Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2007), pp. 1-10
D. Metaxas and J. Popovic (Editors)

CoRDE: Cosserat Rod Elements for the Dynamic Simulation
of One-Dimensional Elastic Objects

J. Spillmann M. Teschner

Computer Graphics, University of Freiburg, Germany

Abstract

Simulating one-dimensional elastic objects such as threads, ropes or hair strands is a difficult problem, especially
if material torsion is considered. In this paper, we pres€atRDE(french 'rope’), a novel deformation model for

the dynamic interactive simulation of elastic rods with torsion. We derive continuous energies for a dynamically
deforming rod based on the Cosserat theory of elastic rods. We then discretize the rod and compute energies per
element by employing finite element methods. Thus, the global dynamic behavior is independent of the discretiza-
tion. The dynamic evolution of the rod is obtained by numerical integration of the resulting Lagrange equations of
motion. We further show how this system of equations can be decoupled and efficiently solved.

Since the centerline of the rod is explicitly represented, the deformation model allows for accurate contact and
self-contact handling. Thus, we can reproduce many important looping phenomena. Further, a broad variety of
different materials can be simulated at interactive rates. Experiments underline the physical plausibility of our
deformation model.

Categories and Subject Descriptdegcording to ACM CCS) 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism: Animation

Keywords: Physically-based modeling, Lagrangian dynamics, Elastic rods, Cosserat theory

1. Introduction chains without torsiongLM04]. However, many important
. . . . nonlinear effects such as bifurcation or out-of-plane buck-
Physically-based modeling of elastic objects has always ling (see Fig.1) arise solely due to the presence of tor-

been an active research area in computer graphics. In the_;
past, approaches have been proposed to model one-, tWO_slonal torques. Recently, approaches have been proposed

and three-dimensional elastic objects. Elastic objects whose that employ the Cosserat theory of elastic rods to_han-

configuration space is one-dimensional play an important ghergtehr?/ gXEﬁgéCSa?Jgh?'ﬁezgzré%?og:;hcgﬁgtsﬂfi!]nbggrt,lé?l
role in many research fields, e. g. in engineering or microbi- ' :

ology. In computer animation, one-dimensional objects rep- ary value problems that can be solved by employing shoot-

resent threads, ropes or hair strands. These objects are con%:nognggtt:%?% ;—ananrgc?svg\(lf%:ﬁ; Z#gi?slesﬂirhh:snfg?g
sistently denoted aslastic rods independent of their actual ) X

; ; ing phenomena require a robust handling of self-contacts, as
material properties. illustrated in Fig.1.

Our contribution . We proposeCoRDE, a physically-
based deformation model for one-dimensional elastic ob-
jects with torsion that is inspired by the Cosserat theory of
elastic rods. Our deformation model can be used to simu-
late a broad variety of materials, ranging from flexible struc-
tures such as threads, ropes or hair strands to stiff objects
with intrinsic bending and torsion such as springs or wires.
We formulate the continuous kinetic, potential and dissipa-
tion energy for the elastic rod based on quaternion algebra.
To simulate the rod dynamics, we discretize the rod into el-
ements. From the continuous energies, we derive discrete
energies by employing finite element methods. As a con-
sequence, the global behavior of the rod is independent of

In computer graphics, many approaches have been pre-the discretization. The equations of motion are obtained by
sented that model elastic rods with unoriented mass-spring taking variations of the Lagrangian. We then show how to

Despite the fact that the configuration space of a rod has
only one dimension, its mathematical representation is dif-
ficult. This comes from the observation that an elastic rod
can not only bend or stretch, but also twist around its cen-
terline. Thus, the configuration of a deformed rod can not
be described in terms of the position of its centerline alone.
Instead, the orientation of each cross-section introduces an
additional degree of freedom. Since the positions and orien-
tations are mechanically coupled, a rod is an intrinsically
constrained system. In the late 19th century, the Cosserat
brothers introduced a theory for elastic rods. Nowadays, this
approach has become a fundamental part of nonlinear elas-
ticity theory.
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Figure 1: Dynamic looping phenomenon of a rod under torsional strain: A rod is spanned between two anchors, and its ends
are clamped. A torque transducer on the left varies the end-to-end rotation of the rod. We observe a bifurcation sequence that
results in a looping with an increasing number of self-contacts. This behavior can not be reproduced by approaches that do not
consider material torsion.

decouple the resulting system of equations in order to solve on the Cosserat theory, notably by the works of Simo et
it directly. In addition, we model the internal friction such al. [Sim83 and Cao et al. CLWO06)]. In contrast to these
that the rigid body motion of the rod is not affected. works, we gain efficiency and simplicity by decoupling the

In contrast to existing approaches that simulate the rod by resulting system of equations.

solving a boundary value problem, e. ®4C*06, Pai03, Physically-based simulation and animation of deformable
we can handle complex collision and self-collision configu- objects is an important research area in computer graph-
rations. Thus, our deformation model enables the dynamic ics. A good overview on the topic is given iNMK *05].
simulation of knots and looping phenomena. Moreover, the Physically-based animation of solids is also discussed
approach is elegant and simple to implement, and since it in [MGO04]. There exist two different classes of approaches
is linear in the number of nodes, ropes and threads can beto simulate and animate elastic rods, namely by consider-
animated at interactive rates. ing the rod as a chain of linear objects, or by considering
the rod as a curve in space. E. g. Chang et@Y02 pro-
posed an approach that is focused on hair interactions, where
the hair strand is modeled from clusters linked by bending
springs. Brown et al. BLMO04] published an approach to
simulate knotting of ropes, including a robust collision han-
dling scheme. They model the rope from a chain of masses
sary to discretize it into elements, as discussed in Sedtion ﬁgﬁhse%rgfg% ellgwrﬁ\égrég] igogéﬁgsttﬁ,gﬁéfﬂgggﬁ'&nﬂoﬂgg
The potential, kinetic and dissipation energy of each element A deformable model that handles torsional torques hasqbeeﬁ
is then expressed in terms of the continuous energies. This resented by Wang et a\WBD*05]. Similar to ?BLMO4]
section results in the discrete equations of motion for the ?he model 3; thregd from a chaiﬁ of sprinas. In addition
rod. These equations could be solved by employing iterative they link the seaments by torsional s rFi)n Sg Iln contrast tcl>
numerical methods. However, this can not be done at inter- theiyrwork we er% lov an eyner -basedpa grdach to compute
active rates. Thus, we discuss in Sectionow to decouple the restofation foeceys Recer?t?/ Hadaﬂzggoq describesp
the system of equations such that it can be solved directly. a methodology based on diﬁerghtial algebraic equations to
This will include some important simplifications of the prob- simulate chain of rigid bodies that includes torsional stiff-

lem that result in an elegant and fast method. In Sediion : - : :

- : : ness dynamics. In turn, this approach is computationally ex-
we evaluate our deformation model with respect to physical ; - ; ; o
plausibility and applicability. pensive and thus less suitable for interactive applications.

Organization. After discussing the previous work, we
give in Sectior3 a short introduction of the Cosserat model
for elastic rods that is essential for an understanding of our
approach. Further, we derive expressions for the continuous
potential, kinetic and dissipation energy of the deforming
rod. In order to numerically simulate the rod, it is neces-

Pioneering work in modeling elastic rods from curves has
been done by Terzopoulo$PBF87 by proposing the en-
2. Related work ergy formulation of the curve in space subject to geometric

The Cosserat theory of elastic rods is well-investigated in the deformation. Later, Qin and TerzopouldST9¢ proposed
field of nonlinear elasticity. A comprehensive discussion of & Physically-based deformation model of a NURBS curve.
the topic is given in the book of Antmarfit9s]. Amongst They derive continuous kinetic and deformation energies,
others, Cosserat rods are used in robotics, micro-electronic 21d evolve the curve by employing Lagrangian mechan-
mechanical system€[ WO6], and in computational biology €S- A finite element analysis enables the simulation of the
to model the mechanics of DNA moleculed196]. curve at interactive rates. Similar in spirit is the approach of

) ] ) Remion et al. RNGO0Q. They employ successions of spline
~ In physics, most approaches deal with the analysis of elas- segments to model knitted cloth. In contrast@TPé, they
tic rod equilibria, assuming that the rods are unshearable and consider the control points as the degrees of freedom of the
inextensible. The definition of a position and an orientation continuous object. The use of splines was also suggested
of the start and end point of the rod results in a boundary by Lenoir et al. and by Phillips et alLMGC02, PLK0Z]
value problem (BVP). The analysis and numerical solution in order to model threads. These approaches can also handle
of the corresponding system of ordinary differential equa- complex collision configuration. However, they have in com-
tions is discussed in, e. gk¢h97. The analysis of the dy-  mon that material torsion can not be represented. In contrast,
namics of inextensible rods is considered in, e. Bic94].
Our approach is inspired by finite element methods based
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our deformable model handles both bending and torsion of
rods in contact.

The Cosserat theory for elastic rods has first been intro-
duced to the community by Pai in 200Rdi03. He models

the statics of thin deformable structures such as catheters or
sutures. He assumes the rod to be unshearable and inexten-

sible. The configuration of the rod is obtained by solving
the resulting BVP. This approach provides an efficient and
physically correct way to animate continuous elastic rods.
However, the model does not handle dynamics. Furthermore,
self-contact and interactions require numerically sensitive
shooting techniques to solve the differential equations.

Recently, Bertails et alJAC*06] proposed an important
extension of Pai's work. Their approach is a combination
of a discrete and a continuous model. They simulate hair
strands as chains of helical segments. Similar to the classi-

cal Cosserat rod model, they define appropriate start and end

conditions. The dynamics of the super-helices are obtaine:
by feeding the Lagrangian equation of motion with the ap-
propriate energy terms. The configuration of the hair stranc
is reconstructed from the generalized coordinates that cor
form to twist and curvature of the segments. This deformable
model is by far the most advanced way to represent elasti
rods. However, it has some important restrictions: Since the
segments have an intrinsic curvature, the simulation of n
point contactsfdHNGTOJ or knots requires a large number

of segments. As their approach has complemez) with

N the number of segments, such self-collision configurations
can hardly be simulated at interactive rates. In contrast, ou
scheme is linear in the number of elements, and designed t
handle complex contact configurations such as knots. Fur
ther, we replace the viscous dissipation energyBa#tg " 06]

by a term that additionally considers internal friction without
affecting the rigid body motion of the rod.

The approaches that are most closely related to ours at
the works of Grégoire et aldS0§ and Loock et al. [S01].
They proposed to model a cable from joined elements wher:
each element has a position and an orientation, the latter e;
pressed in terms of quaternions. Then they derive constrair
energies and associated forces. The goal is to find static equ
libria states of cables in virtual assembly simulation. We
augment their work by considering the dynamics of rods,
which provides unique challenges. Further, we employ finite
element methods to derive discrete energies while they sim
ulate the rod as a simple mass-spring system.

3. Cosserat theory of elastic rods

In this section, we give a brief introduction of the Cosserat
theory of elastic rods. For a more comprehensive discussion
of the topic, we refer to the book of AntmaArft95].

3.1. Representation of rods

A rod can be thought of as a long and thin deformable body.
We assume that its length is significantly larger than its ra-
dius, and thus we do not explicitly represent its volume. In-
stead, we characterize the continuous configuration of the
rod by thecenterliner () = (rx(c),ry(c),rz(0))". Here,
r(o) : [0,1] — R? assigns a position in space to each line
parameter value € [0,1] .

With this concept alone, we can not express the torsion
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of the rod. Thus, we think in each mass point of the rod a
right-handed orthonormal bagig(o),d»(0),ds(0). Thed;
are calleddirectors d3(o) is defined to be tangential to the

centerline, thusls is parallel tor’:

r‘/
———d3=0 @
(el
This important constraint realizes the mechanical coupling
between the centerline and its orientation. Later, it will turn
out that this constraint is not implicitly fulfilled but has to
be explicitly enforced. FiqR illustrates the representation of

the rod. Notice that the primg(o,t) always denotes the spa-
tial derivativeg%, while the doty(a,t) denotes the temporal
derivative%y .

da(o1)

Figure 2: The configuration of the rod is defined by its cen-
terline r (o). Further, the orientation of each mass point of
the rod is represented by an orthonormal basis, called the

directors.ds(0) is constrained to be parallel tof (o)

The length of the spatial derivatiyi’(o)|| indicates the
stretch of the centerline at . Without loss of generality,
we assume the length of the rod to heAs a consequence,
Ir'|l = 1 if the rod is unstretched. Some variants of the
Cosserat rod modeMM96, BAC*06] consider the rod to
be inextensible, which does, however, lead to stiff equations.

The spatial derivativedy, of the directors indicate the spa-
tial rate of change in bending and torsion. From differential
geometry, it is known that there exists a veataxith

dp=uxd,, k=123 2)

u is called theDarboux vector The Darboux vector is an im-
portant quantity in the Cosserat theory since the strain rates
for the bending and torsion can be expressed as

k=1,2,3 3)

The valuesu; andup, measure the strain in the two bend-
ing directions whileus measures the torsional strain. Later,
we derive the expression for the potential energy from these
strain rates.

Ug = u-d,

The temporal derivativé (o) of the centerline indicates
the translational velocity of the mass point@atThe angu-
lar velocity w is related to the temporal derivatives of the
directors by

de=wxdy, k=1,2,3 (4)
The componentsy = w- dx measure the angular velocity of
the cross section rotating around direatgr
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3.2. Representation of rotation
In order to relate the director to the reference frame, we

have to choose a representation of rotation, i. e. a represen-

tation for the group of orthogonal rotations &). In the

literature, both Euler angles, and quaternions (also known as

Euler parameters) have been proposed.

The Euler angles use the minimum number of parameters
to represent the rotation, but they suffer from singularities
such as the gimbal lock. Having this in mind, we use quater-
nions to represent the rotation. A quaternion can be thought
of as a quadruplg = (01, 92,03, 4)" With gi € R. Only unit
guaternions represent pure rotations, thugjttage not inde-
pendent but coupled by the constrd|qt| = 1. The directors
di in terms of the quaterniog are given by:

-5 —;+a; 2(g1G2 — G304)

di=| 2map+agw) |.d=| -d+B-B+4
2(0103 — G204) 2(9203+9104)
2(0103 + 0204)
dz= 2(0p03 — G104) (5)

2 2, 2 2
—01—02+03+0g
The strain ratesy in the local frame are obtained as

Uk Bkd-d’ (6)

2
[CIE

whereBy € R**4is a constant skew-symmetric matrix. For
the angular velocity components in the local frame, a
similar relation is stated as

2
112

lla

The angular velocity componem§ with respect to the ref-
erence frame are

Wy = Bkg-q @)

W

2 o .
= 2BRa-q ®
llall?
whereB{ € R*** is a constant skew-symmetric matrix’
is required to derive the angular dissipation energy. The
derivation of ) and (7) and the expressions f@& and BE
are given in the Appendix.

3.3. Energy formulation

Based upon the strain-displacement and angular velocity re-
lations @), (7) and @), we derive the continuous kinetic, po-
tential and dissipation energy of the deformed rod.

3.3.1. Potential energy

The potential energy consists of two parts, namely the en-
ergy Vs of the stretch deformation, and the eneXgyof the
bending and torsional deformation. The stretch en&tgg
given as

9)

where shear is neglectelds is the stretching stiffness con-
stant that is computed from a stretching Young’s modulus

1 1
Vo3 [ K(lI'|| - 1°do
0
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Es with Ks = Estr2. The bending energy,, follows from
the strain ratesd)

2
lall?

The 0y conform to the intrinsic bending and torsion of the
rod andK = (Ki) € R®*3 is the stiffness tensor. Since we
assume that the rod has a uniform cross section, we can ne-
glect the off-diagonal terms iK. From textbooks on me-
chanics we get

113 .
Vo=3 [ Kuli3Bia- ' —)’do  (10)
2J0 &

2
L

Ki1=Kop=E—

11 22 2

with E denoting the Young’s modulus governing the bend-

ing resistance( denoting the shear modulus governing the
torsional resistance, anddenoting the radius of the rod’s

cross section.

2

Kes =G5~ (11)

For ideal rods, the stretching Young’s modukss equal
to the bending Young’s modulus. However, in order to
get an additional degree of freedom, it is useful to define
two independent constanks and Es. This is motivated by
the observation that e. g. nylon ropes do not have a uniform
cross section, but are composed of several strands. As a con-
sequence, the observed bending resistance is much lower
than the theoretical bending resistance computed from the
Young’s modulus.

Together, we obtain the potential eneMgyasV = Vs +
Vp. The values for, E, Es andG depend on the simulated
material (see Appendix).

3.3.2. Kinetic energy

The kinetic energy of the rod consists of two parts, namely
the translational energy of the centerling, and the rota-
tional energyT; of the rod cross section. The translational
energy is

1

T = 1/ o -ido (12)
2.Jo

wherep is the density per unit length, amds the radius of

the rod. The rotational energy follows from the expressions

for the angular velocitiesr

7ol 1§I(28qq)2d0 (13)
r= k(7> Bk

2Jo & ™ lal?
wherel = () € R®*3 is the inertia tensor that is approxi-

mated as
2

- 2
l11=1l22= P

LS
laz=p— 14
B3=P (14)
As before, the off-diagonal terms Incan be neglected. The
total kinetic energyT is thenT = Tt + Tr. The numerical
values forp andr are given in the Appendix.

3.3.3. Dissipation energy

The dissipation energy captures internal friction and visco-
elastic effects. A heuristic model for visco-elastic effects has
been proposed iBAC*06]. To model internal friction, we

propose an approach that is inspired by the pioneering work
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of Baraff and Witkin BW98] on constrained cloth simula-
tion.

The internal friction damps relative velocity in the rod.
The relative translational velocity can be computed as the
spatial derivative of the temporal derivative of the centerline
r acting in the tangential directiari. The translational dis-
sipation energyt is

1
Dt = %/ wve) vegg (15)
0

where yt is the translational internal friction coefficie

vl — ”r,luzr’('r’ -r’) is the projected relative translatiol

velocity of the mass points.

The relative angular velocity is obtained from the sp:
derivative of the angular velocityy. It is important to comr
pute the angular velocity in the reference frame in ord
consider all quantities in the same basis. The rotationa
sipation energyr is then

1
Dr = }/ Vr&)6~(x)6d0' (16)
2Jo
wherey; is the rotational internal friction coefficiertg car
be obtained from§). The total dissipation enerdy = Dt +
Dr is the sum of the translational and rotational dissipe
energy.

3.4. Lagrangian equation of motion

The dynamic equilibrium configuration of an elastic ro
characterized as a critical point of the Lagrangian T —
V + D subject to the holonomic constraints

r./

cpzw—dgzo 17)

Ca=al?-1=0 (18)

The vector-valued constraint7) states that the third dire
tor conforms to the spatial derivative of the centerlin€his
constraint couples the orientations and the positions ¢
rod. The scalar constraint§) states that the quaternion |
unit length and thus represents a proper rotation.

By employing calculus of variations and by introduciy

Lagrangian multiplierd € R® andp € R for the constraints,
we obtain the Lagrangian equation of motion for an elastic

rod:

doT oT oV dD aCp  0Cq 1
—— — —— t—F— A —" 4 —:/ Fedo
dtogi 0dgi 9y 9gi g HaQli 0o °

(19)
Here, theg; € {rx,ry,rz,01,02,03,04} are the coordinates,
andFe are external forces and torques. Details can be found
in the book of GoldsteinGol81].

4. Discrete energy formulation

In this section, we discretize the rod into elements. We then
derive expressions for the potential and kinetic energy per el-
ement by employing finite element methods. This discretiza-
tion allows for an efficient numerical solution of the equa-
tions of motion (9).
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4.1. Discretization of the rod

We represent the centerliméo) of the rod as a chain df

nodesr; € R3,i € [1,N]. The centerline elements, 1 —r;
may differ in size. The orientations of the centerline ele-
ments are represented by quaternigpsj € [1,N — 1], as
illustrated in Fig.3. A similar representation has been pro-
posed by Grégoire and Schémer i8$04. In contrast to
pure geometric approaches such BBIGC02), this repre-
sentation allows to model material torsion.

Figure 3: The centerline of the rod is discretized into nodes
ri. The orientation of the centerline element; —r; is rep-
resented by a quaterniayy that is attached to the centerline
element at its midpoint.

The discrete spatial derivative of the centerline is ob-

tained asr| = ﬁ By assuming a high stretch stiff-

ness, we approximatg as

S *]_.(ri+1—ri) (20)

wherel; = Hrio+l —r0|| is the resting length of the centerline

elementi. Here, ther? are the initial positions of the mass
points.

To derive an expression for the discrete spatial derivative
q’j of the orientation, we consider that the quaterrggmep-
resents the orientation of the centerline elemgng —r;.
Thus, an orientation elemeittarts at the midpoint of cen-
terline element and ends at the midpoint of centerline ele-
menti + 1. Forq’j , we thus approximate

1
q’wﬁ(qm—m) (21)
wherelj = 2(||r®, — 2| + I, — rP|]) is the resting
length of the orientation element

4.2. Discrete energies

In this section, we derive the formulations of the potential,

kinetic and dissipation energy for the discrete Cosserat rod.
We compute the energies per centerline and orientation el-
ement by integrating the energies over the length of the re-
spective element. The total energy of the rod could then be
obtained by summing up the individual energies. However,
this will not be necessary since we solve the Lagrangian
equation of motion per node.

In our discrete setting, the displacements are only given
at the nodes. Therefore, we interpolate the displacements
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within the elements. For simplicity, we employ constant
shape functions(¢) andq(§), i. e.

Fi(E) =i = 5(ri+ris1) (22
and
i(§) =4 = 50 +0j+1) 23)

These shape functions result in particularly simple expres-

sions when integrated over the element length. Experiments
indicate that higher-order shape functions do barely increase

the visual plausibility, but require significantly more compu-
tations.

4.2.1. Discrete potential energy

To derive the expression for the stretch energy, we integrate

over the lengthl; of the centerline segmernt Assuming

that the spatial derivative/ stays constant per element, the
stretch energy per elemeinfollows from (9) as

1t /
3 ) Ksllirl - 1Pa

P V=) (1) - 12 (29

Vsli]

To derive the expression for the bending energy, we in-
tegrate over the length of the orientation element. We

further assume that the spatial derivatq/pstays constant.
Thus

. 1 li 3 2 - / PN
Wlil = 5 Kkk(fg Bkqj - gj — Ux)"d& (25)
2Jo & T llgjll
~2

lj 3 1 -
2 3. KB + ) (@2 =) ~ 0
k=1

where we made the simplifying assumption that the quater-
nions have unit length, which is justified since the unit-
constraint 18) is explicitly enforced.

4.2.2. Discrete kinetic energy

Similar to the previous section, we consider the kinetic trans-
lational energy per centerline element, and the kinetic rota-
tional energy per orientation element. By pluggi@)(into

(12) and integrating over the centerline elemegnte get

li L
T %/Opmzr'i~r'idz

1 o . . . .
gPTUi(fipa + 1) - (Fisa +1i) (26)
For the rotational kinetic energy, we integrate over the ori-
entation element. The resulting energy expression is

2

. 13 I
Tlil = 3 A > lkk(Wquj'qj) dg
——

k=1
~2

Mw

j

8 > ha(Bu(dj +aj41) - (@) +0j21))° (27)

iy
I

1

4.2.3. Discrete dissipation energy

To obtain the dissipation energy expression, we proceed as in
the previous sections. Again, the translational dissipation en-
ergy is obtained by integrating over the centerline elements,

and the rotational dissipation energy is obtained by integrat-

ing over the orientation elements. For the translational dissi-

pation energybt we get

1 /b
5/O y[Vi(rel)AVi(reI)d’,E'

I
_ E|ytvi(rel)

D [i]

rel)

vt (28)

with the projected relative translational velod&e') as

ey _ 1
K &
~——

~1
%(ri+1—fi)((fi+1—fi)'(ri+1—ri)> (29)

where we made the simplifying assumption thaf|| ~ 1,
which is valid for rods with a large stretching stiffness. The
rotational dissipation enerdy is obtained as

ri(ff-ri)

Dr[j]

1/ 2 0 . 1.0, -2
2 Jy W 3 (28R 180~ 28R
3

2 . .
vy (BRaj 101 — BRajd;))° (30)

K=1

where we assumgq;|| ~ 1 for all j. Notice that here we
do not interpolate the displacements within the orientation
element but compute the relative rotational velocity between
the two orientation nodes. It is important to take the relative
velocities with respect to the reference frame.

5. Numerical solution

In the last section, we have divided the rod into elements.
For each element, we have derived the potential, kinetic and
dissipation energy. We now show how we can solve the
Lagrangian equation of motion by employing those energy
terms. We further propose an efficient implementation of the
necessary constraints such that the system of equations is
decoupled.

5.1. Assembly of the equations of motion

The Lagrangian equation of motioA9) characterizes the
dynamic equilibrium of the rod. By substituting the contin-
uous energies inlO) with the per-element energies derived
in the previous section, we arrive at the discrete Lagrangian
equation of motion that characterizes the dynamic equilib-
rium per element. The necessary symbolic differentiation
is performed by employing the computer algebra software
Maple. This results in a system of equations of the form

Mg+1(9,9) = (FeTe)" (31)

The matrixM (g,g) contains nonlinear terms ig= {r,q}
andg= {r,q}. Furtherf(g,g) conforms to a nonlinear stiff-
ness function that is obtained by symbolically differentiating
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the potential and dissipation energy with respect to the co- many rod phenomena such as buckling and looping. The nu-
ordinates. Evaluating this function results in internal forces merical values ok depend on the simulated material (see

and torquesFe andte are the external forces and torques
that act on the rod.

The system of equations can be solved by employing iter-
ative methods, e. g. with a conjugate gradient method. How-
ever, the numerical solution is expensive and can hardly be
done at interactive rates for larger rods. In the next two sec-
tions, we propose two simplifications of the problem that re-
sult in a decoupled system of equations that can be solved
directly.

5.2. Implementation of the constraints

The coupling between the orientation of the rod and its cen-
terline is realized by the constraint®). To implement the
constraints in19), we have introduced Lagrangian multipli-
ers.

At this point, we underline that a Cosserat rod is an in-
trinsically constrained system. In computer graphics, many

approaches have been presented on maintaining constraints

in dynamic systems. An application of Lagrangian multipli-
ers to articulated rigid bodies has e. g. been proposed by
Baraff [Bar9q. Earlier, Witkin et al. WFB87 have pro-
posed to express geometric constraints by energy functions,
an approach that is also knownenalty methodThey for-
mulated a constraint as an energy funct®(x) : R" — R

with E(x) = 0 if the constraint is satisfied. Differentiating
this energy function with respect xoyields constraint forces

F that accelerate the system towards the desired configura-

tion.

The advantage of the penalty method is its efficiency:
The constraints do not appear as additional equations in the
Lagrangian equation of motion, but they act as additional

forces on the system. The disadvantage is the loss of phys-

ical accuracy: Since the constraint forces act during a time
periodh on the system, they violate the principle of virtual
power [Gol81. However, since our goal is to obtain a sim-
ulation that behaves in a physical plausible way, we decided
to employ energy constraints. We thus express the parallel
constraint {7) by an energy function

1 1
Ep:é/o K(

wherex is a spring constant. In our discrete model, the direc-
tion of the centerline element, ; —r; has to conform to the
third director of the basis representing the orientation of this
element. Thus, the discrete constraint energy per centerline
element reads as

r/ rl
eI *ds)'(w*dﬂdc (32)

EPM = %A||K<ﬁ_d3(ql))(ﬁ_d:%(ql))dz (33)
li i1 —Ti _—
- éK(m_%(qi)) ' <m—ds(m))

What have we gained with this constraint transformation?
The constraint energ§pli] can now be treated as an addi-
tional potential energy term in the Lagrangian equation of
motion of the rod. By symbolic differentiation, we obtain
an additional internal force term acting on the mass points
and an additional internal torque term acting on the quater-
nions. In fact, these forces and torques are responsible for

Eurographics/ ACM SIGGRAPH Symposium on Computer Animation Y2007

Appendix).

To enforce the quaternion unit length constraitf})( we
employ an even simpler method that is sometimes referred
as coordinate projectiorEBF9§: In each iteration of the
numerical simulation, we explicitly renormalize the quater-

nionsq, i. e. gj < ﬁ. Although this technique does not

guarantee energy conservation, it does not harm the visual
quality of the simulation.

5.3. Decoupling of the state equations

By expressing the constrairt?) by an energy function, we
have reduced the number of equations34)( The accel-
erationsqj andi are obtained by inverting the mass matrix
M. This is accomplished by considering the structur&lof
Since the positions and orientations are exclusively coupled
by the constraint energil has a block-diagonal form

(% )

0 Mg

whereM is the mass matrix governing the state equations of
the mass points;, andMgq is the mass matrix of the quater-
nionsgj.

(34)

Since we assume that the mass is lumped in the mass
pointsr;, the mass matri  is diagonal. The equations of
motion for the mass points are obtained as
F
m
Vi

Vi

h (35)

whereF; is the sum of internal and external forces acting on
the mass pointy; its velocity, andm its mass.

The mass matrixMq governing the evolution of the
guaternions is not diagonal. However, it is possible to ex-
press the equations of motion not by the quaternions and
their time derivatives, but to use the angular velocitigs
together with the quaterniorty as state variablesSMO04.

This results in a diagonalized system of equations for the
guaternions,

W = |71(Tj—00]‘><|00j)
) 0 (36)
= %Q'( W) )

Here,1j is the sum of internal and external torques that act
on the quaternior, is the inertia tensor, an@; is the quater-
nion matrix ofg;. The quaternion matrix allows to write a
guaternion multiplication as a matrix-vector product,

(35) and @6) define an initial value problem (IVP), where
the initial configuration of the rod is user-defined. The IVP
is solved by numerical integration, as discussed in the sub-
sequent section.

5.4. Numerical solution of the initial value problem

We summarize the simulation process. The stiffness func-
tion f(r,r,q,q) that governs the computation of the internal
forces and torques is obtained by differentiating the potential
and constraint energy with respect to the coordinatasd
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g, and by differentiating the dissipation energy with respect
to the time derivatives andq. This symbolic differentiation
is done as a preprocessing step.

Subsequent positiond ™" and orientations'*" are ob-
tained by time integration of the state equatioB5) (and
(36). The internal forces and torques are obtained from eval-
uatingf(¢*,r', ¢, q") in the current configuration of the rod.
External forces include gravity, contact forces, and user in-
teractions. External torques are neglected. We denote the re-
sulting sum of internal and external forces in the current con-
figuration as=! and the resulting internal torques@s

To evolve the mass points, we numerically integrate the
state equations3f) by employing a semi-implicit Euler
scheme:

h

v =y R

=l (38)
This scheme provides sufficient conditional stability at mi-

nor computational overhead.

The evolution of the orientations is slightly more in-
volved. The torques' € R* resulting from evaluating are
dual to the quaternions. However, to evolve the angular ve-
locitiesw, we need to transform thé into Euclidean torques
' € R®. This transformation is accomplished by a multipli-
cation with the transposed quaternion matrix,

0)_1
fj 2
For details on quaternion transformations we refer to
Schwab and MeijaardMO0€]. The numerical integration of

the rotational state equation36] is also realized with the
semi-implicit Euler scheme,

Qjtj (39)

M = 1HE - o x (16)h+ o) (40)
A 1
o = éoﬁ-( o )h+qﬁ- (41)
i
st+h
t+h gj
A (42)
: 1657

where the last step explicitly normalizes the quaternions.

6. Results

The purpose of the experiments is to illustrate the physical
plausibility of our deformation model. Further, we show that
the approach is well-suited for interactive applications.

To enable contact and self-contact configurations, we have
implemented a standard deformable model collision han-
dling scheme TKH*05]. To detect collisions, we employ
axis-aligned bounding box hierarchies, and to compute the
repulsion forces, we employ an adaptation of the constraint-
based response scheme frddB[I07. All experiments have
been staged on an Intel Xeon PC, 3.8GHz. The offline ren-
dering is accomplished with a raytracer, the real-time render-
ing with OpenGL. For rendering, the rods are skinned with
a tubical, B-spline interpolated surface mesh.
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# Elements| Force comp. [ms]| Integration [ms]

50 0.051 0.018
100 0.096 0.035
1000 0.91 0.33

Table 1: Timings for the force computation and integration
of discretized rods. The timings indicate that the method is
linear in the number of elements.

6.1. Discrete rods

The purpose of these experiments is to show that the dy-
namic global behavior of real rods can be reproduced. The
material parameters are summarized in Taip. the Appen-

dix.

In a first experiment, we study the global deformation
of clamped rods that occur when the end-to-end rotation is
varied. These experiments are inspired by recent research
in the field of nonlinear mechanicsdHNGTO0J. The ex-
perimental setup is shown in Fig.on the left. A torque
transducer exerts a continued torsional rotation on the rod,
while the right end of the rod stays clamped. The rod forms
a looping with an increasing number of self-contacts. The
number of self-contacts is obviously limited by the num-
ber of elements of the rod. The radius and the location of
the loop are influenced by the ratio of bending and torsion
stiffness YfdHNGTO03. The time step of the simulation is
h=0.1ms. The rod is discretized into 100 elements. To vali-
date our deformation model, we performed the same experi-
ment with a real rope. Figt illustrates the looping sequence
of the rope under torsional strain. Although the material pa-
rameters of the real rope differ in magnitude, its global de-
formation is comparable to the simulated virtual rope.

Figure 4: To validate our deformation model, we performed
the varied end-to-end rotation experiment with a real rope.
The global deformation is comparable to the simulated vir-
tual rope in Fig.1.

Figure 5: Coiling up three clamped rods. The rods are dis-
cretized into 1000, 100 and 50 elements, illustrating that the
global deformation is independent of the discretization.
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In a second experiment, we clamp the left ends of three

rods to torque transducers. The transducers exert a continued

rotation on the rods, thus coiling up the rods (see BjgThe
front rod is discretized into 1000 elements, the middle rod is
discretized into 100 elements and the back rod is discretized
into 50 elements. The time step his= 0.1ms. The figures
illustrate that the global deformation of the rods is indepen-
dent of the discretization. Further, this experiment illustrates
that our deformation model is linear in the number of ele-
ments. Timings are summarized in T4b.

6.2. Pre-shaped stiff objects

Due to the robustness of our deformation model, a broad va-
riety of different materials can be simulated. We can simu-
late highly flexible structures such as ropes as well as stiff
objects such as bars. By defining an intrinsic bending and
torsion, it is also possible to simulate pre-shaped objects
such as springs. In these experiments, we model stiff wire-
like objects whose material parameters are summarized in
Tab. 2 in the Appendix. Each rod is discretized into 50 el-
ements. The stiff equations require a small time dtep
0.05ms. Fig.6 illustrates the dynamic simulations.

N

Figure 6: Dynamic simulation of stiff objects. Left: Stacking
of rods. Right: Objects with intrinsic bending and torsion.

6.3. Virtual interactive ropes and threads

Since our approach is linear in the number of elements, elas-
tic rods can be simulated at interactive rates. Further, internal
friction minimizes oscillations and makes the material look
more realistic.

To illustrate that our deformation model can be used in
interactive applications, we run a simulation of a thread con-
sisting of 100 elements. Its material parameters are summa-
rized in Tab.2 in the Appendix. While one end of the thread
is clamped, the user can freely interact with the centerline
(Fig. 7). In this experiment, the user ties a knot into the
thread. The time step is = 2ms, and the configuration is
rendered after 20 simulation steps. The simulation runs at
26 frames per second. As indicated in Figon the bottom
right, itis also possible to interact with an intrinsically coiled
thread.

7. Conclusion and future work

We have presente@ORDE, a physically-based deforma-
tion model to simulate one-dimensional elastic objects. The
deformation model is inspired by the Cosserat theory of
elastic rods. We have discretized the rod into elements.
For each element, we have derived the Lagrange equations
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Figure 7: Interactive simulation of threads. The user can
freely interact with the thread. Oscillations are minimized
by modeling internal friction.

of motion by employing finite element methods. By nu-
merically integrating these equations, the rod is evolved in
time. In contrast to previous mass-spring approaches, the
rod behavior is independent of the underlying discretization,
and the finite element approach enables physically plausi-
ble simulation. In contrast to previous boundary value ap-
proaches Pai02 BAC*06], the nodal approach allows for
accurate and efficient collision and self-collision handling.

By employing our deformation model, a broad variety of
different materials can be plausibly simulated and animated.
This is partially enabled by modeling internal friction such
that the rigid body motion of the rod is not affected. Since
our method is linear in the number of nodes, the approach
is particularly interesting for interactive applications. More-
over, the approach is elegant and simple to implement.

However, this deformation model is just a starting point
for future research. In order to improve the physical accu-
racy of the method, a constraint handling that considers the
principle of virtual power would be favorable. Since the con-
straint couples positions and orientations, this is a challeng-
ing problem. Further, virtual suturing requires that the thread
can be tied to tight knots, which requires a solid collision
handling. Currently, we are investigating into improved col-
lision detection and response methods. Since the elements
may differ in size, the rod can be adaptively refined in re-
gions where precise collision handling is necessary.
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Appendix A: Derivation of strain rates in terms of
quaternions

In this section, we derive the expressid@) that relates the strain
ratesuy to the quaterniong. The derivation of the relation between
the angular velocityw and the quaterniong is similar. The con-

struction is a summary from the corresponding issue in the thesis

of Dichmann Dic94]. For further details, we refer the reader to the
cited document.

We know that there exists the Darboux veatdhat is related to
the directorsly by

dy = u x dy, k=123 (43)

where the componentg of u are directly proportional to the strain
rates. Since thdy define an orthonormal basis, we write= u;d; +
upd> + uzds. Fordj, we then obtain for example

dé = (Uldl +uxdy + U3d3) x d3
u1d; x dg+upds x d3 + uzds x d3
—uydz + updy

(44)
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where we used the identitiely = d; x d, anddg x dx = 0,k =
1,2,3. Multiplying (44) by —d, yields

—dy-dj=udy-dp —Updy - da =g (45)
Foruy andus, we similarly obtairu; = —ds - d} anduz = —d; - db.
The relation between the directodg and the quaternion is
given in (6). To computedy, we note thatl is a function ofq and
g is a function of the curve parameter
0dk(q(0)) _ 9dk 9q
d. =d.(g(0)) = — 277 _ 7R
= dhiae) = =5 = 5 5
where we employed the chain rule of partial differentiatityis the
Jacobi matrixJy = % that is obtained by symbolic differentiation.
Forug, we now write

I’ (46)

Up = —dp-J3q’ = —J%dp- ¢ (47)

which results from applying basic linear algebra identities. Similar
expressions are obtained fay andus. To bring @47) to the desired
form (6), we symbolically evaluate the produkjds to obtain

2 2
Jdy=—— (G G -G -0 ) =-—>Biq (48)
llall llall
with the skew-symmetric matri,

0 0 0 1

By — 0 0O 1 0

1= 0 -1 0 O

-1 0 0 O

The strain ratel; can then be obtained by combiningi7f and @8).
The matrice8, andB3 are obtained in a similar manner as

0 0 -1 0 0O 1 0 0
B,—| 0 © 0 1 Bs—| =1 0 0 0
2= 1 o 0 0| P87 0O 0 o0 1

0 -1 0 O 0 0 -1 0
The skew-symmetric matric& and the resulting vectoBq have
several important properties that are discusse®icd4]. A similar
analysis Dic94] can be done to obtain the angular velocitiiswith
respect to the reference frame, resulting in matrB%s

0O 0 o0 1 0 0 1 0
g_( 0 0 -1 0 go_( 0 0 0 1
i={ o 1 0 0] P2l -1 0 0 0
-1 0 0 O 0O -1 0 O
and
0 -1 0 0
BO — 1 0 0 O
3 0 0 0o 1
0O 0O -1 0
Appendix B: Material parameters
Ropes | Wires | Threads
Length [m] 10 0.1 1
Radiusr [m] 0.01 | 0.001 0.001
Densityp [kg m—3] 1300 | 7860 1300
Young modulusE [MPa] 0.5 200 10-°
Shearing modulu§ [MPa] 0.5 100 10°°
Stretch modulugs [MPa] 20 100 0.02
Spring constk [10% kg m s~ 100 300 0.1
vt [107C kg m3 571 10 0.05 1
vr [10~6 kg m® s~ 1] 1 0.01 0.1

Table 2: Material parameters for the objects simulated in the ex-
periments. The parameter values have been determined by visually

comparing the behavior of the simulated objects to their real coun-
terparts.
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