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Abstract

We introduce a new collision response scheme that
handles collisions between deformable objects with
triangulated surfaces. Based on internal forces and
penetration depth information, the approach com-
putes the contact surface of interpenetrating objects.
In particular, we address discontinuity problems
that arise in discrete-time simulations with coarse
surface representations.

The approach is independent of the actual defor-
mation model and the applied collision detection
algorithm, and in contrast to penalty-based colli-
sion response schemes, the method does not require
any user-defined parameters. We compare the con-
tact surface method to a penalty-based collision re-
sponse scheme to illustrate the conceptual advan-
tages of the proposed technique.

1 Introduction

Handling collisions of rigid or deformable objects is
a challenging problem in physically-based simula-
tions. Collision handling involves two steps: First,
a collision between bodies has to be detected. Sec-
ond, the collided bodies have to be separated in or-
der to provide a physically correct state. This sep-
aration results from the exchange of momentum in
the contact region between the bodies. Thus, the
resulting momentum of the bodies depends on the
contact state and contact region, which implies that
the contact region has to be determined very care-
fully. This problem is particularly challenging if the
surfaces of simulated objects are coarsely sampled.
In this case, small relative movements of colliding
objects may result in rapid changes of the contact
surface and, thus, discontinuous contact forces.

A common way to handle collisions between de-
formable objects is to apply penalty forces to the

collided mass points. The penalty force depends on
the penetration depth of the point, and it accelerates
the point out of the volume of the collided object.
The penetration vectors can be approximated such
that magnitude and direction change smoothly, even
for deep penetrations and coarsely sampled objects
[10]. However, this method introduces physically
inplausible states. In particular, resting contact of
stacked objects is a problem. Further, the applied
penalty forces do not correspond to the stress re-
sulting from the object deformation. Instead, the
penalty forces are weighted with a user-defined pa-
rameter. The choice of this scalar is difficult, espe-
cially when simulating bodies with different elastic-
ities. Moreover, penetrations tend to be deep at high
pressures and for large relative velocities.

Contribution. We present a method that over-
comes problems inherent to penalty-based ap-
proaches. Instead of applying penalty forces to col-
liding points, we compute an explicit representation
of the contact surface between flexible objects with
triangulated surfaces. Thus, penetrations between
simulated objects are avoided and a physically cor-
rect contact state is provided in every simulation
pass.

In contrast to existing contact surface ap-
proaches, we address discontinuity problems due
to discrete time steps and coarse surface represen-
tations. Further, our method handles objects with
different surface sampling densities (see Fig. 1).

We compare our method to a penalty-based ap-
proach described in [10] in order to show the con-
ceptual advantages. Our method is not based on
user-defined parameters and the computation of the
contact surface exclusively depends on the elastici-
ties of the colliding bodies. Moreover, the method
is independent of the deformable model. Although
we rely on the internal forces acting on the sur-
face points, we do not make any assumption on how
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Figure 1: We address problems in contact surface
computation related to coarse surface representa-
tions. Left: A collision between two objects with
different sampling densities. Right: In this colli-
sion, the contact state consists of only two contact
points. In both cases, continuous collision response
is a challenging problem.

these forces are computed. The actual implementa-
tion uses a deformation model proposed in [19], but
the method works with any finite-element or mass
spring deformation model.

2 Related work

Collision response approaches have been investi-
gated for rigid and deformable objects.

For rigid bodies, there exist three different col-
lision response schemes. First, a constraint-based
method can be used to prevent objects from penetra-
tion. In this case, the inequality-constrained prob-
lem can be formulated as a linear complementary
problem (LCP) [1, 3, 4, 8]. These approaches work
especially well for resting contacts of rigid objects.
Second, the contact forces can be computed by ap-
plying the impulse laws [14]. The third kind com-
putes penalty forces to penetrated points [15, 5].
Penalty-based collision response schemes are usu-
ally fast and easy to implement, however, penetra-
tions can occur. Thus, they are less suitable for sim-
ulating stacked objects.

Contact problems fordeformable bodieshave
first been addressed in engineering [11, 13]. These
approaches focus on analytical and accurate solu-
tions for simple geometries. However, deformable
bodies are commonly discretized into mass points
which motivates methods that consider discrete set-
tings.

Two different schemes can be distinguished in
this context: Penalty-based schemes and contact

surface schemes. Penalty-based methods for de-
formable bodies are similar to penalty-based meth-
ods for rigid bodies: A force is exerted on a collided
point, proportional to the penetration depth of the
point. In [10], a way is proposed to approximate
the penetration depth such that the resulting colli-
sion response scheme is particularly stable. In [16],
Müller et al. propose a method that handles col-
lisions between particles and deformable surfaces.
This approach does not cause penetrations, but also
exerts forces on points depending on the distance of
the particle to the surface.

A combination of contact surface schemes and
penalty-based schemes is presented in [12]. Here,
a ’virtual’ contact surface is computed for colliding
deformable objects. Then, penalty forces are ap-
plied to the points, proportional to the distance be-
tween the actual point and its computed position on
the contact surface.

All these approaches require the choice of a
user-defined parameter that scales the penalty force,
while our approach exclusively depends on the elas-
ticities of the objects.

An early work that treats the contact problem by
computing the contact surface is presented in [9].
Here, a simple elasticity model based on a scalar
potential field is used. However, the model is diffi-
cult to relate to the physics of elastic deformations.
Baraff and Witkin [2] use a constraint-based method
that prevents penetration. They solve an LCP that is
expensive to compute for complex objects. Duriez
et al. [6, 7] describe a method that is based on Sig-
norini’s contact theory. Contact forces are com-
puted for flexible bodies by formulating an LCP.
However, they are not able to simulate locally dif-
ferent elasticities, whereas our approach enforces a
force equilibrium in small areas around surface ver-
tices and thus overcomes this limitation. In [17], an
alternative LCP scheme for computing the contact
surface is presented. Here, a combination of point-
based rigid and deformable models is used. The
approach works well for densely sampled surfaces
and small penetrations. In contrast, our work ad-
dresses discontinuity problems when using coarsely
sampled surfaces combined with deep penetrations.
Further, in [17], volume preservation is explicitly
enforced without considering the actual deforma-
tion model. In contrast, our approach processes the
forces of the underlying deformation model. Thus,
volume preservation is implicitly handled.
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3 Contact surface

In general, there must be a force equilibrium on the
contact surface of colliding objects. The internal
force on an infinitesimal small surface patch at posi-
tionx of bodyM must be equal in magnitude to the
internal force atx on bodyN. This condition also
holds for discretized surfaces. However, in the dis-
crete case, forces are only given at vertices and have
to be interpolated over the surface. Thus, thepres-
sureon surface patches is compared. With respect
to accuracy, the considered surface patches should
be as small as possible. However, our approach re-
quires spatial degrees of freedom on both objects to
ensure symmetry. Thus, the surface patches must
be large enough to contain at least one vertex of the
surfaces of both colliding objects.

4 Method

This section provides an overview of the proposed
algorithm, followed by a detailed description of its
five consecutive stages.

The method takes a set of pairs of colliding bod-
ies and computes an explicit representation of the
contact surfaces. After collision response, the col-
lided vertices are displaced onto the contact sur-
faces and a collision-free setting is reached. The
method passes through the following stages:

Stage 1detects allcolliding verticesbased on a
spatial hashing approach.

Stage 2computes aconsistent penetration depth
anddirectionfor each collided vertex.

Stage 3 takes the set of colliding vertices and
computes thedeformation regionon the surface of
each collided body. For all vertices in the deforma-
tion regions, adisplacement vectoris calculated.

Stage 4performs a binary search to compute
the contact surfaces by displacing the vertices in
the deformation regions until a force equilibrium is
reached.

Stage 5 updates the velocity and dissipative
forces of each displaced vertex.

4.1 Collision detection

In our implementation, deformable bodies are rep-
resented by tetrahedral meshes, and a spatial hash-
ing approach is used to detect vertices that penetrate
tetrahedrons of other bodies. The method returns

the set of colliding vertices and tetrahedrons. De-
tails are found in [18, 20].

4.2 Consistent penetration depth

Based upon the set of colliding vertices, the sec-
ond stage estimates the penetration depth and direc-
tion for collided vertices [10]. The method returns
a consistent penetration depth for each collided ver-
tex. The method considers the discrete nature of the
simulated objects, i. e. for small displacements of
the vertices, the penetration depth vectors change
smoothly and the penetration directions are mean-
ingful even for large penetrations.

Further, acontact triangleis calculated for each
collided vertex. The contact triangle is the trian-
gle on the surface of the penetrated object that in-
tersects with the penetration direction vector. The
contact triangle plays an important role when com-
puting the contact surface, since each vertex must
lie in the plane of its contact triangle after collision
response.

4.3 Deformation region

A challenge of the collision response of triangulated
meshes are the approximate surface representations:
We consider collisions with only a few colliding
vertices. In some cases, the collision can be asym-
metric in a sense that the set of colliding vertices
of two bodies contains only vertices of one body
(see Fig. 2). In this case, it is not possible to reach
a force equilibrium by only displacing the collided
vertices.

Figure 2: Deformation region. Left: If only the col-
liding vertexxi is considered in the contact surface
computation, then the lower body is not affected
and a force equilibrium cannot be reached. Right:
The deformation region, consisting ofxi, xj and
xk, enables a symmetric reaction to the collision, a
force equilibrium can be achieved.

This observation motivates that we do not only
consider the colliding vertices, but define adefor-
mation region(see Fig. 2). The deformation region
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is the union of the colliding vertices and the ver-
tices of their contact triangles. Note, that the latter
do not necessarily collide (xj andxk in Fig. 2). We
denote the vertices contained in the deformation re-
gion asdisplacement vertices. For each displace-
ment vertex a displacement vector is computed.
When the displacement vertex is a colliding vertex,
its displacement vector corresponds to the penetra-
tion depth. For a non-colliding vertex, the displace-
ment vector represents a direction which is an addi-
tional degree of freedom in order to find the force
equilibrium.

In order to guarantee continuous contact forces,
the displacement vectors must change smoothly for
small changes in the contact state. Therefore, we
propose to calculate the displacement vectors by

s =

P
i widi + dP

i wi + 1
(1)

with di referring to the penetration depths of all
vertices that have their contact triangle in the set of
faces adjacent to the displacement vertex. If the dis-
placement vertex is colliding, then its correspond-
ing penetration depthd is added to the weightened
sum of penetration depths. If the displacement ver-
tex is not colliding, thend is 0.

In order to provide a continuous behavior of the
displacement vector, the penetration depthsdi of
the vertices are weighted withwi wherewi is the
barycentric weight of the vertex with respect to the
displacement vertex (see Fig. 3).

Figure 3: Left: The displacement vector for a ver-
texx is the weighted sum of the penetration depths
of the verticesxi, xj and xk having their con-
tact triangles adjacent tox. Right: The barycen-
tric weightwi of the vertexxi with respect tox is
wi = A(xi,y,z)

A(x,y,z)
. A(x,y, z) is the area of the con-

tact triangle ofxi.

4.4 Contact surface computation

After having computed the deformation region and
the displacement vectors of all affected vertices, the
contact surface is computed. By displacing the ver-
tices in the deformation region, a binary search for
the position of the contact surface is realized. This
process is governed by the constraint of force equi-
librium at the contact surface.

4.4.1 Binary search

First, the vertices in the deformation region are dis-
placed halfway in the direction of the displacement
vectors:

x1 ← x +
1

2
s

with x being the original displacement vertex ands
the displacement vector of the vertex.

Figure 4: First iteration of the binary search: The
vertices in the deformation regions are displaced
halfway between the old position and the surface of
the other body. The resulting contact surface is thus
exactly in the middle of the intersection. This corre-
sponds to the contact surface of two equally elastic
bodies. Note, that the vertices on the very left and
right are non-colliding displacement vertices, which
are also displaced.

In each iteration, we divide the search interval by
two:

xi+1 ← xi ± 1

2(i+2)
s

The direction of the movement is given by the sign
of the pressure difference. The binary search con-
verges very fast. Experiments indicate that four it-
erations provide sufficient accuracy.

4.4.2 Computing internal forces

As a result of the vertex displacement, the underly-
ing deformed volume exerts a restoration force on
the contact surface, i. e. the internal forces on the
contact vertices have changed.

The internal forces are then updated by the de-
formation model. Although we use an approach
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presented in [19], we emphasize that the collision
response method is independent from the actual de-
formation model.

4.4.3 Measuring and comparing forces

Based on the internal forces, the algorithm com-
pares the pressure on the surface ofM and the pres-
sure on the surface ofN. In order to handle locally
different elasticities, the method computes the pres-
sure difference within a small comparison areaA
around each displacement vertexx.

pdiff = pM(x)− pN(x) =
FM(x)

A
− FN(x)

A

which is minimized by the binary search approach.
Let x be in the deformation region ofM. The chal-
lenge is to findall vertices within the comparison
areaA aroundx on the coarsely sampled surfaces of
M andN. We proposeA to be theunion of surface
triangles adjacent tox. Then the set of vertices in-
sideA on the surface ofM consists of one element,
namelyx. The set of vertices insideA on the sur-
face ofN consists of all vertices having their con-
tact triangle adjacent tox (xi, xj andxk in Fig. 3).
The case of this set being empty is discussed later.
The actual pressure is now computed by summing
up the internal forces on these vertices, divided by
the areaA that is represented by these vertices.

For the pressurepM(x) on the surface of body
M in x we have

pM(x) =
FM(x)

A

with FM(x) the internal force onx.
When computing the pressurepN(x) acting on

the surface ofN aroundx, we must consider the
discretized surface representation. In order to pro-
vide continuous pressure changes for small dis-
placements of the vertices, the internal forces are
weighted (see Fig. 5). Thus, the pressurepN(x)
acting on the surface ofN aroundx is

pN(x) =

P
i wiFN(xi)

A
P

i wi
(2)

with FN(xi) the internal force on the vertexxi. wi

is the barycentric weight of the vertexxi with re-
spect tox (see Fig. 3).

Two notes: First, the pressure difference is actu-
ally calculated with scalar pressure values, namely
the magnitude of the pressure vectors in direction of

Figure 5: Weighting forces. Top: The forces are not
weighted. If now vertexxi leaves the comparison
area, then the pressure around vertexx will change
discontinuously. Bottom: The forces are weighted
with the barycentric weight, thus the force onxi has
less influence than the force onxj being closer tox.
Discontinuous pressure changes are avoided.

the displacement vectors. Second, if the surface of
body N is much coarser sampled than the surface
of M, then the set of vertices ofN within the com-
parison area can be empty. In this case, the area is
extended and the vertices of the contact triangle of
x also contribute to the pressure.

4.5 Updating velocity and dissipative
forces

After having computed the contact surface, the ve-
locity of the displacement vertices is updated. Fur-
ther, the friction force that acts between vertices and
contact triangles is calculated. We use the Coulomb
friction law for modeling the friction.

Fig. 6 shows the final result of the collision re-
sponse procedure. The initial configuration consists
of two overlapping bodies. Then a binary search
approach computes the contact surface, considering
the force equilibrium.

4.6 Results

We have integrated our method in a simulation envi-
ronment for deformable objects. We carried out var-
ious experiments to compare the proposed method
to a penalty-based approach. We compare the qual-
ity of both methods with respect to visual plausibil-
ity and stability. All experiments have been per-
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Figure 6: Illustration of the contact surface for two
bodies with different elasticities. Left: The orig-
inal configuration before contact surface computa-
tion. Middle: Contact surface for two bodies having
the same elasticity. Right: Contact surface for two
bodies with different elasticities. Note the different
position of the contact surface.

formed on a PC Pentium 4, 3.20 GHz, NVIDIA
Quadro FX 3400 GPU.

Fig. 7 shows three cubes at different weights
falling onto a flexible object. The setting consists
of 323 vertices and 624 surface triangles, and the
average time for collision response is 2 ms. Note
the penetration of the heavy cube when the collision
response is realized with a penalty-based approach.
With our approach, the cubes do not intersect with
the membrane.

An experiment that compares the behavior of the
two response schemes at high pressure is shown in
Fig. 8. A soft sphere is squeezed between two stiff
cubes. The experiment consists of 95 vertices and
166 surface triangles and the average time for col-
lision response is 0.9 ms. Note, that there are only
17 colliding vertices, which emphasizes the approx-
imative nature of the setting. While the penalty-
based approach results in significant overlaps of the
object, our approach gains a collision-free situa-
tion by computing the contact surfaces between the
sphere and the two cubes.

We also performed an experiment to illustrate
how our approach scales with respect to the scene
complexity. Fig. 9 shows a frame of an experiment
where fruits are filled in a dish. The setting consists
of 16030 vertices and 27116 surface triangles. The
average time for collision response is 72 ms. The
average time for a simulation step, consisting of de-
formation, collision detection and response, is 150
ms. A collision of two objects typically involves as
few as 4 to 10 colliding points, and even in this in-
auspicious configuration, the method still provides
a smooth behavior.

Figure 7: Three cubes at different weights falling
onto a flexible object. Top: Collision response by
computing the contact surfaces. Bottom: Collision
response with a penalty-based approach. Note the
significant penetration of the heavy cube.

A general drawback of penalty-based approaches
is that stacked objects oscillate. A reason for this
phenomenon is that the introduced penalty forces
behave like springs. In order to illustrate this effect
and compare it to the results of our approach, we
simulated a stack of soft membranes (see Fig. 10).
The scene consists of 2178 vertices and 4320 sur-
face triangles. Further, we plotted the total kinetic
energy of the setting. In Fig. 10, we see that the
penalty-based approach indeed results in an oscilla-
tion of the stack, and thus, the time to reach a rest-
ing contact is significantly longer compared to our
scheme.

5 Limitations

The presented method depends on the computed
penetration depths. While it works very well for
most scenarios, penetration depths cannot be com-
puted with [10] if the colliding object is entirely en-
closed by the penetrated object. Moreover, the pen-
etration vectors computed by this method are ap-
proximations of the true penetration depths. Thus,
we commonly do not arrive at an exact contact sur-
face but get small overlaps. The size of these over-
laps depends on the mesh surface curvature and the
vertex sampling density.
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Due to the coarse surface representation, it is not
possible to reach a perfect local force equilibrium.
While it is very well reached over a larger contact
area, the force difference can be rather high for cer-
tain point-surface triangle pairs. Further, edge-edge
collisions cannot be detected and thus are not han-
dled.

Figure 8: A soft sphere is squeezed between two
stiff cubes. The purpose of this experiment is
to illustrate the behavior of the collision response
scheme at high pressures. Top: Collision response
by computing the contact surfaces. Bottom: Colli-
sion response using a penalty-based approach. Note
the significant overlaps of the sphere and the cubes
in the resting state.

6 Conclusion and future work

We have presented a collision response scheme that
computes the contact surface for colliding objects.
We have focused on problems related to simulations
with discrete time steps and discretized surface rep-
resentations. Moreover, we have showed that the
computed contact surface is valid even for coarsely
sampled surfaces with locally different vertex den-
sities.

By comparing the method to a penalty-based ap-
proach, we have illustrated the conceptual advan-
tages of our scheme: The contact surfaces exclu-
sively depend on the internal forces, no user-defined
parameters are needed. Further, the method is inde-
pendent of the deformable model and object repre-

sentation, as long as the object surfaces are triangu-
lated. Finally, the method even processes complex
scenarios in real-time which makes it suitable for
surgery simulations and applications in entertain-
ment technologies.

Currently, we are working on a generalization of
the approach in order to handle collisions of non-
watertight surfaces such as cloth or shells.

Figure 9: A dish is filled with soft fruits. Note,
that the fruits are visualized with a high-resolution
textured mesh while the simulated surface mesh is
coarsely sampled. This leads to a strongly discon-
tinuous behavior of contact surfaces that is difficult
to handle. However, our method still provides plau-
sible results.
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Figure 10: Simulation of a stack of nine soft mem-
branes. Top: Experimental setup. Middle: Plot of
the total kinetic energy of the scene over time, in
percent of the initial system energy. Note, that less
time is required to reach a resting state when the
contact surface response scheme is applied. Bot-
tom: Plot of the total potential energy in percent of
the initial system energy. Note the strong oscillation
of the stack when collision response is done using
the penalty-based approach. Further, the stack is
more compressed, because the method allows pen-
etrations. When using the contact surface method,
the oscillation is significantly reduced and the stack
is stiffer due to the non-penetration constraint.
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