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Abstract

We propose a novel approach to generate coarse
tetrahedral meshes which can be used in interactive
simulation frameworks. The proposed algorithm
processes unconstrained, i. e. unorientable and non-
manifold triangle soups. Since the volume bounded
by an unconstrained surface is not defined, we tetra-
hedralize the pseudo volume of the surface, namely
the space that is intuitively occupied by the surface.
Therefore, a new signed distance field approach is
employed and a tetrahedral lattice is laid onto the
distance field. Elements outside the pseudo volume
are discarded and a smoothing filter is applied to the
mesh boundary as a postprocessing step.

Using our approach, we can generate coarse
tetrahedral meshes from damaged surfaces and even
triangle soups without any connectivity. Various ex-
amples underline the robustness of our approach.
The usability of the resulting meshes is illustrated
in the context of interactive deformable modeling.

1 Introduction

Tetrahedral meshes are commonly used to represent
the interior of volumetric objects for physically-
based simulations, e. g. in order to represent
deformable objects. To compute mesh deforma-
tions, a variety of approaches have been presented
ranging from finite element methods [MMD∗02]
to mass-spring methods [BW98]. Recently, tech-
niques have been presented that allow to com-
pute the deformations of tetrahedral meshes at in-
teractive rates [THMG04, MG04]. In [GEW05,
GW05a, GW05b], efficient GPU implementations
of deformable models are presented. Further, there
exist methods to change the mesh topology, e. g.
by fracturing [OH99, OBH02], cutting [SHGS06],
refinement [DDCB01] and simplification [SG98,
CDM04].

Generating a tetrahedral mesh from a boundary

surface is a non-trivial task. Most mesh genera-
tors assume that the boundary surface is a closed
and orientable manifold. However, many surfaces
do not obey these criteria and the enclosed volume
is not defined. Surfaces that are obtained by laser
scans often contain holes and cracks (see Fig. 1),
making it non-manifold. Models that have been
constructed using CAD software are composed of
interpenetrating subparts (see Fig. 2). In theses
cases, traditional volumization approaches have dif-
ficulties to determine the object volume which has
to be tetrahedralized. Moreover, there exist object
representations that are modeled from unconnected
triangles (see Fig. 3). While a human observer
can intuitively recognize the space occupied by this
structure, a volumization approach fails to compute
a plausible volumetric representation which hinders
the generation of a tetrahedral mesh.

Figure 1: Surfaces obtained by laser scans can con-
tain holes and cracks. In this example, 50% of the
triangles have been removed. Our scheme still com-
putes a plausible tetrahedral mesh for this represen-
tation.

Motivated by the growing need for tetrahedral
meshes in interactive animations, we propose a
method that generates meshes from arbitrary, un-
constrained surfaces. Since the resulting meshes are
intended to be used in interactive simulations, we
focus on coarse meshes.

Our contribution. We present a scheme for
robust tetrahedral mesh generation from triangle
soups. We do not impose any constraints on the ob-



Figure 2: Models that have been constructed using
a CAD software usually consist of interpenetrating
subparts. Traditional volumization approaches can-
not handle such models properly.

Figure 3: This object has been modeled from un-
connected triangles. Although the resulting surface
is unoriented and non-manifold, our approach can
generate a plausible tetrahedral mesh.

ject surface, i. e. we can process unorientable and
non-manifold surfaces. Since these surfaces in gen-
eral do not enclose a volume, we introduce the term
pseudo volume. The pseudo volume corresponds to
the space that is intuitively occupied by the input
surface. We show how to generate a well-shaped
tetrahedral that approximates the pseudo volume.
The meshing process requires user interaction and
an intuitive way is provided to control the shape and
size of the resulting mesh.

Since a variety of arbitrarily triangulated object
surface can be processed, our approach is partic-
ularly interesting for game design. The resulting
coarse tetrahedral meshes can be used in interactive
simulations of rigid and deformable solids. The pre-
sented approach is efficient. A surface consisting
of 70K triangles can be tetrahedralized in less than

three minutes.
Organization. Our approach consists of three

steps, namely the computation of the pseudo vol-
ume, the generation of the tetrahedra, and the post-
processing of the mesh.

In section 3, we show how to compute the signs
of the distance field of the object representation. We
propose a novel scheme that considers distance field
densities to generate the signs. From the result-
ing pseudo volume, we generate a tetrahedral lat-
tice and discard those elements that lie outside the
object as described in section 4. Further, some post-
processing issues are discussed. The resulting mesh
approximates the pseudo volume of the input. In
section 5, we present some resulting meshes.

Fig. 4 illustrates the mesh generation process.

2 Related Work

First, we discuss existing approaches that tetrahe-
dralize a spatial domain. Second, we focus on
tetrahedralization approaches that are based on dis-
tance fields. Since these approaches commonly as-
sume that the surface bounding the domain is closed
and orientable, the third part discusses model repair
methods that process unconstrained surfaces.

2.1 Volumetric mesh generation

Delaunay schemes [ACYD05] result in very well-
shaped meshes [She02]. However, water-tight input
surfaces are required.

In [SG95], a 3D domain is packed with spheres.
The centers of the spheres are the nodes of the gen-
erated tetrahedral mesh. Advancing front meth-
ods [Sch97, ISS04] start from the boundary and at-
tach new tetrahedra to existing ones.

Other approaches start with a coarse volumetric
mesh. The cells are subdivided and the boundary of
the resulting mesh has to be constrained to the input
surface. In [DDCB01], a coarse tetrahedral mesh
is subdivided to improve the precision. However,
the authors report difficulties to preserve the mesh
quality in the subdivided parts.

Further, there exist approaches that start with
a structured grid consisting of cubic cells which
are partitioned into tetrahedra. In this case, the
main challenge is to constrain the tetrahedral mesh
to the input surface, see e.g. [BW90, VTG97].
In [MBTF03], three approaches are discussed to
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Figure 4: Generating a tetrahedral mesh from a triangle soup (a). First, a distance field is computed. A
novel method generates the signs of the distance field values. Negative values represent the space that
is intuitively occupied by the surface, i. e. the pseudo volume (b). A tetrahedral lattice is laid onto the
pseudo volume (c) and a smoothing filter is applied to obtain a mesh (d) that is appropriate for interactive
simulations.

conform the tetrahedral mesh to the input sur-
face: Either by simulating a mass-spring model or
FE methods, or based on optimization constraints.
However, the surface is required to be well-shaped
in order to avoid undesirable results. In contrast,
our post-processing step does not consider the input
surface. Therefore, we can process unconstrained
surfaces.

Some authors propose to subdivide the tetrahedra
that interfere with the input surface. In [MT03], this
idea is employed to generate tetrahedral meshes for
medical simulations. Since a parity check is used
to classify the tetrahedra, this approach is limited
to water-tight surfaces. In [CDM∗02], tetrahedral
meshes for solid, layered volumes are generated
and a subdivision is done along the volume layers.
However, this approach can lead to poorly shaped
elements. Further, the element size can differ sig-
nificantly which is undesirable for dynamic simu-
lations. Simplification and improvement strategies
for these meshes are proposed in [CDM04].

An alternative approach is presented in [SOS04].
They compute a smooth implicit surface from a
polygon soup. The implicit surface is polygonized
and a tetrahedral mesh is constructed. The results
look promising. However, the authors state that ad-
ditional normal constraints have to be imposed to
get good results. Thus they require consistent nor-
mal orientations. In contrast, our approach does not
take the surface normals into account.

2.2 Distance field computation

There exist numerous methods to compute distance
fields. In [HYFK98], a method for computing un-

signed distance fields is presented. Since the dis-
tance field computation is expensive, several opti-
mizations have been proposed. [Mau00] computes
Voronoi diagrams of surface features which allows
a fast computation of the closest feature. Further,
[MJRR03] proposes a fast algorithm that computes
distance fields from voxelized surfaces. In [WK93],
an alias-free voxelized surfaces is produced. How-
ever, the volume is not explicitly computed.

There exist efficient GPU implementations for
the computation of distance fields. In [SPG03], a
signed 5123 distance field is computed in six sec-
onds from a surface consisting of 32K faces. They
rasterize Voronoi regions of the surface features. A
different approach is presented in [Br05] where the
surface is rasterized into LDIs. However, since the
normal of the surface triangles is used to compute
the sign, this method is not suitable for surfaces
with inconsistent normals.

2.3 Model repair

Surfaces that are obtained by 3D range scans tend to
be ill-shaped, i. e. they are non-manifold and con-
tain holes and gaps. Since mesh generators usually
assume closed and orientable manifolds, the sur-
faces have to be repaired.

There exists a variety of model repair methods
that process polygonal surfaces [TL94, BNK02,
Lie03]. Although these mesh-based methods pro-
vide good results, they cannot guarantee that the
output surfaces are closed everywhere. Further,
there exist models that consist of triangles with-
out connectivity (see Fig. 3) and a mesh-based
method would fail to repair such input data. [NT03]



and [Ju04] use distance fields to repair models.
However, these approaches cannot be applied to un-
connected triangle soups as depicted in Fig. 3.

Bischoff et al. [BPK05] present an approach that
is similar to ours since they construct a volumetric
representation of a polygonal input mesh, which is
then employed to restore the mesh topology. How-
ever, it is unclear whether this approach can handle
totally unstructured triangle soups.

3 Volume representation

Computing a tetrahedral mesh from a surface cor-
responds to computing a volume Ω in �3 from a
boundary ∂Ω. This volume is well-defined if ∂Ω
is a closed manifold and orientable. Both criterions
are necessary since. Although a Klein-bottle is a
closed manifold, it cannot be oriented and has infi-
nite volume.

Mesh generators commonly assume that the
above criteria hold for the input surface. However,
our approach particularly addresses objects that do
not meet these criteria. Since the object volume
might be undefined, we cannot consider approaches
that determine the object volume. Instead, we have
to find a way to approximate the space occupied
by the object representation which is referred to as
pseudo volume. In order to compute the pseudo vol-
ume, we consider the signed distance field of the in-
put surface. A signed distance field corresponds to
a distance field where the sign of the distance value
indicates whether a voxel is inside or outside the
volume bounded by the zero isocontour. We pro-
pose a novel scheme to generate the signs of the
distance values such that the resulting set of voxels
with negative signs corresponds to the pseudo vol-
ume.

A standard approach such as [Br05] can be used
to compute the distances. To generate the signs,
we use an adaption of the parity count scheme pro-
posed by [NT03]. They cast rays in a given direc-
tion through the surface and count the number sur-
face intersections. Voxels with an odd number of
intersections are then classified as interior. Since
holes can lead to a misclassification of a span, rays
are shot from 13 different directions, and the major-
ity vote decides on the sign of a voxel. This method
works well for surfaces that contain a small num-
ber of holes, but are closed elsewhere. However, it
cannot be applied to unconstrained surfaces as de-

picted in Fig. 3 since the parity only changes if a ray
actually interferes with the surface.

In the following discussion, we denote a parity
change as a volume event. A parity change from
even to odd is denoted as an out-in volume event,
and the the parity change from odd to even as an in-
out volume event. We assume that the distance field
is defined within the axis-aligned bounding box of
the surface. We then interpret the distance dmin

from the center of a voxel v to its closest surface
feature as a probability of a volume event:

Pv(volume event) = 1 − c|dmin|
where c is a global normalization factor such that
0 ≤ Pv ≤ 1 for all voxels v in the distance field. To
decide whether an in-out or out-in event occurs, we
consider the computed probability in each voxel: If
Pv > k, a volume event is reported. A subsequent
volume event is only reported if the probability Pv

dropped below k in the meantime. Fig. 5 shows an
example. The threshold value k is user-defined and
k = 0.8 is a good choice in many cases. Consid-
ering the volume event probability is more robust
compared to methods that consider actual intersec-
tions of the ray with the object representation. Fol-
lowing [NT03], the robustness of the scheme is fur-
ther improved by shooting rays from different di-
rections. As a consequence, the generated pseudo
volume is not larger than the convex hull of the sur-
face.

The resulting pseudo volume does not conform
to the analytical volume since such a volume does
not exist for unconstrained surfaces. Further, the
pseudo volume is not unique for a given surface.
Instead, it depends on the choice of the threshold
value k. If k = 1, then the pseudo volume corre-
sponds to [NT03]. For k < 1, the effect is simi-
lar to applying a morphological closure operator to
the negative signed voxels produced by [NT03]. In
contrast to [NT03], we can handle all kinds of de-
generacies in a unified scheme. Refer to Fig. 6 for
examples on the computed pseudo volumes.

4 Mesh Generation

So far, we have generated a signed distance field
from the input surface and the set of voxels with
negative signs represents the pseudo volume. Now,
we show how to generate a tetrahedral mesh from
the pseudo volume.
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Figure 5: Sign generation and misclassification.
Left: A ray and its per-voxel volume event prob-
abilities. Because the volume event probability is
higher than k = 0.8 for the voxel closest to the
concave corner of the heart shape, a volume event is
raised and the rest of the span is misclassified (gray
circles). Right: Rays are shot from 26 different di-
rections and the majority vote decides on the sign
of the voxel. Thus, the voxels that are misclassified
in one pass will nevertheless have correct signs.

Therefore, we apply a structured method based
on an axis-aligned grid [Blo94, CDM∗02]. First,
we lay a uniform lattice onto the distance field. The
resolution of the lattice is user-defined. Each cubi-
cal cell is split into five tetrahedra. To ensure that
neighboring cells match each other, the orientations
of the tetrahedra alternate [CDM∗02].

Second, we discard those elements that lie out-
side the volume. In contrast to [MT03, VTG97],
we do neither consider the input surface nor the
zero isocontour since the input surface can be un-
oriented. As a consequence, it is not possible to
test an element against a surface normal to decide
whether it is inside or outside the volume. Instead,
we define the pseudo volume density ρ(V ) within
an arbitrary volume V as

ρ(V ) =
m(V )

M(V )

where m(V ) is the number of voxels with negative
sign within the volume V , and M(V ) is the total
number of voxels within the volume V .

We impose the following rule to discard an ele-
ment T with volume VT : T is discarded if ρ(VT ) <
ρmin. ρmin is a user-defined value that controls the
volume of the final tetrahedral mesh.

Since the element discarding scheme does nei-
ther consider the orientation of the surface nor its

Figure 6: Generation of the signs of a 2D distance
field for a damaged circle. Negative values rep-
resent the pseudo volume bounded by the surface.
Left: Pseudo volume of the unmodified circle. In
this case, the pseudo volume conforms to the actual
voxelized volume bounded by the circle. Middle:
Pseudo volume of the circle with 50% of its seg-
ments missing. Right: Pseudo volume of one half
of the circle.

zero isocontour, it is robust for unoriented and scat-
tered input surfaces. Moreover, the user can con-
trol the shape of the resulting tetrahedral mesh. By
adjusting the value ρmin, an intuitive way is pro-
vided to control how much space around a scattered
surface is covered by the tetrahedral mesh. In our
experiments we use ρmin = 0.5. If ρmin is de-
creased, more tetrahedrons are added at the bound-
ary of the mesh. Transformations of the lattice pro-
vide additional degrees of freedom. However, so far
the user interface is restricted to translations.

At this point, the resulting meshes do still contain
sharp creases and corners. We thus apply a smooth-
ing filter similar to [DMSB99] to the mesh bound-
ary to produce well-formed meshes. Hereby, the
mesh is locally scaled back to its original volume in
order to guarantee volume preservation. The result-
ing meshes are suitable for dynamic simulation and
collision handling. Refer to Fig. 7 for an example.

5 Results

In this section, we present some meshes that we
have generated using our approach. All tests have
been performed on an Intel Xeon PC, 3.8 GHz.

Closed manifold surfaces. The torus surface
shown in Fig. 8 is a closed manifold. It consists of
640 triangles. The resulting distance field is com-



Figure 7: Surface smoothing. Left: The input sur-
face. Middle: The tetrahedral lattice. Right: A
smoothing filter is applied to the lattice in order to
remove creases and corners. Basically, the volume
of the mesh is preserved.

puted at a resolution of 150x150x37 voxels. Fig. 8
illustrates that our approach can generate meshes at
different resolutions. The left mesh consists of 139
tetrahedra. Due to its coarseness, it is well-suited
for interactive simulations. The right mesh consists
of 8K tetrahedra. The cutaway view shows the reg-
ular structure of the interior elements.

Figure 8: Torus. Our approach can generate tetra-
hedral meshes of varying resolutions. The left mesh
consists of 139 elements and the right mesh consists
of 8K elements.

Non-manifold surfaces. Our approach can also
handle objects that are composed of interpenetrat-
ing subparts. The model illustrated in Fig. 9 and
Fig. 2 consists of 16K triangles. While a human
observer can intuitively identify the volume, algo-
rithms might have problems to consider the union of
two intersecting subparts as interior. However, our
scheme produces plausible and well-shaped tetrahe-
dral meshes for such object representations.

Damaged surfaces. To illustrate that our ap-
proach can handle even badly damaged models, we
have removed 50% of the faces from a surface as
shown in Fig. 10 and Fig. 1. Note that the element
size of the generated tetrahedral mesh do not sig-
nificantly vary, which is an important criterion for
efficient dynamic simulation of such meshes.

Triangle soups. There exist objects that are com-
posed of a set of unconnected triangles and many

Figure 9: The input model is composed of interpen-
etrating subparts. However, our approach still com-
putes a plausible tetrahedral mesh for this object.
The mesh consists of 2K elements.

Figure 10: Our approach can be used to build tetra-
hedral meshes from damaged surfaces. 50% of the
faces have been removed from the surface (left).
However, a plausible tetrahedral mesh can still be
produced for this surface (right). The mesh consists
of 1158 elements.

existing techniques are not able to tetrahedralize
such models. However, since our approach con-
siders the pseudo volume density, we can tetrahe-
dralize the space that is occupied by the surface.
Fig. 11 illustrates the tetrahedralization of a tree
model. The input surface consists of 8K triangles.
The resulting mesh has 3K elements. Fig. 7 shows
the tetrahedral mesh generated for a palm model
that consists of 520 tetrahedra.

Performance. To compute the distance field, a
standard approach such as [Br05] can be used. They
can produce a distance field of resolution 2563 from
an input surface with 70K triangles in less than 20s.
Determining the signs is independent of the number
of surface triangles. In our implementation, tt takes
about 90s to compute the signs for a distance field
with a resolution of 2563. Since user interaction
is required in the mesh generation and postprocess-
ing, exact measurements cannot be provided. How-
ever, based on the pseudo volume, the generation of
3K tetrahedra takes less than 7s, and one smoothing



Figure 11: Generating a tetrahedral mesh for an un-
connected triangle soup. In this case, the resulting
volumetric representation corresponds to the space
that is intuitively occupied by the model. The mesh
consists of 3K elements.

pass takes less than 3s.
Application. Since our approach can produce

very coarse and nevertheless plausible tetrahedral
meshes, they are are well-suited for interactive
simulations and animations. To illustrate this
fact, we have implemented the methods described
in [THMG04]. In Fig. 12, we run an animation
of four deformable robot models falling onto a de-
formable tree model. The total number of elements
is 3K. The simulation runs at about 20 frames per
second including visualization and collision han-
dling. A massive scenario is depicted in the bot-
tom row of Fig. 12 where 125 deformable robots
are falling onto a deformable tree model. The total
number of elements is 58K and the simulation runs
at 0.3 frames per second including the rendering of
two million surface triangles.

Figure 12: Simulation of deformable objects. The
meshes have been generated using our approach.
The scenario in the top row can be simulated at
20 frames per second using [THMG04]. A mas-
sive scenario, consisting of 125 objects and a total
of 58K tetrahedra is shown in the bottom row.

6 Conclusion

We have presented a new approach that gener-
ates plausible tetrahedral meshes from arbitrary sur-
faces. Since unoriented and non-manifold triangle
soups do not enclose a volume, we have introduced
the pseudo volume to denote the space that is oc-
cupied by the surface. A signed distance field is
used to approximate the pseudo volume. We have
proposed a novel scheme that generates the signs
of the distance field employing the probability of
volume events. We have further shown how to
generate a well-shaped tetrahedral mesh covering
the pseudo volume. The boundary of the mesh is
smoothed, making the resulting meshes suited for
physical simulations. We have performed various
experiments that emphasize the robustness of our
scheme.
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