
3rd Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2006), pp. 1–8
C. Mendoza, I. Navazo (Editors)

Local Constraint Methods for Deformable Objects

Marc Gissler Markus Becker Matthias Teschner

Computer Graphics, University of Freiburg, Germany

Abstract
We present a local scheme to enforce non-conflicting geometric constraints for dynamically deforming objects. The
approach employs information on the underlying numerical integration method and we present a unified scheme
to illustrate the incorporation of a variety of integration methods. The proposed technique is very efficient in terms
of memory and computing complexity. Iterative solvers and stabilization techniques are avoided. The method is
not subject to numerical drift or other inaccuracies and all constraints are accurately met at each simulation
step. Since the approach does not require any pre-processing, dynamically changing constraints can be handled
efficiently. Experiments indicate that thousands of constraints can be processed at interactive rates. Although our
approach is restricted to non-conflicting constraints, experiments illustrate the versatility of the method in the
context of deformable objects.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism: Animation
Keywords: physically-based modeling, constraints, deformable objects, numerical integration schemes, interac-
tive applications

1. Introduction

Constraint techniques have been investigated for various
applications ranging from graphical manipulation [Sut63]
to robotics [LWP80]. In computer animation, constraints
are applied to keyframe animation [LCG95], collision han-
dling [MW88, KEP05], and resting contact [Bar89]. Con-
straints are used in dynamic simulations of deformable ob-
jects [LF04, MHTG05] and there exist sophisticated con-
straint solvers for articulated rigid bodies loops [RGL05,
WTF06].

Many existing constraint approaches are global methods.
These techniques solve for all constraints simultaneously
and minimization techniques are employed to handle con-
flicting constraints. In the context of rigid bodies, global
methods are appropriate since conflicting constraints com-
monly occur due to the small number of degrees of freedom.
However, solving the resulting linear systems can be expen-
sive in terms of memory and computing costs.

In contrast to rigid bodies, deformable objects are charac-
terized by a larger number of degrees of freedom. If a de-
formable object is represented as a mass-point system, more
than one non-conflicting constraint can be defined per object

by distributing the constraints to different mass points. This
easily allows to avoid conflicting constraints without sacri-
ficing the versatility of the applied constraints. E. g., closed
loops can be realized by attaching adjacent models to differ-
ent mass points of an object. Thus, a large class of conflict-
ing rigid-body constraints can be replaced by non-conflicting
constraints for deformable mass-point systems.

In contrast to conflicting constraints, non-conflicting con-
straints can be solved locally and time-consuming iterative
schemes are not required. Further, if information on the un-
derlying numerical integration scheme is employed, non-
conflicting constraints can be enforced very accurately. This
idea has been introduced in [WTF06], where the particular
form of the explicit Euler scheme is employed in the stabi-
lization procedure for conflicting constraints.

Our contribution. We present a local approach to enforce
non-conflicting geometric constraints for dynamically de-
forming mass-point systems. Information on the numerical
integration method is employed and we present a generic
scheme to illustrate the incorporation of a variety of integra-
tion methods such as explicit / implicit Euler, semi-implicit
Euler-Cromer, midpoint method, Runge-Kutta 2, and Verlet.

submitted to 3rd Workshop in Virtual Reality Interactions and Physical Simulation "VRI-
PHYS" (2006)



2 Gissler et al. / Local Constraint Methods for Deformable Objects

The proposed technique is very efficient in terms of mem-
ory and computing complexity. While latest approaches to
articulated rigid bodies require a simulation time of about
one minute for 800 objects and 1000 constraints [WTF06],
our approach processes environments of similar complexity
at interactive rates. Iterative solvers and stabilization tech-
niques are avoided. The method is not subject to numerical
drift or other inaccuracies and all constraints are accurately
met at each simulation step. Since the approach does not re-
quire any pre-processing, dynamically changing constraints
can be handled efficiently.

Although our approach is restricted to simple non-
conflicting constraints, experiments illustrate the versatil-
ity of the method in the context of deformable mass-point
systems. The following constraints have been implemented:
point to nail, points to point, point to line, point to triangle,
point to tetrahedron, point to triangulated surface.

2. Related Work

There exist a variety of constraint solving techniques. In the
context of inverse kinematics, e. g. in order to determine
the movement of a robot arm, symbolic methods [LGHB88]
or neural networks [FE96] are often used. However, these
methods are less efficient for larger numbers of degrees of
freedom and they are not able to respond to dynamic changes
in the environment. In [MW88], an analytic constraint ap-
proach is presented which is based on the results of [Mac36].
In this method, attachment impulses are computed for joint
constraints of articulated rigid bodies. This allows for multi-
ple joints between two objects including sliding joints.

Further, there exist two main strategies to solve con-
straints numerically. The first technique computes forces or
impulses using maximal coordinates. In this context, La-
grange multipliers or propagation methods have been pro-
posed . In contrast, the second technique reduces the number
of coordinates to represent the system state. The remaining
coordinates are so-called reduced coordinates or generalized
coordinates. Reduced coordinates are preferred in global ap-
proaches, if the number of constraints is large compared to
the number of degrees of freedom.

Lagrange multipliers are based on d’Alembert’s princi-
pal of virtual work. These approaches commonly compute
forces that cancel out constraint-braking force components.
Therefore, a linear system is solved for coefficients that
describe the constraint forces with respect to an a-priori
known basis [Bar96]. In [WGW90], Lagrange multipliers
are used for constraints on linear deformations. In [GW91],
Lagrange multipliers are used for constraints in physically-
motivated drawing programs. In [MT92], Lagrange multipli-
ers are used for imposing constraints on articulated objects
consisting of rigid and deformable parts. In contrast to re-
duced coordinate approaches, Lagrange multipliers can han-
dle non-holonomic constraints [Bar96]. In [WK88], a space-
time approach is proposed that processes the physics and the

kinematic constraints in a unified way. This approach solves
a constrained optimization problem which calculates the
forces. Recent approaches accelerate the solvers by employ-
ing the specific structure of the linear systems. In [Bar96],
O(n) is achieved for sparse acyclic constraint systems of ar-
ticulated figures. In [LF04], the calculation is accelerated by
employing the specific form of the mass matrix.

In general, Lagrange multipliers are based on lin-
ear systems. Stabilization techniques such as Baumgarte’s
method [Bau72] are commonly applied to address drift prob-
lems. However, it is difficult to determine appropriate param-
eters for [Bau72]. Improved stabilization techniques have
been proposed in [ACPR95] and [Fau98]. The method pre-
sented in [GC94] manipulates positions instead of comput-
ing forces. However, [Pla92] and [WTF06] note that the pro-
cessing of positions and velocities tend to yield non-physical
effects.

Alternatively, physically-motivated penalty methods have
been proposed that compute constraint forces based on en-
ergy functions. In [BB88], energy functions are considered
for self-assembling rigid bodies. In [PB88], this method
is extended to deformable models. [PB88] is also able to
handle multiple constraints with Lagrangian multipliers.
In [Pla92], this approach has been extended to a pure global
method which can also solve for time-varying and inequality
constraints . In [WFB87], energy functions are employed in
non-dynamic simulations of deformable models.

In general, energy-based methods can result in stiff equa-
tions if there are large forces counteracting a constraint.
Further, the solvers can be trapped in local minima which
can only be addressed by user interaction as described
in [BB88].

In [IC87], reduced coordinates are proposed in the context
of computer animation. Here, forward and inverse dynamics
are combined for linked figures without closed loops. There-
fore, a linear system is considered that relates accelerations
and forces. In [IC88], a global extension is provided by com-
bining generalized coordinates with Lagrange multipliers. In
contrast to many other approaches, this method can process
complex kinematic constraints, i. e. constraints that are func-
tions of multiple degrees of freedom. In [HG97], a recursive
constrained propagation algorithm based on reduced coordi-
nates is presented. And in [HSO03], an alternative approach
for contact constraints of deformable bodies is presented.

In addition to the discussed constraint solving tech-
niques, there exist a variety of applications for constraints.
In [TWK88], intrinsic and extrinsic constraints are used to
recover 3D structures of non-rigidly moving objects. Con-
straints have been used for collision detection and non-
penetration conditions [Bar89]. The method is generalized
to flexible bodies for both collision handling and rest-
ing contact in [BW92]. A good survey of constraints in
human-walking techniques is provided in [MFCD99]. And

submitted to 3rd Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2006)



Gissler et al. / Local Constraint Methods for Deformable Objects 3

in [LCG95], constraints are used to combine keyframe tech-
niques with physical simulation and collision handling. Fur-
ther, [Pro95] applies elongation constraints to mass-spring
systems to simulate rigid cloth behavior. Thorough sur-
veys of existing constraint solving techniques can be found
in [Gle94, Wit97].

Recently, a constraint approach for articulated rigid bod-
ies has been presented in [WTF06]. This approach em-
ploys information on the underlying numerical integration
scheme. While [WTF06] relies on the forward Euler integra-
tion scheme, we show how to incorporate information on a
large variety of numerical integration methods into the con-
straint solving scheme. Further, our constraint approach is
applied to deformable objects.

3. A generic representation for numerical integration
schemes

In our approach, we consider dynamic mass point systems.
Each mass point is characterized by its mass mi, position xt

i ,
velocity vt

i , and force Ft
i with t denoting time. Further, we

consider schemes that numerically integrate positions and
velocities from time t to t +h with h being a small time step.
In the following, we focus on schemes that can be repre-
sented as

(
xt+h

i
vt+h

i

)
=

(
Ai
Bi

)
st

i +
(

ci Ft
i

di Ft
i

)
(1)

with system matrices Ai,Bi ∈R3×k, state vector st
i ∈Rk, and

ci,di ∈ R. The state vector st
i commonly represents the cur-

rent position xt
i and the velocity vt

i of a mass point. However,
some integration schemes require different or additional in-
formation from previous time steps in the state vector, e. g.
velocity Verlet or Beeman. Therefore, the general form of
the state vector is st

i ∈ Rk.

Now, the generic representation given in (1) is illustrated
using the Verlet integration. In this scheme, positions and
velocities are updated with

xt+h
i = 2xt

i −xt−h
i +

h2

mi
Ft

i

vt+h
i =

1
2h

(
xt+h

i −xt−h
i

)
(2)

where the velocity update can be rewritten as

vt+h
i =

1
h

(
xt

i −xt−h
i +

h2

2mi
Ft

i

)
. (3)

Using the state vector

st
i =

(
xt

i
xt−h

i

)
(4)

we get

Ai = (2I3 − I3) ci = h2

mi

Bi =
(

1
h I3 − 1

h I3

)
di = h

2mi
(5)

which represent the Verlet scheme if substituted into (1).
Please note that (4) and (5) do not correspond to the state
vector and system matrix of the Verlet scheme that would be
used in a system analysis. Instead, the state vector is user-
defined and the system matrix is determined accordingly.
The left-hand side of (1) is always comprised of xt+h

i and
vt+h

i since we want to impose constraints on these quanti-
ties. Nevertheless, alternative system matrices and state vec-
tors could also be used to derive the constraint forces.

In the following, representations are given for further in-
tegration schemes, whereas the state vector is always defined
as

st
i =

(
xt

i
vt

i

)
. (6)

For the explicit midpoint method we get

Ai = (I3 hI3) ci = h2

2mi

Bi = (03 I3) di = h
mi

. (7)

For the explicit second-order Runge-Kutta scheme we get

Ai = (I3 hI3) ci = h2

2mi

Bi =
(

03
h2

2mi
JF (xi)

)
di = h

mi

(8)

with JF (xi) denoting the Jacobian of Fi at xi. For the semi-
implicit Euler-Cromer scheme we get

Ai = (I3 hI3) ci = h2

mi

Bi = (03 I3) di = h
mi

(9)

and for the implicit Euler we get

Ai =
(

I3 hI3 + h3

mi
JF (xi)

)
ci = h2

mi

Bi =
(

03 I3 + h2

mi
JF (xi)

)
di = h

mi

(10)

These examples illustrate how to represent a wide range of
numerical integration schemes with the generic form given
in (1). Although Ai and Bi are only approximate representa-
tions in some cases, e. g. for implicit or multi-step methods,
we will show that these approximations do not compromise
the accuracy of the constraints.

4. Constraint forces

This section describes how to derive the constraint forces. In
the following, the goal is to compute a constraint force F̃t

i
in order to meet a user-defined constraint on a position or

submitted to 3rd Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2006)



4 Gissler et al. / Local Constraint Methods for Deformable Objects

velocity which are denoted with x̃t+h
i and ṽt+h

i , respectively.
(

x̃t+h
i

ṽt+h
i

)
=

(
Ai
Bi

)
st

i +
(

ci
(
Ft

i + F̃t
i
)

di
(
Ft

i + F̃t
i
)
)

(11)

By substituting st
i , Ai, Bi, ci , di, the constraint forces are

adapted according to the actually employed numerical in-
tegration scheme. Thereby, the exact enforcement of con-
straints can be guaranteed.

4.1. Point-to-nail constraint

As an introductory example, we consider a constraint that
enforces a given position xgoal for a mass point. From

xgoal = x̃t+h
i = Aist

i + ci
(
Ft

i + F̃t
i
)

(12)

the constraint force F̃t
i can easily be derived as

F̃t
i =

1
ci

(
xgoal −Aist

i
)−Ft

i (13)

=
1
ci

(
xgoal −xt+h

i

)
. (14)

If the constraint is not met, i. e. xt
i 6= xgoal , the constraint

force moves the point exactly to the goal position. In the
following integration step, the point is at its goal position,
so the computed constraint force cancels the velocity of the
point. All subsequent steps compute a constraint force that
cancels the current force at the point. Thus, the constraint is
enforced under all circumstances.

To illustrate the implementation of this constraint, we con-
sider the Verlet scheme. In this case, the constraint force in
(14) is computed based on (4) and (5) as

F̃t
i =

mi

h2

(
xgoal −2xt

i +xt−h
i − h2

mi
Ft

i

)
. (15)

If this force is used in the integration step as given in (2) we
get

x̃t+h
i = 2xt

i −xt−h
i +

h2

mi

(
Ft

i + F̃t
i
)

(16)

and thus x̃t+h
i = xgoal . In order to illustrate that the constraint

force depends on the integration scheme we illustrate the
midpoint method as a second example. Using the represen-
tation of the midpoint scheme as denoted in (6) and (7) we
see that

xt+h
i = xt

i +hvt
i +

h2

2m
Ft

i (17)

Therefore, the point-to-nail force in combination with the
midpoint method is

F̃t
i =

2m
h2

(
xgoal −xt

i −hvt
i − h2

2m
Ft

i

)
(18)

which is slightly different to the force that is computed for
the Verlet scheme. Although (14) provides a general form to

compute the point-to-nail force, the force adapts to specific
integration schemes.

As mentioned in Sec. 3, the matrices Ai and Bi are approx-
imate representations for some integration methods. How-
ever, these matrices are not required to compute the point-
to-nail force as can be seen in (14). Instead of using the
approximative representation, xt+h

i can be computed with
the actually employed integration method. Interestingly, the
approximate representations Ai and Bi are always used to
derive constraint forces, but are not used in the concluding
computation rule as will be seen in the following sections.

4.2. Points-to-point constraint

Now, constraint forces are derived that hold n points xt
i at a

jointed position xgoal = x̃t+h
0 = x̃t+h

1 = . . . = x̃t+h
n−1. In con-

trast to the point-to-nail constraint, xgoal is neither fix nor
user-defined. Instead, the joint position is implicitly consid-
ered in the n equations that are employed to compute the n
constraint forces F̃t

i . The first equation

F̃t
0 + F̃t

1 + . . .+ F̃t
n−1 = 0 (19)

preserves the momentum of the mass point system. And for
x̃t+h

0 = x̃t+h
i with i = 1 .. n−1 we get additional n−1 equa-

tions for the constraint forces:

A0st
0 + c0

(
Ft

0 + F̃t
0
)

= Aist
i + ci

(
Ft

i + F̃t
i
)

(20)

The linear system described by (19) and (20) results in the
following constraint forces




F̃t
0

F̃t
1
...

F̃t
n−1


 =

1
u




e0 e0 · · · e0
e1 −u1 e1
...

. . .
...

en−1
... en−1 −un−1







b0
b1
...

bn−1




(21)
with ei = c0

ci
, bi = 1

ci

(
xt+h

i −xt+h
0

)
, u = ∑i ei and ui = u−ei.

Thus, each F̃t
i can be computed as

F̃t
i =−bi +

ei

u ∑
j

b j

=− 1
ci

(
xt+h

i −xt+h
0

)
+

ei

u ∑
j

1
c j

(
xt+h

j −xt+h
0

)
(22)

These forces move the n points exactly to a joint goal posi-
tion while preserving the momentum of the mass point sys-
tem. To illustrate the actual implementation, we consider the
Verlet integration scheme. In this case, we have

ci = h2

mi
ei = mi

m0
u = 1

m0
∑ j m j (23)

and the constraint forces can be computed by substituting
(23) into (22) as

F̃t
i =−mi

h2

(
xt+h

i −xt+h
0

)
+

mi

∑ j m j
∑

j

m j

h2

(
xt+h

j −xt+h
0

)

submitted to 3rd Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2006)



Gissler et al. / Local Constraint Methods for Deformable Objects 5

=
mi

h2

(
1

∑ j m j
∑

j
m jxt+h

j −xt+h
i

)
(24)

Since the Verlet scheme is employed, the positions xt+h
i are

computed using (2). So, the constraint forces can be basi-
cally computed with an additional integration step for all af-
fected points which is very efficient for explicit integration
schemes.

By applying the constraint forces, we get the goal position

xgoal = x̃t+h
i = 2xt

i −xt−h
i +

h2

mi

(
Ft

i + F̃t
i
)

=
1

∑ j m j
∑

j
m jxt+h

j (25)

which corresponds to the center of mass of the xt+h
j .

4.3. Constraining a point to a line, a face, and a
tetrahedron

Now, we consider a mass point xt
0 and a corresponding po-

sition yt on a line with yt = α1xt
1 + α2xt

2, on a triangle
with yt = α1xt

1 + α2xt
2 + α3xt

3, or in a tetrahedron with
yt = α1xt

1 +α2xt
2 +α3xt

3 +α4xt
4 with 0≤αi ≤ 1. In general,

the corresponding position is given as yt = ∑i αixt
i whereas

the αi are computed by projecting xt
0 onto a line or triangle

or by computing the barycentric coordinates of xt
0 within a

tetrahedron. It is not required that xt
0 equals yt . However, the

approach only provides plausible results if 0≤ αi ≤ 1. Now,
we are looking for constraint forces such that

x̃t+h
0 = ỹt+h = ∑

i
αix̃t+h

i (26)

Therefore, we compute a constraint force F̃t
0 for the point xt

0
and apply the forces−αiF̃t

0 to the points xt
i . Since ∑i αi = 1,

the momentum is preserved. Further, a two-way coupling is
realized by this scheme. Substituting (11) into (26)

A0st
0 + c0

(
Ft

0 + F̃t
0
)

= ∑
i

αi
(
Aist

i + ci
(
Ft

i −αiF̃t
i
))

(27)

we get the constraint force

F̃t
0 =

1
c0 +∑ciα2

i

(
∑

i
αi

(
Aist

i + ciFt
i
)−A0st

0− c0Ft
0

)

=
1

c0 +∑ciα2
i

(
∑

i
αixt+h

i −xt+h
0

)
(28)

Again, the potentially approximate parts of the generic
representation of the numerical integration schemes (1) are
avoided in the calculation rule.

4.4. Point-to-surface constraint

Since we can attach a point to a point, a line, and a face,
it is straightforward to implement a constraint that holds a
moving mass point on a triangulated surface. As described in

Sec. 4.3, a two-way coupling of the connected components
is realized. To determine the corresponding point, line, or
face on a triangulated surface, we employ the closest point
transform presented in [Mau00].

4.5. Self-assembling

The presented constraints can also be used for the self-
assembling of objects. In order to avoid stability problems
in the case of large initial distances between object parts,
the constraint forces can be applied gradually. In our imple-
mentation, the user can specify the number of time steps n
until the actual constraint force is applied. For the time steps
t + jh with 1 ≤ j ≤ n, a gradually growing constraint force
is computed as j

n F̃t
i with F̃t

i being the actual constraint force.
Nevertheless, the constraint solving technique is not itera-
tive.

5. Results

A variety of test scenarios has been implemented to illus-
trate the efficiency and the versatility of the proposed con-
straint technique. Therefore, we have combined the con-
straint approach with a simple and efficient deformable mod-
eling approach for tetrahedral meshes [THMG04]. In all ex-
periments, the simulated tetrahedral mesh is geometrically
coupled with a triangulated surface mesh. The explicit Ver-
let scheme is used and all tests have been performed on an
Intel Pentium 4 PC, 3.4 GHz.

Basically, all presented constraints require the computa-
tion of one additional integration step per point that is in-
volved in a constraint. This additional integration step is per-
formed to compute xt+h

i which is used to determine F̃t
i . So,

the performance of the proposed constraint technique mainly
depends on the number of points that are involved in a con-
straint and on the efficiency of the integration scheme. In our
experiments, we have employed the explicit Verlet scheme
which results in approximately 1000 points that can be pro-
cessed in one millisecond. Thus, about 1000 point-to-nail
constraints or 500 points-to-point constraints with two points
per constraint or 250 points-to-triangle constraints with four
points per constraint or 200 points-to-tetrahedron constraints
with five points per constraint can be computed in one mil-
lisecond. On the other hand, 1000 points involved in one
points-to-point constraint require the same amount of time.

Fig. 1 illustrates the test scenario that we have used for
performance measurements. The top level row of the cubes
is fixed with point-to-nail constraints and all cubes are in-
terconnected by points-to-point constraints with two points
per constraint. The number of cubes and constraints can be
varied and Fig. 2 shows the measurements for up to 9990
cubes with 49950 tetrahedrons and 39924 constraints. Up to
25000 constraints are processed within 50ms and the entire
dynamics of 2990 cubes with 14950 tetrahedrons and 11924

submitted to 3rd Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2006)



6 Gissler et al. / Local Constraint Methods for Deformable Objects

constraints are computed in 46.15ms including force com-
putation, constraint computation and numerical integration.

Fig. 3 depicts an application for point-to-surface con-
straints. In this case, the computation of 14 points-to-point
and 2 point-to-surface takes 1.54ms which is comparatively
expensive due to the required closest point transform. Never-
theless, the scenario can be simulated at interactive rates in-
cluding visualization. Fig. 4 illustrates simulation sequences
with dynamically changing constraints. Constraints can be
activated or deactivated during a simulation. The set of con-
straints can be changed interactively. Again, these simula-
tions can be computed and visualized at interactive rates.

6. Conclusion

We have presented local constraint methods for deformable
objects. Information on the underlying numerical integration
scheme is employed to efficiently and accurately solve the
constraints. A generic scheme has been presented to illus-
trate the incorporation of a variety of integration methods. It-
erative solvers and stabilization techniques are avoided. Our
method is not subject to numerical drift or other inaccura-
cies. Since the approach does not require any pre-processing,
dynamically changing constraints can be handled efficiently.

Although our approach is restricted to local constraints,
the experiments illustrate the versatility of the method in
the context of deformable mass-point systems. All illustrated
simulations have been computed at interactive rates. Ongo-
ing research focuses on constraint applications such as col-
lision handling, fracture, and cutting which might be of in-
terest for interactive animations in games or surgical simula-
tors. Further, we intend to investigate nonlinear effects that
might occur for integration schemes that are approximately
represented with the presented generic scheme.

References

[ACPR95] ASCHER U., CHIN H., PETZOLD L., REICH

S.: Stabilization of constrained mechanical systems with
DAEs and invariant manifolds. J. Mech. Struct. & Mach
23 (1995), 135–157.

[Bar89] BARAFF D.: Analytical methods for dynamic
simulation of non-penetrating rigid bodies. In Proc. of
ACM SIGGRAPH ’89 (1989), pp. 223–232.

[Bar96] BARAFF D.: Linear-time dynamics using la-
grange multipliers. In Proc. of ACM SIGGRAPH ’96
(1996), pp. 137–146.

[Bau72] BAUMGARTE J.: Stabilization of constraints and
integrals of motion in dynamical systems. Computer
Methods in Applied Mechanics and Engineering 1 (1972),
1–16.

[BB88] BARZEL R., BARR A. H.: A modeling system
based on dynamic constraints. In Proc. of ACM SIG-
GRAPH ’88 (1988), pp. 179–188.

Figure 1: Cubes with points-to-point and point-to-nail con-
straints. All constraints are active in the first image. In the
second image, all constraints are deactivated. Further, the
underlying tetrahedral structure for the dynamic simulation
is shown. 3950 tetrahedrons, 160 point-to-nail and 2964
points-to-point constraints are used in this sequence. The
forces Ft

i based on [THMG04]are computed in 3.42ms, con-
straint forces F̃t

i take 5.38ms, and the Verlet integration takes
3.2ms. So, one timestep can be simulated in 12ms. For the
performance measurements shown in Fig. 2 the number of
cubes and constraints is varied.

[BW92] BARAFF D., WITKIN A.: Dynamic simulation
of non-penetrating flexible bodies. In Proc. of ACM SIG-
GRAPH ’92 (1992), pp. 303–308.

[Fau98] FAURE F.: Interactive solid animation using lin-
earized displacement constraints. In Proc. of EG Work-
shop on Computer Animation and Simulation (EGCAS)
(1998), pp. 61–72.

[FE96] FERREIRA A., ENGEL P.: Positioning a Robot
Arm: An Adaptive Neural Approach. In Int. Workshop
on Neural Networks for Identification, Control, Robotics,

submitted to 3rd Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2006)



Gissler et al. / Local Constraint Methods for Deformable Objects 7

Figure 2: This graph illustrates the performance measure-
ments using the test scenario shown in Fig. 1. The number
of objects and constraints is varied and measurements for
up to 39924 constraints are shown which corresponds to
9990 cubes with 49950 tetrahedrons. Up to 25000 constraint
forces F̃t

i are computed at interactive rates. Further, the en-
tire dynamics of 2990 cubes with 14950 tetrahedrons and
11924 constraints is computed in 46.15ms.

and Signal/Image Processing (NICROSP ’96) (1996),
pp. 440–448.

[GC94] GASCUEL J.-D., CANI M.-P.: Displacement con-
straints for interactive modeling and animation of articu-
lated structures. The Visual Computer 10, 4 (1994).

[Gle94] GLEICHER M.: A Differential Approach to
Graphical Manipulation. PhD thesis, Carnegie Mellon
University, 1994.

[GW91] GLEICHER M., WITKIN A.: Differential Manip-
ulation. In Proc. of Graphics Interface (1991), pp. 61–67.

[HG97] HUMMEL A., GIROD B.: Fast dynamic simu-
lation of flexible and rigid bodies with kinematic con-
straints. In Proc. of ACM VRST ’97 (1997), pp. 125–132.

[HSO03] HAUSER K. K., SHEN C., O’BRIEN J. F.: Inter-
active deformation using modal analysis with constraints.
In Proc. of Graphics Interface (2003), pp. 247–256.

[IC87] ISAACS P. M., COHEN M. F.: Controlling dy-
namic simulation with kinematic constraints. In Proc. of
ACM SIGGRAPH ’87 (1987), pp. 215–224.

[IC88] ISAACS P. M., COHEN M. F.: Mixed methods for
complex kinematic constraints in dynamic figure anima-
tion. The Visual Computer 4, 6 (1988), 296–305.

[KEP05] KAUFMAN D. M., EDMUNDS T., PAI D. K.:
Fast Frictional Dynamics for Rigid Bodies. ACM Trans-
actions on Graphics (Proc. of ACM SIGGRAPH ’05) 24,
3 (2005), 946–956.

[LCG95] LAMOURET A., CANI M.-P., GASCUEL J.-D.:
Combining physically-based simulation of colliding ob-
jects with trajectory control. Journal of Visualization and
Computer Animation (JVCA) (1995).

[LF04] LENOIR J., FONTENEAU S.: Mixing deformable
and rigid-body mechanics simulation. In Proc. of Com-
puter Graphics International (2004), pp. 327–334.

[LGHB88] LUIS G. HERRERA-BENDEZU ED-
UARDO MU J. T. C.: Symbolic computation of robot
manipulator kinematics. In Proc. of IEEE Conference on
Robotics and Automation (1988), pp. 993–998.

[LWP80] LUH J. Y. S., WALKER M. W., , PAUL R. P. C.:
On-line computational scheme for mechanical manipula-
tors. ASME Journal of Dynamic Systems, Measurement,
and Control 102 (June 1980), 69–76.

[Mac36] MACMILLAN W. D.: Dynamics of Rigid Bodies.
Dover Publications, Inc, 1936.

[Mau00] MAUCH S.: A fast algorithm for computing the
closest point and distance function. Technical Report,
CalTech, unpublished (2000).

[MFCD99] MULTON F., FRANCE L., CANI M.-P., DE-
BUNNE G.: Computer animation of human walking: a
survey. Journal of Visualization and Computer Animation
(JVCA) 10 (1999), 39–54.

[MHTG05] MÜLLER M., HEIDELBERGER B.,
TESCHNER M., GROSS M.: Meshless Deforma-
tions Based on Shape Matching. ACM Transactions on
Graphics 24, 3 (2005), 471–478.

[MT92] METAXAS D., TERZOPOULOS D.: Dynamic de-
formation of solid primitives with constraints. In Proc. of
ACM SIGGRAPH ’92 (1992), pp. 309–312.

[MW88] MOORE M., WILHELMS J.: Collision detection
and response for computer animation. 289–298.

[PB88] PLATT J. C., BARR A. H.: Constraints methods
for flexible models. In Proc. of SIGGRAPH ’88 (1988),
pp. 279–288.

[Pla92] PLATT J.: A generalization of dynamic con-
straints. CGVIP: Graphical Models and Image Process-
ing 54, 6 (1992), 516–525.

[Pro95] PROVOT X.: Deformation constraints in a mass-
spring model to describe rigid cloth behavior. In Proc. of
Graphics Interface ’95 (1995), pp. 147–154.

[RGL05] REDON S., GALOPPO N., LIN M. C.: Adap-
tive dynamics of articulated bodies. ACM Transactions
on Graphics (Proc. of ACM SIGGRAPH ’05) 24, 3 (2005),
936–945.

[Sut63] SUTHERLAND I.: Sketchpad: A ManMachine
Graphical Communication System. PhD thesis, Mas-
sachusetts Institute of Technology, 1963.

[THMG04] TESCHNER M., HEIDELBERGER B.,
MÜLLER M., GROSS M. H.: A versatile and robust
model for geometrically complex deformable solids.
In Proc. of Computer Graphics International (2004),
pp. 312–319.

submitted to 3rd Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2006)



8 Gissler et al. / Local Constraint Methods for Deformable Objects

Figure 3: Point-to-surface constraints are used to attach two
points of the tetrahedral mesh of the robot to the rope mod-
els. This enables the robot to slide along the ropes. 1339
tetrahedrons, 14 points-to-point, and 2 point-to-surface con-
straints are used. The forces Ft

i are computed in 0.81ms, con-
straint forces F̃t

i take 1.54ms, and Verlet takes 1.17ms.

[TWK88] TERZOPOULOS D., WITKIN A., KASS M.:
Constraints on deformable models: Recovering 3D shape
and nonrigid motion. Artificial Intelligence 36, 1 (1988),
91–123.

[WFB87] WITKIN A., FLEISCHER K., BARR A.: Energy
constraints on parameterized models. In Proc. of SIG-
GRAPH ’87 (1987), pp. 225–232.

[WGW90] WITKIN A., GLEICHER M., WELCH W.: In-
teractive dynamics. In Proc. of Symposium on Interactive
3D Graphics SI3D ’90 (1990), pp. 11–21.

[Wit97] WITKIN A.: An introduction to physically based
modeling: Constrained dynamics. ACM SIGGRAPH 97
Tutorial Notes (1997).

[WK88] WITKIN A., KASS M.: Spacetime constraints. In
Proc. of SIGGRAPH ’88 (1988), pp. 159–168.

[WTF06] WEINSTEIN R., TERAN J., FEDKIW R.: Dy-
namic Simulation of Articulated Rigid Bodies with Con-
tact and Collision. IEEE TVCG 12, 3 (2006), 365–374. to
appear.

Figure 4: Dynamically changing constraints can be han-
dled. The constraints of the net are deactivated and new con-
straints for the bridge are activated. 2760 tetrahedrons and
1584 (net) or 1320 (bridge) constraints are used. The forces
Ft

i are computed in 2.16ms, constraint forces F̃t
i take 1.6ms

(net) and 2.38ms (bridge), and Verlet takes 1.13ms.

submitted to 3rd Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2006)


