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Abstract

Realistic elasticity parameters are important for the accurate simulation of deformable
objects, e. g. in medical simulations. In this paper, we present an approach for esti-
mating elasticity parameters for isotropic elastic materials using the linear Finite El-
ement Method. Employing the initial undeformed geometry and a measured force-
deformation relation, the method computes the elasticity parameters based on Quadratic
Programming. The structure of the stiffness matrix is employed to accelerate the esti-
mation process. Experiments suggest, that the parameter estimation approach can be
used for noisy data.

1 Introduction

In the context of medical simulations, realistic deformable objects are essential. In order
to accurately simulate soft-tissue changes, e. g. due to bone realignment in craniofacial
surgery, physically motivated deformable models are required and the parameters of the soft
tissue have to be known. While physically-based Finite Element Methods are commonly
employed to represent deformable tissue, it is still a challenging problem to obtain realistic
material properties, such as Young’s modulus and Poisson ratio.
In this paper, we propose an efficient and robust method for the estimation of these param-
eters for a linear 3D Finite Element (FE) simulation. The approach is based on Quadratic
Programming. It processes a given undeformed geometry of anisotropic elastic solid and
a measured force-displacement relationship. The approachemploys the special structure of
the Finite Element stiffness matrix. The introduced methodis straight-forward and easy to
implement, since the complexity of the optimization procedure is reduced to a linear least
square problem. Due to its linear nature, good results can beobtained even for noisy mea-
surements. Although methods have been proposed in the past that can handle more complex
material laws, our method might be helpful, if a fast estimation for isotropic materials is
required.
The paper is organized in the following way. First, we discuss existing approaches followed
by a brief introduction into the linear FE model that is used for the parameter estimation.
The approach to reconstruct the elasticity parameters is described and several experiments
are illustrated to analyze the robustness and accuracy of the proposed method. In particular,



the effects of noisy measurements and using more than one force-deformation measurement
are discussed.

2 Related work

In mechanical engineering, elasticity parameters are commonly measured using the so-
called tensile test where uniaxial loading is applied to a test object (see e. g. [Har67]).
In order to reconstruct elasticity parameters using force-deformation measurements, var-
ious approaches have been proposed that can be classified into three major groups. The
first group estimates parameters based on the displacement of a given discretization of the
object. Most of these methods apply a known force to the modeland measure the resulting
displacement (see e. g. [KL04]). Methods of the second grouptry to optimize both topol-
ogy and elasticity parameters at the same time and the third tries to map given parameters
for one deformation model to another one. The second and third approach are often used to
approximate continuous behavior or Finite Element models with mass-spring approaches.
In terms of the first group, [LPW02, Lan01] introduce an acquisition technique based on
a discretized Green’s function matrix for a given force-displacement relationship. Data is
attained using a robotic measurement system with a stereo camera. [Lan01] is based on
[JP99] and states that the Green’s function is estimated irrespective of its analytical and
numerical derivation. [SZ92] estimate the Young’s modulusin a 2D FE setting based on
non-linear least squares for a given Poisson ratio. In contrast to this work, we have re-
duced the problem to a linear least square problem and are able to reconstruct both Young’s
modulus and Poisson ratio for 3D models. In [ZZ94], stiffness identification is introduced
based on a 2D Finite Element Method for thin plates in case of generalized bending. They
use a displacement measurement technique based on geodesics. [KVD+02] estimates com-
plex, non-linear constitutive equations, including time-dependent viscoelastic materials. In
the context of soft tissue parameters, [CZ05] introduces a reconstruction method for the
special purpose of indentation tests. In contrast, our approach is not restricted to specific
force fields. In [BBH94], parameters are estimated for noisydata with an iterative Monte-
Carlo method for truss structures. In [JK05], an expensive iterative scheme is used to de-
termine visco-elastic soft-tissue properties based on a nonlinear FE model. In [ACL+05],
MR tagging is used to measure the displacement field and non-linear optimization is em-
ployed to model the heart muscle with a transversely-isotropic neo-Hookean material law.
In [SGN+05] an iterative approach is combined with an image registration based on MR
data to determine elasticity parameters of brain tissue. However, in each iteration, a Fi-
nite Element simulation has to be performed. In [Lan01], a thorough overview of existing
approaches is provided.
In [BSSH04], mesh topology and spring stiffness values are estimated for a 3D mass-spring
model based on a genetic algorithm using an FE reference model. Further, [DKT95] use
Voronoi diagrams for the estimation of the mass distribution and simulated annealing for
the estimation of the spring stiffnesses.
In [vG98], known elasto-mechanical parameters have been applied to 2D mass-spring mod-
els in order to obtain an efficient approximate deformation model. In [MBT03b, MBT03a,
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EGS03], this idea is extended to generalized mass-spring systems which allow for nega-
tive stiffness parameters. [SMBT04] combines the approachof [JV02] with the parameter
estimation of [MBT03a]. [DH04] uses a truss structure with viscoelastic volumetric cylin-
ders to approximate an elastic solid. He applies the Young’smodulus and the Poisson ratio
directly to the cylinders.
Our method belongs to the first group of approaches. However,in contrast to existing
methods we employ the explicit structure of the underlying system of equations. Addi-
tionally, we avoid nonlinear optimization procedures which are time-consuming and might
be trapped in local minima.

3 Deformation Model

In this section, we briefly introduce the linear Finite Element Method for deformable ob-
jects. This deformation model is employed for the parameterestimation approach which is
described in the following section. Be referred to [Log92] and [Bat95] for further details
regarding the Finite Element Method.
The behavior of an elastically deformable solid is governedby a system of partial differ-
ential equations. If the solid continuum is discretized into a finite set of primitives, e. g.
nodes and tetrahedrons, the governing equation can be solved for the nodes and these nodal
values are linearly interpolated within tetrahedrons. Eventually, it is intended to derive an
equation relating the nodal displacements and the nodal forces depending on the elasticity
parameters of the model. For isotropic materials the consecutive equation, i. e. the relation
between the stressσ and the strainε of an elastic solid is given by

σ = Dε (1)

with

D =
E

(1 + ν)(1 − 2ν)











1 − ν v v 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 0.5 − ν 0 0
0 0 0 0 0.5 − ν 0
0 0 0 0 0 0.5 − ν











. (2)

TheYoung’s modulus E and thePoisson ratio ν are two elasticity parameters.
For a deformed object, the differences between the originaland current positions of all
object points are represented with a continuous displacement fieldu = [u v w]

T . For small
displacements, the the relation between the strainε and the displacement fieldu can be
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approximated with the linearCauchy-Green tensor:











εx

εy

εz

γyz

γxz

γxy











=












∂u
∂x
∂v
∂y
∂w
∂z

∂u
∂y

+ ∂v
∂x

∂v
∂z

+ ∂w
∂y

∂w
∂x

+ ∂u
∂z












(3)

Now, we consider a tetrahedron with nodesp1, . . . ,p4. Since the result of the partial
differential equations is known at the nodes, we intend to find an approximation of the
stressε that depends on the known nodal displacementsqi. We therefore express values
inside a tetrahedron as a linear combination of the nodal values with barycentric coordi-
natesN1 = ξ, N2 = η, N3 = ζ, N4 = 1 − ξ − η − ζ. Using the nodal displacements
q3i−2, q3i−1, q3i of pointi in x-,y-, z-direction, the displacement fieldu inside a tetrahedron
is approximated as

u = Nq (4)

with

N =





N1 0 0 N2 0 0 N3 0 0 N4 0 0
0 N1 0 0 N2 0 0 N3 0 0 N4 0
0 0 N1 0 0 N2 0 0 N3 0 0 N4



 (5)

and
q = [q1, . . . , q12]

T
∈ R

12. (6)

Now, the derivatives in (3) can be written in terms of the nodal displacementsqi. Using the
chain rule for partial derivatives, we get






∂u
∂ξ
∂u
∂η
∂u
∂ζ




 =






∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ






︸ ︷︷ ︸

=:J





∂u
∂x
∂u
∂y
∂u
∂z



 . (7)

Due to (5), we get

J =





x14 y14 z14

x24 y24 z24

x34 y34 z34



 ∈ R
3×3 (8)

with xij = pi,x − pj,x, yij = pi,y − pj,y andzij = pi,z − pj,z. The inverse relation is
given by





∂u
∂x
∂u
∂y
∂u
∂z



 = A






∂u
∂ξ
∂u
∂η
∂u
∂ζ




 (9)
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with A := J−1. The same holds for the partial derivatives ofv andw. Using (5) and (9), we
get the following relation between the strain vectorε of a tetrahedron and the displacements
qi of the according vertices:

ε = Bq (10)

Matrix B ∈ R
6×12 depends onA and is given as

B =











A11 0 0 A12 0 0 A13 0 0 −Ã1 0 0

0 A21 0 0 A22 0 0 A23 0 0 −Ã2 0

0 0 A31 0 0 A32 0 0 A33 0 0 −Ã3

0 A31 A21 0 A32 A22 0 A33 A23 0 −Ã3 −Ã2

A31 0 A11 A32 0 A12 A33 0 A13 −Ã3 0 −Ã1

A21 A11 0 A22 A12 0 A23 A13 0 −Ã2 −Ã1 0











(11)

with Ã1 = A11 + A12 + A13, Ã2 = A21 + A22 + A23 andÃ3 = A31 + A32 + A33. To
derive a relation between the nodal forcesfi and the nodal displacementsqi, we look at the
total potential energy of a tetrahedron. If we assume point loads acting on the nodes, we
get

Π =
1

2

∫

e

σT εdV −
∑

i

qifi. (12)

For the linear Finite Element formulation this results in

Π =
1

2
qTKeq −

∑

i

qifi (13)

with

Ke := VeB
T DB ∈ R

12×12 , Ve =
1

6
|detJ | (14)

A stable resting state of the model is characterized byΠ being extremized. To determine the
extreme values, we take the partial derivative ofΠ with respect to the nodal displacements
qi. We thereby get a formulation with displacement vectorq and force vectorf :

Keq − f = 0 (15)

If we consider a mesh withn points and more than one tetrahedron, a global matrixK ∈
R

3n×3n is assembled from the local stiffness matrices. The resulting stiffness equation has
the same form as (15) with the global displacement vectorQ and the global force vectorF .

4 Parameter estimation

In this section, we propose a method to reconstruct the elasticity parametersE andν of
the linear Finite Element model described in the previous section. We assume a discretized
model where some boundary points have fixed positions. A force vectorf is applied to
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unconstrained nodes and the resulting displacementsq are measured for all nodes. Now,
we intend to estimate the parametersE andν such that the resulting stiffness matrixK

minimizes
min
E,ν

‖Kq − f‖2
2 (16)

In order to solve (16), it is transformed to a formulation that is linear in terms of some
unknown parameters. The approach is explained for a single tetrahedron. In Section 4.4,
it is generalized to tetrahedral meshes. In (16) we use the force residuum, but a similar
derivation could be realized for the displacement residuumin case ofν 6= 0.
Using (1), we have

D =
E

(1 + ν)(1 − 2ν)


























1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0.5 0 0
0 0 0 0 0.5 0
0 0 0 0 0 0.5











︸ ︷︷ ︸

F

+ν











−1 1 1 0 0 0
1 −1 1 0 0 0
1 1 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1











︸ ︷︷ ︸

G
















.

Matrix K is therefore given as

K = VeλBT (F + νG)B (17)

with λ = E
(1+ν)(1−2ν) .

Definingλ̃ = 1
λ

, we can write (16) as

min
ν,λ̃

‖a + νb − λ̃f‖2
2 (18)

with a = VeB
T FBq andb = VeB

T GBq. a andb depend solely on the undeformed
geometry and the nodal displacements. Now, the problem is reduced to a linear least square
formulation. The elasticity parameterE can be computed using the resulting values forλ̃

andν. Note that rows and columns inK corresponding to fixed nodes do not have to be
considered in the minimization approach if the nodes have zero displacement.

4.1 Local and global minima

The functionφ(ν, λ̃) := a + νb− λ̃f in (18) maps intoR12 in case of a single tetrahedron
andR

3n in case of a tetrahedral mesh withn points. Taking the‖·‖2-norm ofφ corresponds
to finding a pair(ν1, λ̃1) such that the resulting pointφ(ν1, λ̃1) has minimal distance to
the origin. For non-zero force-displacement relations,φ describes a plane in the image
space. Therefore, there is a unique point with minimal distance to the origin. Our estimation
therefore yields a unique result. This is advantageous compared to non-linear optimization
methods which can be trapped in local minima.
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4.2 Case for known ν

If ν is known, we take the derivative of (18) with respect toλ̃ and set it to zero:

∂

∂λ̃
(a + νb − λ̃f)2 = 2(a + νb − λ̃f)(−f)

!
= 0. (19)

λ̃ then can be solved by

λ̃ =
(a + νb)f

‖f‖2
. (20)

4.3 Estimating E and ν

If E andν are unknown, we write (18) as

min
ν,λ̃

‖
[
b −f

]
[
ν

λ̃

]

+ a‖2. (21)

We use a Quadratic Programming approach [GMW03] to solve thislinear least square
problem. This approach also handles the constrained optimization problem that will be
introduced later in the paper.

4.4 General form

If we have a tetrahedral mesh, the matricesVeB
tFB andVeB

tGB in (17) are assembled to
global matricesH andJ . This assembly is done in the same way as local stiffness matrices
are assembled to the global stiffness matrixK. For the global stiffness matrixK we have

K = λ(H + νJ) (22)

Therefore, we can set up a minimization equation similar to (18):

min
E,ν

‖HQ + νJQ − λ̃F‖2 (23)

with Q being the global displacement vector andF being the global force vector. Solving
this problem is similar to (21).

4.5 Constrained optimization

If the unconstrained parameter estimation does not providephysically meaningful results,
e. g. Poisson ratio larger than 0.5 or a negative Young’s modulus, we use constrained opti-
mization. This leads to a constrained linear least square problem:

min
ν,λ̃

‖
[
b −f

]
[
ν

λ̃

]

+ a‖2

A

[
ν

λ̃

]

≤

[
pmax

Emax

]

(24)

with matrixA and scalarspmax andEmax. As in the unconstrained case we use Quadratic
Programming to solve (24).
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5 Results

In this section, we illustrate experiments that we have performed using the proposed
scheme. In particular, we discuss the parameter estimationin the presence of noise and
the benefits of using more than one force-deformation measurement. Experiments have
been performed with a synthetic cuboid and a liver data set which is courtesy of the Ep-
idaure project, INRIA, France (thanks to Hervé Delingette). The cuboid consists of 250
tetrahedrons (see Fig. 1) and the liver model consists of 1970 tetrahedrons (see. Fig. 2).
Although we use homogeneous force fields in all experiments,the method can also handle
non-homogeneous force fields.
As mentioned in the previous section, the minimization results in a unique global solution.
If the measured force-deformation relation is linear, i. e.Kq = f for a stiffness matrix
K with parametersE andν, the parameters can be exactly reconstructed. This can easily
been seen by substitutingKq = f into our minimization equation, which equates to zero.
Thus, the accuracy of the method depends on the deviation of displacements and forces
from their exact linear relation. However, it does not depend on the shape or discretization
of the object.

Figure 1: A cuboid consisting of 250 tetra-
hedrons.

Figure 2: A liver model consisting of 1970
tetrahedrons.

In order to illustrate the accuracy of the method, we use the resulting displacements of
an exact Finite Element solution and add noise (similar to [BBH94] and [ACL+05]). Five
different experiments have been performed. First, we add noise of increasing magnitude to
the resulting displacement of the exact linear FE solution.Second, we add spatially varying
noise of constant magnitude to the result. Third, we use several different noisy displace-
ments resulting from the same force. Fourth, we use several different force-displacement
relationships and fifth we use constrained optimization in case of noise with increasing
magnitude. Experiments 1-4 have been performed on the cuboid and experiment 5 has
been performed on the liver data set. For all test scenarios we have fixed our model at some
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boundary nodes and have applied a forceF to all unconstrained nodes. Although we have
used homogeneous force fields in our tests, spatially varying force fields and local forces
can be handled as well. This is especially interesting for indentation tests. The relative
errors and deviations in the experiments are given with respect to the‖ · ‖2 vector norm.

5.1 Noise of increasing magnitude

In order to investigate the sensitivity of the parameter estimation to the presence of noise,
we have applied uniformly distributed noise of increasing magnitude to the displacements.
The elasticity parameters have been set toE = 10kPa andν = 0.33 and one force-
displacement measurement has been used to reconstructE andν using our method. Fig. 3
illustrated the relative error in the reconstructed parametersE andν with respect to the
‖ · ‖2-norm.

����������������������

� � � � � �� �� ��	
� �
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�
�� �������� �� �
��
��
������ ����!�

"���#$� ��	����%������ �
���

Figure 3: Accuracy of the reconstructed elasticity parameters for increas-
ing deviation from a linear force-deformation relation.

5.2 Spatially varying noise

In order to investigate the sensitivity of the estimation procedure to spatially varying noise,
we have applied noise of varying magnitude to each node. In terms of all nodes, the devi-
ation of the noisy displacement vector from the exact data has been about 10%. We have
applied a forceF = (0, 0,−30)N to all unconstrained nodes. As can be seen in Fig. 4,
the accuracy of the reconstructed elasticity parameters depends on the spatial distribution
of noise. However, it can also be seen that small differencesin the measurements result in
similar reconstructed elasticity parameters. The reconstructed values for the Young’s mod-
ulus tend to be under-estimated and the values for Poisson ratio tend to be over-estimated.
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This might be due to the fact that noise of the same magnitude has less impact in axial
direction than in transverse direction.

&&'())'(*+
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Figure 4: Reconstructed elasticity parameters for measured displacements with spatially
varying noise. The exact values have been set toE = 10kPa andν = 0.33.

5.3 Several measurements for the same force

Since various authors propose to use several measurements for the parameter estimation,
we have investigated this effect on the accuracy of the reconstructed parameters. We have
used the same setting as in the previous example, but have used an increasing number of
noisy displacement vectors for the same force vectorF = (0, 0,−30)N. The deviation of
the noisy displacement vector from the exact linear solution has been constant at around
9 %. As can be seen in Fig. 5, the number of measurements influences the accuracy of
the parameter estimation process. For larger numbers of measurements, the relative error is
improved by 2% compared to a single measurement. As already seen in the experiment with
noise of constant magnitude, the method tends to under-estimateE and to over-estimateν.
Therefore, the relative error does not converge to zero.

5.4 Several force-displacement relationships

We have also investigated the effect of several force-displacement relationships with vary-
ing forces. Therefore, we have used different force vectorsand have added noise to the
corresponding displacement vectors. As can be seen in Fig. 6, the accuracy of the parame-
ter estimation is improved by 2-4% for more than one force-displacement relations. Since
the proposed parameter estimation scheme is very efficient,it might be reasonable to use
more than one force-displacement measurement.

5.5 Constrained optimization

If the unconstrained parameter estimation does not providephysically meaningful results,
we use constrained optimization. Similar to the experimentin Sec. 5.1, we have applied
noise of increasing magnitude to the liver data set. The elasticity parameters have been set
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Figure 5: Accuracy of the reconstructed pa-
rameters in case of several noisy displace-
ment measurements for the same force.
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Figure 6: Accuracy of the reconstructed
parameters in case of several force-
deformation measurements with varying
forces.

to E = 50kPa andν = 0.3. We have constrainedν to be smaller or equal to 0.3. As can
be seen in Fig. 7, the error in the reconstructed Young’s modulus scales linearly with the
magnitude of the noisy in the displacements.

ÂÂ ÃÂÄÂ ÃÅÂ ÃÅÄÂ ÃÆÂ ÃÆÄÂ ÃÇ

Â Æ È É Ê ÅÂ ÅÆ ÅÈËÌÍ ÎÏÐ ÎÑÒ Ó ÔÑÕ ÌÖÏ×Ð ØÑ ÙÚÐ ÎÑÒ ÎÒ ÛÌÔ×ÌÒÐ
ÜÝÞßàáâÝÝÜÜãÜ

äÑÚÒåæØ ÕÑËÚÙÚØ

Figure 7: Accuracy of the reconstructed Young’s modulus using con-
strained optimization in case of increasing deviation froma linear force-
deformation relation.
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6 Conclusion

We have proposed a robust approach to estimate elasticity parameters of a linear FE model.
Our approach is based on a linear least-square optimizationproblem. The method incorpo-
rates constrained and unconstrained parameter estimationfor linear elastic isotropic solids.
The proposed method is very efficient. In contrast to nonlinear methods, there exists a
unique global solution of our minimization equation. The accuracy of the estimated param-
eters is independent of the shape or discretization of the object. It is also independent of the
elasticity parameters and of the applied force used in the measurements. The reconstruction
error depends on the deviation of displacements and forces from their exact linear relation.
Although noise is handled in a stable way, the accuracy of theparameter estimation de-
pends on the precision of the displacement measurements. Further, our approach processes
the displacements of all nodes. In practice, the method requires discrete geometries with
all nodes being placed at the surface of a model in order to be able to measure the displace-
ments of all nodes. The proposed method can be used to measuresoft-tissue parameters in
craniofacial surgery. Although soft tissue is anisotropic, our approach can be used to obtain
approximate elasticity parameters in these cases.

7 Ongoing work

In case of composed materials with different elasticity parameters, it might be more ap-
propriate to use a local approach. Zantout et al. [ZZ94] has proposed a local method for
bending plates with known Poisson ratio, where he has estimated the parameters for each
primitive separately. We intend to apply this approach to tetrahedral meshes. There might
also be appropriate formulations for anisotropic constitutive equations without the need of
nonlinear optimization methods. Since the linear Finite Element Method does not work
very well for large deformations, it would be interesting toderive a similar approach for
the corotated formulation in [MG04]. Although various experiments have been performed,
further analysis would still be possible. One could furtherinvestigate the method in case of
non-homogeneous force fields that arise e. g. in indentationtests. Additionally the case of
ν tending to 0.5, and therebyλ in (17) tending to infinity, has not yet been studied.
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