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Abstract

Realistic elasticity parameters are important for the accurate simulatioriavhable
objects, e. g. in medical simulations. In this paper, we present an agpfor esti-
mating elasticity parameters for isotropic elastic materials using the linear Firite E
ement Method. Employing the initial undeformed geometry and a meadaree-
deformation relation, the method computes the elasticity parameters braQeddratic
Programming. The structure of the stiffness matrix is employed to aeteltre esti-
mation process. Experiments suggest, that the parameter estimatioa@ppan be
used for noisy data.

1 Introduction

In the context of medical simulations, realistic deforneabbjects are essential. In order
to accurately simulate soft-tissue changes, e. g. due te bemlignment in craniofacial
surgery, physically motivated deformable models are regland the parameters of the soft
tissue have to be known. While physically-based Finite Elgnvethods are commonly
employed to represent deformable tissue, it is still a eimgling problem to obtain realistic
material properties, such as Young’s modulus and Poisdmn ra

In this paper, we propose an efficient and robust method éoegimation of these param-
eters for a linear 3D Finite Element (FE) simulation. Therapph is based on Quadratic
Programming. It processes a given undeformed geometry odiopic elastic solid and
a measured force-displacement relationship. The apperapioys the special structure of
the Finite Element stiffness matrix. The introduced metiscgtraight-forward and easy to
implement, since the complexity of the optimization pragedis reduced to a linear least
square problem. Due to its linear nature, good results cabtzned even for noisy mea-
surements. Although methods have been proposed in thehpastin handle more complex
material laws, our method might be helpful, if a fast estiorafor isotropic materials is
required.

The paper is organized in the following way. First, we disoessting approaches followed
by a brief introduction into the linear FE model that is usedthe parameter estimation.
The approach to reconstruct the elasticity parameterssisritbed and several experiments
are illustrated to analyze the robustness and accuracyg girttposed method. In particular,



the effects of noisy measurements and using more than ore ftmformation measurement
are discussed.

2 Related work

In mechanical engineering, elasticity parameters are ammymmeasured using the so-
called tensile test where uniaxial loading is applied tosh ¢bject (see e. g. [Har67]).

In order to reconstruct elasticity parameters using fatefsrmation measurements, var-
ious approaches have been proposed that can be classifiethieé major groups. The
first group estimates parameters based on the displacefegiveen discretization of the
object. Most of these methods apply a known force to the madeimeasure the resulting
displacement (see e. g. [KL04]). Methods of the second gtouim optimize both topol-
ogy and elasticity parameters at the same time and the tieito map given parameters
for one deformation model to another one. The second ardidpjproach are often used to
approximate continuous behavior or Finite Element modéls mass-spring approaches.
In terms of the first group, [LPWO02, Lan01] introduce an acitjois technique based on
a discretized Green'’s function matrix for a given forcepthsement relationship. Data is
attained using a robotic measurement system with a steraerea[Lan01] is based on
[JP99] and states that the Green’s function is estimatedpactive of its analytical and
numerical derivation. [SZ92] estimate the Young’s modiiua 2D FE setting based on
non-linear least squares for a given Poisson ratio. In eshtio this work, we have re-
duced the problem to a linear least square problem and aeatdconstruct both Young's
modulus and Poisson ratio for 3D models. In [2Z94], stiffnetentification is introduced
based on a 2D Finite Element Method for thin plates in casepérplized bending. They
use a displacement measurement technique based on geofl€¥d*02] estimates com-
plex, non-linear constitutive equations, including tickependent viscoelastic materials. In
the context of soft tissue parameters, [CZ05] introducescarnstruction method for the
special purpose of indentation tests. In contrast, ouragmbr is not restricted to specific
force fields. In [BBH94], parameters are estimated for ndata with an iterative Monte-
Carlo method for truss structures. In [JK0O5], an expend®eafive scheme is used to de-
termine visco-elastic soft-tissue properties based oméimear FE model. In [ACL 05],
MR tagging is used to measure the displacement field andinearloptimization is em-
ployed to model the heart muscle with a transversely-ipatroeo-Hookean material law.
In [SGNT05] an iterative approach is combined with an image redistitsdbased on MR
data to determine elasticity parameters of brain tissueveder, in each iteration, a Fi-
nite Element simulation has to be performed. In [Lan01],adbgh overview of existing
approaches is provided.

In [BSSHO4], mesh topology and spring stiffness values stienated for a 3D mass-spring
model based on a genetic algorithm using an FE referencelnfeakther, [DKT95] use
Voronoi diagrams for the estimation of the mass distributimd simulated annealing for
the estimation of the spring stiffnesses.

In [vG98], known elasto-mechanical parameters have beglieaito 2D mass-spring mod-
els in order to obtain an efficient approximate deformatia@del. In [MBT03b, MBT03a,



EGSO03], this idea is extended to generalized mass-spristgrsg which allow for nega-
tive stiffness parameters. [SMBTO04] combines the appradi¢hv02] with the parameter
estimation of [MBT03a]. [DHO04] uses a truss structure witbcoelastic volumetric cylin-
ders to approximate an elastic solid. He applies the Youmgdulus and the Poisson ratio
directly to the cylinders.

Our method belongs to the first group of approaches. How@vegpntrast to existing
methods we employ the explicit structure of the underlyiggtsm of equations. Addi-
tionally, we avoid nonlinear optimization procedures whéce time-consuming and might
be trapped in local minima.

3 Deformation Model

In this section, we briefly introduce the linear Finite Eletn®ethod for deformable ob-
jects. This deformation model is employed for the paramegémation approach which is
described in the following section. Be referred to [Log98tidBat95] for further details
regarding the Finite Element Method.

The behavior of an elastically deformable solid is goverbg@ system of partial differ-
ential equations. If the solid continuum is discretizeaiatfinite set of primitives, e. g.
nodes and tetrahedrons, the governing equation can beldolvhe nodes and these nodal
values are linearly interpolated within tetrahedrons.rifwvelly, it is intended to derive an
equation relating the nodal displacements and the nodeg¢$adepending on the elasticity
parameters of the model. For isotropic materials the cars@cequation, i. e. the relation
between the stregsand the straim of an elastic solid is given by
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TheYoung's modulus E and thePoisson ratio v are two elasticity parameters.

For a deformed object, the differences between the origindl current positions of all
object points are represented with a continuous displactfieédd u = [uv w]T. For small
displacements, the the relation between the straand the displacement field can be



approximated with the linea€auchy-Green tensor:
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Now, we consider a tetrahedron with nodes, ..., ps. Since the result of the partial

differential equations is known at the nodes, we intend td &n approximation of the

stresse that depends on the known nodal displacement§Ve therefore express values
inside a tetrahedron as a linear combination of the nodalegalith barycentric coordi-

natesN; = & Ny =0, N3 = (, Ny = 1 — £ — n — (. Using the nodal displacements
q3i—2, q3i—1, q3; Of pointi in x-,y-, z-direction, the displacement fialdnside a tetrahedron

is approximated as

u= Nq (4)
with
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N=|0N 0 0N, 0 0 N3 0 0 N4 O (5)
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and
q= [Q17 .. 7Q12]T S RlQ' (6)

Now, the derivatives in (3) can be written in terms of the dalilsplacements;. Using the
chain rule for partial derivatives, we get

ou 9z Oy 0z ou

) 0 D O¢ b

ait — |9z %y 9z ou (7)
on| — | oy an oy oy | -

du dx 0y 9z | |du

o¢ ¢ ¢ d¢ 0z

Due to (5), we get
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With z;; = Pi.c — Pj,a» ¥ij = Pi,y — Pj,y @aNdz;; = p; . — P, . The inverse relation is
given by
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with A := J—!1. The same holds for the partial derivatives:@ndw. Using (5) and (9), we
get the following relation between the strain vectorf a tetrahedron and the displacements
¢; of the according vertices:

e = Bq (10)
Matrix B € R6%12 depends on and is given as
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B = (11)

with /11 = A11 + A12 + A13, /12 = A21 + AQQ + A23 andfig = A31 + A32 + A33. To
derive a relation between the nodal forgeand the nodal displacemenis we look at the
total potential energy of a tetrahedron. If we assume poiadi$ acting on the nodes, we
get

1
M= / oledV — Zq fi- (12)
For the linear Finite Element formulation this results in
1 T
M= 34 Kea =) aifi (13)
with )
K.:=V.BTDB e R'?*12 y, = g\detﬂ (14)

A stable resting state of the model is characterizel lpging extremized. To determine the
extreme values, we take the partial derivativélofvith respect to the nodal displacements
q;. We thereby get a formulation with displacement veet@nd force vectof:

Kq—-f=0 (15)

If we consider a mesh with points and more than one tetrahedron, a global mdrix
R37%3" js assembled from the local stiffness matrices. The regpdtiiffness equation has
the same form as (15) with the global displacement ve@tand the global force vectdr.

4 Parameter estimation

In this section, we propose a method to reconstruct thei@tggparameters® andv of
the linear Finite Element model described in the previost@e. We assume a discretized
model where some boundary points have fixed positions. Aefesctorf is applied to



unconstrained nodes and the resulting displacemgiat® measured for all nodes. Now,
we intend to estimate the parametétsand v such that the resulting stiffness matiik
minimizes

min || Kq — f]3 (16)

In order to solve (16), it is transformed to a formulationtttglinear in terms of some
unknown parameters. The approach is explained for a siegfiehiedron. In Section 4.4,
it is generalized to tetrahedral meshes. In (16) we use tlee feesiduum, but a similar
derivation could be realized for the displacement residiruoase ofv # 0.

Using (1), we have
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Matrix K is therefore given as
K =VABY(F +vG)B (17)
i _ E
with A = [zt
Defining A = } we can write (16) as
min ||a + vb — Af||3 (18)
[N

with a = V,BTFBq andb = V,B"GBq. a andb depend solely on the undeformed
geometry and the nodal displacements. Now, the problendiges to a linear least square
formulation. The elasticity parametér can be computed using the resulting valuesXor
andv. Note that rows and columns i corresponding to fixed nodes do not have to be
considered in the minimization approach if the nodes haxe displacement.

4.1 Local and global minima

The functiong(v, ;\) := a+ vb — Af in (18) maps intdR'2 in case of a single tetrahedron
andR3" in case of a tetrahedral mesh witlpoints. Taking thé|-||.-norm of¢ corresponds
to finding a pair(yl,S\l) such that the resulting point(v4, 5\1) has minimal distance to
the origin. For non-zero force-displacement relationsjescribes a plane in the image
space. Therefore, there is a unique point with minimal distao the origin. Our estimation
therefore yields a unique result. This is advantageous eosato non-linear optimization
methods which can be trapped in local minima.



4.2 Case for known v

If v is known, we take the derivative of (18) with respechtand set it to zero:

(%(a+ub—5\f)2 = 2(a+vb — M)(—f) = 0. (19)
) then can be solved by
=l 20)
4.3 Estimating £ and v
If £ andv are unknown, we write (18) as
win | [b —f] m +all2. (21)

We use a Quadratic Programming approach [GMWO03] to solvelitésr least square
problem. This approach also handles the constrained ggtian problem that will be
introduced later in the paper.

4.4 General form

If we have a tetrahedral mesh, the matrite8 F'B andV,B!G B in (17) are assembled to
global matriced? andJ. This assembly is done in the same way as local stiffnessceatr
are assembled to the global stiffness maltixFor the global stiffness matrik” we have

K=XH+vJ) (22)
Therefore, we can set up a minimization equation similad.8):(
min | HQ +vJQ — AF || (23)

with @ being the global displacement vector akibeing the global force vector. Solving
this problem is similar to (21).

4.5 Constrained optimization

If the unconstrained parameter estimation does not prqatigsically meaningful results,
e. g. Poisson ratio larger than 0.5 or a negative Young’s usgdwe use constrained opti-
mization. This leads to a constrained linear least squanelgm:

Iﬁgn\\ [b —f] m +alls
SHE @

with matrix A and scalarg,,,... andE,,... As in the unconstrained case we use Quadratic
Programming to solve (24).



5 Results

In this section, we illustrate experiments that we have ggeréd using the proposed
scheme. In particular, we discuss the parameter estimatitiee presence of noise and
the benefits of using more than one force-deformation measemt. Experiments have
been performed with a synthetic cuboid and a liver data séthwils courtesy of the Ep-
idaure project, INRIA, France (thanks to HérDelingette). The cuboid consists of 250
tetrahedrons (see Fig. 1) and the liver model consists 00 18Fahedrons (see. Fig. 2).
Although we use homogeneous force fields in all experimémésmethod can also handle
non-homogeneous force fields.

As mentioned in the previous section, the minimization itsso a unique global solution.

If the measured force-deformation relation is linear, ikgy = f for a stiffness matrix
K with parametersdr andv, the parameters can be exactly reconstructed. This caly easi
been seen by substitutifgq = f into our minimization equation, which equates to zero.
Thus, the accuracy of the method depends on the deviatiorspfadements and forces
from their exact linear relation. However, it does not depen the shape or discretization
of the object.

Figure 1: A cuboid consisting of 250 tetra- Figure 2: A liver model consisting of 1970
hedrons. tetrahedrons.

In order to illustrate the accuracy of the method, we use #selting displacements of
an exact Finite Element solution and add noise (similar ®HB4] and [ACL"05]). Five
different experiments have been performed. First, we adkbraf increasing magnitude to
the resulting displacement of the exact linear FE solutsatond, we add spatially varying
noise of constant magnitude to the result. Third, we userakdédferent noisy displace-
ments resulting from the same force. Fourth, we use sevéfataht force-displacement
relationships and fifth we use constrained optimizationdsecof noise with increasing
magnitude. Experiments 1-4 have been performed on the @¢uba experiment 5 has
been performed on the liver data set. For all test scenadsawe fixed our model at some



boundary nodes and have applied a foFt® all unconstrained nodes. Although we have
used homogeneous force fields in our tests, spatially vargirce fields and local forces
can be handled as well. This is especially interesting fdeimation tests. The relative
errors and deviations in the experiments are given witheetsjo the|| - |2 vector norm.

5.1 Noise of increasing magnitude

In order to investigate the sensitivity of the parameteingation to the presence of noise,
we have applied uniformly distributed noise of increasirepmitude to the displacements.
The elasticity parameters have been sefito= 10kPa andv = 0.33 and one force-
displacement measurement has been used to reconBtarad~ using our method. Fig. 3
illustrated the relative error in the reconstructed patenseZ and v with respect to the
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Figure 3: Accuracy of the reconstructed elasticity paransdfior increas-
ing deviation from a linear force-deformation relation.

5.2 Spatially varying noise

In order to investigate the sensitivity of the estimatioagadure to spatially varying noise,
we have applied noise of varying magnitude to each noderinstef all nodes, the devi-
ation of the noisy displacement vector from the exact databeen about 10%. We have
applied a forceF" = (0,0, —30)N to all unconstrained nodes. As can be seen in Fig. 4,
the accuracy of the reconstructed elasticity parametqusrits on the spatial distribution
of noise. However, it can also be seen that small differencdse measurements result in
similar reconstructed elasticity parameters. The recoot&d values for the Young’s mod-
ulus tend to be under-estimated and the values for Poistiortead to be over-estimated.



This might be due to the fact that noise of the same magnitageldss impact in axial
direction than in transverse direction.
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Figure 4: Reconstructed elasticity parameters for medsdisplacements with spatially
varying noise. The exact values have been sét to 10kPa ands = 0.33.

5.3 Several measurements for the same force

Since various authors propose to use several measureretite fparameter estimation,
we have investigated this effect on the accuracy of the itcocted parameters. We have
used the same setting as in the previous example, but hadeansacreasing number of
noisy displacement vectors for the same force vegtet (0,0, —30)N. The deviation of
the noisy displacement vector from the exact linear saftutias been constant at around
9 %. As can be seen in Fig. 5, the number of measurements inflaghe accuracy of
the parameter estimation process. For larger numbers cfureraents, the relative error is
improved by 2% compared to a single measurement. As alresyis the experiment with
noise of constant magnitude, the method tends to undenastEZ and to over-estimate.
Therefore, the relative error does not converge to zero.

5.4 Several force-displacement relationships

We have also investigated the effect of several force-degghent relationships with vary-
ing forces. Therefore, we have used different force vecaois have added noise to the
corresponding displacement vectors. As can be seen in Fige Gccuracy of the parame-
ter estimation is improved by 2-4% for more than one foragldicement relations. Since
the proposed parameter estimation scheme is very effigianight be reasonable to use
more than one force-displacement measurement.

5.5 Constrained optimization

If the unconstrained parameter estimation does not prgatigsically meaningful results,
we use constrained optimization. Similar to the experinier§ec. 5.1, we have applied
noise of increasing magnitude to the liver data set. Theieiysparameters have been set
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to £ = 50kPa andv = 0.3. We have constrained to be smaller or equal to 0.3. As can
be seen in Fig. 7, the error in the reconstructed Young’s nusdscales linearly with the
magnitude of the noisy in the displacements.

0.3
+ Young's modulus .

0.25 - .7
§ 02- W
@ RN
£0.15 - et
5 o
® 01 RO

0.05 - P

0 / T T T T T T 1
0 2 4 6 8 10 12 14

deviation from exact solution in percent

Figure 7: Accuracy of the reconstructed Young's modulusgision-

strained optimization in case of incr
deformation relation.

11

easing deviation fotimear force-



6 Conclusion

We have proposed a robust approach to estimate elasticayngders of a linear FE model.
Our approach is based on a linear least-square optimizataiiem. The method incorpo-
rates constrained and unconstrained parameter estinfatitinear elastic isotropic solids.
The proposed method is very efficient. In contrast to noalinaethods, there exists a
unique global solution of our minimization equation. Thewacy of the estimated param-
eters is independent of the shape or discretization of tfexblit is also independent of the
elasticity parameters and of the applied force used in tresorements. The reconstruction
error depends on the deviation of displacements and foroastheir exact linear relation.
Although noise is handled in a stable way, the accuracy optdrameter estimation de-
pends on the precision of the displacement measurememtieFwur approach processes
the displacements of all nodes. In practice, the methodinegjdiscrete geometries with
all nodes being placed at the surface of a model in order tblest@ measure the displace-
ments of all nodes. The proposed method can be used to meafutissue parameters in
craniofacial surgery. Although soft tissue is anisotropier approach can be used to obtain
approximate elasticity parameters in these cases.

7 Ongoing work

In case of composed materials with different elasticityapagters, it might be more ap-
propriate to use a local approach. Zantout et al. [ZZ94] hapgsed a local method for

bending plates with known Poisson ratio, where he has etththe parameters for each
primitive separately. We intend to apply this approach tateedral meshes. There might
also be appropriate formulations for anisotropic constuequations without the need of
nonlinear optimization methods. Since the linear Finiteni#nt Method does not work
very well for large deformations, it would be interestingderive a similar approach for

the corotated formulation in [MG04]. Although various expgents have been performed,
further analysis would still be possible. One could furtineestigate the method in case of
non-homogeneous force fields that arise e. g. in indent&ists. Additionally the case of

v tending to 0.5, and therebyin (17) tending to infinity, has not yet been studied.
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