum irfo discrete time steps and coarse surface represen-
the contact region between the bodies. Thus, thtations. Further, our method handles objects with
resulting momentum of the bodies depends on thdifferent surface sampling densities (see Fig. 1).
contact state and contact region, which implies that We compare our method to a penalty-based ap-
the contact region has to be determined very careproach described in [10] in order to show the con-
fully. This problem is particularly challenging if the ceptual advantages. Our method is not based on
surfaces of simulated objects are coarsely samplediser-defined parameters and the computation of the
In this case, small relative movements of collidingcontact surface exclusively depends on the elastici-
objects may result in rapid changes of the contacties of the colliding bodies. Moreover, the method
surface and, thus, discontinuous contact forces. is independent of the deformable model. Although

A common way to handle collisions between de-we rely on the internal forces acting on the sur-
formable objects is to apply penalty forces to theface points, we do not make any assumption on how
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surface schemes. Penalty-based methods for de-
formable bodies are similar to penalty-based meth-
ods for rigid bodies: A force is exerted on a collided
point, proportional to the penetration depth of the
point. In [10], a way is proposed to approximate
the penetration depth such that the resulting colli-
sion response scheme is particularly stable. In [16],
Miller et al. propose a method that handles col-
lisions between particles and deformable surfaces.
This approach does not cause penetrations, but also

Figure 1: We address problems in contact surfac@yerts forces on points depending on the distance of
computation related to coarse surface representge narticle to the surface.

tions. Left: A collision between two objects with -
different sampling densities. Right: In this colli- A combination of contact surface schemes and

sion, the contact state consists of only two contacpenalty-based schemes is presented in [12]. Here,

points. In both cases, continuous collision responsa 'virtual’ contact surface is computed for colliding

is a challenging problem. deformable objects. Then, penalty forces are ap-
plied to the points, proportional to the distance be-

. tween the actual point and its computed position on
these forces are computed. The actual implementggq contact surface.

tion uses a deformation model proposed in [19], but

the method works with any finite-element or mass AIIdthf_esed approacheshrequwle thﬁ ch0|cle ?f a
spring deformation model. user-defined parameter that scales the penalty force,

while our approach exclusively depends on the elas-
ticities of the objects.

2 Related work An early work that treats the contact problem by
computing the contact surface is presented in [9].

Collision response approaches have been investifere, a simple elasticity model based on a scalar
gated for rigid and deformable objects. potential field is used. However, the model is diffi-

For rigid bodies, there exist three different col- cult to relate to the physics of elastic deformations.
lision response schemes. First, a constraint-baseghraff and Witkin [2] use a constraint-based method
method can be used to prevent objects from penetrahat prevents penetration. They solve an LCP that is
tion. In this case, the inequality-constrained prob-expensive to compute for complex objects. Duriez
lem can be formulated as a linear complementaryt g|. [6, 7] describe a method that is based on Sig-
problem (LCP) [1, 3, 4, 8]. These approaches workhorini's contact theory. Contact forces are com-
especially well for resting contacts of rigid objects. puted for flexible bodies by formulating an LCP.
Second, the contact forces can be computed by aptowever, they are not able to simulate locally dif-
plying the impulse laws [14]. The third kind com- ferent elasticities, whereas our approach enforces a
putes penalty forces to penetrated points [15, Slforce equilibrium in small areas around surface ver-
Penalty-based collision response schemes are usfices and thus overcomes this limitation. In [17], an
ally fast and easy to implement, however, penetragiternative LCP scheme for computing the contact
tions can occur. Thus, they are less suitable for simsuyrface is presented. Here, a combination of point-
ulating stacked objects. based rigid and deformable models is used. The

Contact problems fodeformable bodieshave approach works well for densely sampled surfaces
first been addressed in engineering [11, 13]. Thesand small penetrations. In contrast, our work ad-
approaches focus on analytical and accurate solwhesses discontinuity problems when using coarsely
tions for simple geometries. However, deformablesampled surfaces combined with deep penetrations.
bodies are commonly discretized into mass point§urther, in [17], volume preservation is explicitly
which motivates methods that consider discrete seenforced without considering the actual deforma-
tings. tion model. In contrast, our approach processes the

Two different schemes can be distinguished irforces of the underlying deformation model. Thus,
this context: Penalty-based schemes and contagblume preservation is implicitly handled.
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3 Contact surface the set of colliding vertices and tetrahedrons. De-
tails are found in [18, 20].

In general, there must be a force equilibrium on the

contact surfac.e'of polliding objects. The interna.I4.2 Consistent penetration depth

force on an infinitesimal small surface patch at posi-

tion x of body2t must be equal in magnitude to the Based upon the set of colliding vertices, the sec-

internal force at on body9t. This condition also ond stage estimates the penetration depth and direc-

holds for discretized surfaces. However, in the distion for collided vertices [10]. The method returns

crete case, forces are only given at vertices and haweconsistent penetration depth for each collided ver-

to be interpolated over the surface. Thus, piies-  tex. The method considers the discrete nature of the

sureon surface patches is compared. With respeatimulated objects, i. e. for small displacements of

to accuracy, the considered surface patches shoutte vertices, the penetration depth vectors change

be as small as possible. However, our approach rasmoothly and the penetration directions are mean-

quires spatial degrees of freedom on both objects tingful even for large penetrations.

ensure symmetry. Thus, the surface patches must Further, acontact triangleis calculated for each

be large enough to contain at least one vertex of theollided vertex. The contact triangle is the trian-

surfaces of both colliding objects. gle on the surface of the penetrated object that in-
tersects with the penetration direction vector. The
4 Method contact triangle plays an important role when com-

puting the contact surface, since each vertex must

This section provides an overview of the proposeciie in the plane of its contact triangle after collision
algorithm, followed by a detailed description of its response.
five consecutive stages. ) )

The method takes a set of pairs of colliding bod-4.3 Deformation region

ies and computes an explicit representation of thPA . .
- challenge of the collision response of triangulated
contact surfaces. After collision response, the col-

; . ) meshes are the approximate surface representations:
lided vertices are displaced onto the contact sur: : o . -
o L We consider collisions with only a few colliding
faces and a collision-free setting is reached. The " . -
. ) vertices. In some cases, the collision can be asym-
method passes through the following stages: C .. ;
St 1detects alcollidi ticeshased metric in a sense that the set of colliding vertices
age Loetects alcolliding verticeshased on a ¢ v podies contains only vertices of one body
spatial hashing approach.

. ) (see Fig. 2). In this case, it is not possible to reach

Sta}ge gcomputes &onglstent penetration depth a force equilibrium by only displacing the collided
anddirectionfor each collided vertex. vertices.

Stage 3takes the set of colliding vertices and
computes theleformation regioron the surface of
each collided body. For all vertices in the deforma-
tion regions, alisplacement vectas calculated.

Stage 4performs a binary search to compute
the contact surfaces by displacing the vertices in

the deformation regions until a force equilibrium is Figure 2: Deformation region. Left: If only the col-

reached. liding vertexx; is considered in the contact surface

Stage 5updates the velocity and dissipative computation, then the lower body is not affected
forces of each displaced vertex. and a force equilibrium cannot be reached. Right:
The deformation region, consisting &f, x; and
X1, enables a symmetric reaction to the collision, a
force equilibrium can be achieved.

4.1 Collision detection

In our implementation, deformable bodies are rep-

resented by tetrahedral meshes, and a spatial hash-This observation motivates that we do not only
ing approach is used to detect vertices that penetratonsider the colliding vertices, but definedafor-
tetrahedrons of other bodies. The method returnmation region(see Fig. 2). The deformation region
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is the union of the colliding vertices and the ver-4.4 Contact surface computation

tices of their contact triangles. Note, that the latter . . .
9 After having computed the deformation region and

do not necessarily collidex¢ andx, in Fig. 2). We . ,
denote the vertices contained in the deformation rel© displacement vectors of all affected vertices, the

gion asdisplacement verticesFor each displace- contact surface is computed. By displacing the ver-

ment vertex a displacement vector is computedt'ces in the deformation region, a binary search for

When the displacement vertex is a colliding vertex,the p03|t!on of the contact surface IS realized, Th'.s
rocess is governed by the constraint of force equi-

its displacement vector corresponds to the penetra- "
tion depth. For a non-colliding vertex, the displace- ibrium at the contact surface.
ment vector represents a direction which is an addi- .

tional degree of freedom in order to find the force?4-1  Binary search

equilibrium. First, the vertices in the deformation region are dis-
In order to guarantee continuous contact forcesplaced halfway in the direction of the displacement

the displacement vectors must change smoothly fovectors:

small changes in the contact state. Therefore, we x! — x+ ls

propose to calculate the displacement vestby ) ) . ) 2
with x being the original displacement vertex and

di+d the displacement vector of the vertex.
s = Ez w;d; + (1)
dwitl

with d; referring to the penetration depths of all
vertices that have their contact triangle in the set o
faces adjacent to the displacement vertex. If the dis
placement vertex is colliding, then its correspond-
ing penetration deptH is added to the weightened Figure 4: First iteration of the binary search: The

sum of penetration depths. If the displacement ververtices in the deformation regions are displaced
tex is not colliding, therd is 0. halfway between the old position and the surface of

' ) ) the other body. The resulting contact surface is thus
In order to provide a continuous behavior of thegyactly in the middle of the intersection. This corre-
displacement vector, the penetration depthsof  sponds to the contact surface of two equally elastic
the vertices are weighted with; wherew; is the  bodies. Note, that the vertices on the very left and
barycentric weight of the vertex with respect to theright are non-colliding displacement vertices, which

displacement vertex (see Fig. 3). are also displaced.

|

z In each iteration, we divide the search interval by

two:
1

26+2) °

The direction of the movement is given by the sign

of the pressure difference. The binary search con-
verges very fast. Experiments indicate that four it-

erations provide sufficient accuracy.

Xt

Figure 3: Left: The displacement vector for a ver- o
tex x is the weighted sum of the penetration depth€-4-2 Computing internal forces
of the verticesx;, x; and x; having their con-
tact triangles adjacent te. Right: The barycen-
tric weightw; of the vertexx; with respect tax is

w; = SEEYE A(x,y, 2) is the area of the con-

tact triangle ofx;.

As a result of the vertex displacement, the underly-
ing deformed volume exerts a restoration force on
the contact surface, i. e. the internal forces on the
contact vertices have changed.

The internal forces are then updated by the de-
formation model. Although we use an approach
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presented in [19], we emphasize that the collisior | Comparison area

response method is independent from the actual de o !

formation model. L Ty S
i »,T /\I

4.4.3 Measuring and comparing forces

N

Based on the internal forces, the algorithm com-
pares the pressure on the surfac&band the pres-
sure on the surface of. In order to handle locally

on  Comparison area
I = —
f !

different elasticities, the method computes the pres _.}x—x/(_.x_x,’_._
sure difference within a small comparison aréa T
around each displacement vertex

pait = pa (X) — pm(X) = FMA(X) B FmA(x)

Figure 5: Weighting forces. Top: The forces are not
which is minimized by the binary search approachweighted. If now vertexx; leaves the comparison
Letx be in the deformation region 6. The chal- ~ area, then the pressure around vestexill change
lenge is to findall vertices within the comparison discontinuously. Bottom: The forces are weighted
area aroundx on the coarsely sampled surfaces ofWith the barycentric weight, thus the force mphas
M andM. We proposed to be theunion of surface less influence than the force an being closer tcx.

. o . .~ Discontinuous pressure changes are avoided.
triangles adjacent tox. Then the set of vertices in-

side A on the surface dfit consists of one element,

namelyx. The set of vertices insidé on the sur-  the displacement vecter Second, if the surface of
face of 0t consists of all vertices haVlng their con- bodym is much coarser Sampled than the surface
tact triangle adjacent ® (x;, x; andx in Fig. 3).  of 0, then the set of vertices Ot within the com-

The case of this set being empty is discussed lateparison area can be empty. In this case, the area is

The actual pressure is now computed by summingytended and the vertices of the contact triangle of
up the internal forces on these vertices, divided by a|so contribute to the pressure.

the areaA that is represented by these vertices.

For the pressuresy (x) on the surface of body . . Y
2 in x we have 4.5 Updating velocity and dissipative

forces
_ Fm(x) .
po (x) = A After having computed the contact surface, the ve-
) ) locity of the displacement vertices is updated. Fur-
with Fox (x) the internal force ox. ther, the friction force that acts between vertices and

When computing the pressupsy (x) acting on  contact triangles is calculated. We use the Coulomb
the surface oMt aroundx, we must consider the friction law for modeling the friction.

discretized surface representation. In order to pro- Fig. 6 shows the final result of the collision re-
vide continuous pressure changes for small disg,,nse procedure. The initial configuration consists
placements of the vertices, the internal forces arst two overlapping bodies. Then a binary search

wei_ghted (see Fig. 5). Thus, the_ presspre(x) approach computes the contact surface, considering
acting on the surface éft aroundx is the force equilibrium.

_ZiwiF‘ﬁ(Xi)
par(x) = AY, w; @ 46 Results

with F; (x;) the internal force on the vertex. w;  We have integrated our method in a simulation envi-
is the barycentric weight of the vertex, with re-  ronment for deformable objects. We carried out var-
spect tox (see Fig. 3). ious experiments to compare the proposed method
Two notes: First, the pressure difference is actuto a penalty-based approach. We compare the qual-
ally calculated with scalar pressure values, nameljty of both methods with respect to visual plausibil-
the magnitude of the pressure vectors in direction ofty and stability. All experiments have been per-
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Figure 6: lllustration of the contact surface for two
bodies with different elasticities. Left: The orig- =
inal configuration before contact surface computa-,?$’

tion. Middle: Contact surface for two bodies having gy =
the same elasticity. Right: Contact surface for tw E
bodies with different elasticities. Note the different ™ 5
position of the contact surface.

formed on a PC Pentium 4, 3.20 GHz, NVIDIA ) ] )
Quadro FX 3400 GPU. Figure 7: Three cubes at different weights falling

) ) i onto a flexible object. Top: Collision response by
Fig. 7 shows three cubes at different weightscomputing the contact surfaces. Bottom: Collision
falling onto a flexible object. The setting COﬂSiStSresponse with a penalty-based approach. Note the

of 323 vertices and 624 surface triangles, and theignificant penetration of the heavy cube.

average time for collision response is 2 ms. Note

the penetration of the heavy cube when the collision

response is realized with a penalty-based approach. A general drawback of penalty-based approaches

With our approach, the cubes do not intersect witHs that stacked objects oscillate. A reason for this
the membrane. phenomenon is that the introduced penalty forces

] . behave like springs. In order to illustrate this effect
An experiment that compares the behavior of the_and compare it to the results of our approach, we

“’_VO response SChem‘?S at high pressure is showq YWmulated a stack of soft membranes (see Fig. 10).
Fig. 8. A soft sphere is squeezed between o stifirhe scene consists of 2178 vertices and 4320 sur-
cubes. The e).<per|ment consists of 95 \(ertlces anﬂace triangles. Further, we plotted the total kinetic
166 surface triangles and the average time for Co'énergy of the setting. In Fig. 10, we see that the

lision response is 0.9 ms. Note, that there are only,o i hased approach indeed results in an oscilla-
17 colliding vertices, which emphasizes the approxy;o, of the stack, and thus, the time to reach a rest-

imative nature of the setting. While the penalty-jny contact is significantly longer compared to our
based approach results in significant overlaps of thgcheme.

object, our approach gains a collision-free situa-
tion by computing the contact surfaces between the
sphere and the two cubes. 5 Limitations

We also performed an experiment to illustrate
how our approach scales with respect to the scenthe presented method depends on the computed
complexity. Fig. 9 shows a frame of an experimentpenetration depths. While it works very well for
where fruits are filled in a dish. The setting consistanost scenarios, penetration depths cannot be com-
of 16030 vertices and 27116 surface triangles. Theuted with [10] if the colliding object is entirely en-
average time for collision response is 72 ms. Thelosed by the penetrated object. Moreover, the pen-
average time for a simulation step, consisting of deetration vectors computed by this method are ap-
formation, collision detection and response, is 15Qroximations of the true penetration depths. Thus,
ms. A collision of two objects typically involves as we commonly do not arrive at an exact contact sur-
few as 4 to 10 colliding points, and even in this in-face but get small overlaps. The size of these over-
auspicious configuration, the method still providesdaps depends on the mesh surface curvature and the
a smooth behavior. vertex sampling density.
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Due to the coarse surface representation, it is natentation, as long as the object surfaces are triangu-
possible to reach a perfect local force equilibrium.lated. Finally, the method even processes complex
While it is very well reached over a larger contactscenarios in real-time which makes it suitable for
area, the force difference can be rather high for cersurgery simulations and applications in entertain-
tain point-surface triangle pairs. Further, edge-edgenent technologies.
collisions cannot be detected and thus are not han- Currently, we are working on a generalization of
dled. the approach in order to handle collisions of non-

watertight surfaces such as cloth or shells.

Figure 9: A dish is filled with soft fruits. Note,
that the fruits are visualized with a high-resolution
textured mesh while the simulated surface mesh is
. ) . coarsely sampled. This leads to a strongly discon-
Ftl%ure g A S$E sphere is sqfuiﬁ_zed bet"."eentt‘.'"%nuous behavior of contact surfaces that is difficult
stit cubes. € purpose of this eXperment 1Sy, »n4le. However, our method still provides plau-
to illustrate the behavior of the collision reSPONSe;p o rasults
scheme at high pressures. Top: Collision response '
by computing the contact surfaces. Bottom: Colli-

sion response using a penalty-based approach. Note

the significant overlaps of the sphere and the cubeReferences
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