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Abstract

We propose constraint sets as an efficient data structure for topology-changing deformable tetrahedral meshes.

Using constraint sets, data structure updates in case of topology changes are simple and efficient. The consistency

of the geometric representation is maintained and elasto-mechanical properties of the object are preserved. In

combination with a Finite Element model for elasto-plastic objects and a geometric constraint approach, con-

straint sets are applied to simulate the merging and breaking of conforming and non-conforming tetrahedral

meshes. Experiments illustrate the efficiency of the data structure in interactive applications and its versatility.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism: Animation

Keywords: Physically-based simulation, deformable modeling, topology changes, FEM, geometric constraints

1. Introduction

Tetrahedral meshes are a convenient representation for de-
formable objects. However, if topological changes such
as cutting [SDF07, SHGS06, BGTG04, GCMS00, CDA00,
FDA02, NvdS01], fracturing [OH99, MTG04], or merg-
ing [BWHT07] are incorporated into a dynamic simulation,
complex data structure updates have to be performed in order
to maintain a consistent tetrahedral mesh and to preserve the
elasto-mechanical properties. Although the requirements of
such an update are well-defined, the actual implementation
can be error-prone. Further, the update can cause differing
computing times per simulation step which can be disturb-
ing in interactive applications.

In this paper, we propose an efficient data structure for
topology-changing tetrahedral meshes. Instead of process-
ing mass points, a mass point is replaced by a constraint
set that comprises a distinctive mass portion for each ad-
jacent tetrahedron. Using constraint sets, topology changes
of conforming meshes are simplified to inserting or deleting
mass portions from a constraint set. Meshes resulting from
these simple operations are always consistent and elasto-
mechanical properties are preserved without any additional
effort. In addition to conforming meshes, the data structure

can also handle non-conforming meshes by inserting addi-
tional constraints into a set of mass portions. Constraint sets
are independent of the underlying deformation model and
the constraint method for non-conforming meshes. Although
constraint sets cause memory overhead, the consistent and
property-preserving data structure update in case of topolog-
ical changes is very simple and fast. The risk of implementa-
tion errors and differences in computing times per simulation
step are minimized.

Throughout the paper, we consider constraint sets in com-
bination with a linear co-rotational Finite Element approach
for deformable objects [MG04, HS04]. For non-conforming
meshes, constraint sets are combined with a geometric con-
straint approach [GBT06]. After the discussion of related re-
search and the detailed explanation of the data structure and
its implementation, we illustrate the properties and the ca-
pabilities of constraint sets. We show that mass points can
be replaced by constraint sets without changing the elasto-
mechanical properties or the dynamic behavior of objects.
Further, we investigate the memory consumption and the
computing costs related to topology changes. The versatil-
ity of the proposed data structure is illustrated by break-
ing and merging conforming and non-conforming tetrahe-
dral meshes.
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2. Related Work

In 1987, Terzopoulos et al. [TPBF87] introduced the
physically-based modeling of deformable solids to the
graphics community. They used a finite difference scheme
to discretize the underlying partial differential equations.
In [TF88b, TF88a], the model was extended to handle plas-
ticity and topological changes due to fracture. Starting with
early finite element works of [GTT89] and [CZ92], the fi-
nite element method has constantly been refined. Recent
advances for the finite element method include adaptive
sampling of [DDCB01] and the stiffness warping approach
of [MDM∗02]. [ITF04] introduced a modified constitutive
model to handle inverted finite elements. Plastic deforma-
tion has also been dealt with by [MG04], who adapted the
model of [OBH02] to the corotated linear FE model.

In terms of topological changes, various methods for split-
ting meshes have been proposed. E. g., [MBF04, SDF07]
duplicate elements and assigns partial volumes to them,
thereby avoiding ill-shaped primitives. [OH99] generates
new tetrahedral elements by splitting existing ones. He du-
plicates nodes where fractures originate and splits the simu-
lation mesh based on fracture planes. In [NvdS01], a data
structure for cutting tetrahedral meshes on existing faces
based on simplicial complexes is proposed. In contrast to our
method this approach relies on both a simplex model for the
topological changes as well as an conventional object repre-
sentation which has to be updated as well. Additionally this
model does not allow for non-conforming meshes.

Various data structures for tetrahedral meshes have been
proposed in the past that are mostly optimized with respect
to storage costs or topological navigation. For a thorough
discussion see [FH05].

Our data structure is well-suited for topological changes
when the splitting is performed on existing edges. In this
case, we do not need to duplicate structures and the consis-
tency of the mesh is easily and efficiently preserved. If ele-
ments need to be duplicated as in [MBF04], they can easily
be integrated into our data structure.

Further, non-conforming boundaries between merging
meshes can easily be incorporated into our data structure
using constraint handling as proposed e. g. in [GBT06]
and [SSIF07]. Both approaches insert virtual points in or-
der to be able to handle T-junctions. We use this concept
especially when merging non-conforming meshes.

Previous approaches for constrained boundary handling
at interfaces have used Lagrange multipliers [QB95] in
the context of non-conforming FE meshes or exceptional
points [LC06] for T-junctions in 2D Lagrangian hydrody-
namics. Lagrange multipliers however, introduce additional
degrees of freedom in the system. Expectional points on the
other hand have their velocity simply enslaved to neighbor-
ing regular points.

Only a few authors have dealt with the merging of meshes

in dynamic simulations. [BWHT07] presents a merging ap-
proach in the context of visco-plastic flow. As soon as two or
more objects are in persistent contact and undergo large de-
formation they merge and the objects are re-meshed at the
same time. In contrast to [BWHT07], we do not re-mesh
merging objects. Although this restricts the range of defor-
mation, the computational overhead for merging and sepa-
rating of meshes is negligible using our data structure. Simi-
lar to fracture and merge is the addition and removal of mate-
rial in virtual clay simulations, e.g. [CA06, DC04]. The clay
surface is defined as the iso-surface of a scalar field stored in
a 3D grid. To our knowledge, however, there exists no virtual
clay simulation that uses tetrahedral meshes.

A number of publications have addressed mesh-free
methods for fracturing and merging [PKA∗05] or split-
ting [SOG06], Clavet et al. [CBP05] introduced a particle
system with springs being dynamically added or removed to
connect particles and thereby simulating visco-elastic ma-
terials. However, as the proposed data structure is based on
tetrahedral meshes, we have concentrated on mesh-based ap-
proaches.

3. Constraint Sets

In this section, we describe the data structure. First, the
concept of constraint sets is introduced for conforming
meshes. Aspects related to force computations, object dy-
namics, topology changes, and computational overhead are
discussed. Extensions for non-conforming meshes are de-
scribed followed by implementation details.

3.1. Conforming meshes

Constraint sets can be used with objects that are discretized
into mass points with a defined topology represented with
basic primitives. In such a scenario, each mass point is re-
placed with a constraint set that is comprised of n mass por-
tions that represent the mass of the n adjacent object primi-
tives (see Fig. 1). The overall mass of a constraint set equals
the mass of the replaced point. Basically, a mass point is di-
vided into a set of mass points that are constrained to each
other. In terms of dynamic simulations, the processing of all
relevant attributes is transferred from the original mass point
to the constraint set (see Fig. 2). Merging of object primitives
now conforms to merging mass portions from different con-
straint sets into one set. Splitting of primitives is realized by
dividing mass portions from one constraint set into different
sets.

In the case of tetrahedral meshes, the number of mass por-
tions per constraint set is given by the number of tetrahe-
drons adjacent to a mass point. The mass of an element of
a constraint set is given by the respective fracture of mass
of the respective tetrahedron. Thus, the accumulated mass in
a constraint set equals the mass of a point that is initialized
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using a density approach. For a single tetrahedron, each con-
straint set contains one mass portion that corresponds to the
replaced mass point.

Figure 1: A set of mass points with a defined topology rep-

resented with basic primitives i.e. triangles (left). All mass

points are replaced by constraint sets that contain a number

of mass portions (right). The number of mass portions in a

constraint set depends on the number of adjacent primitives.

Figure 2: Forces Fi computed at the mass portions are accu-

mulated in a constraint set. After a topology change, position

xc and velocity vc are communicated to all mass portions in

the constraint set.

3.2. Dynamics

To compute internal forces, we employ a linear, co-rotational
Finite Element approach for elasto-plastic objects [MG04,
HS04,OH99]. The computed forces are entirely based on the
spatial configuration of a tetrahedron. Since masses are not
considered, the accumulated internal force in a constraint set
equals the internal force that would have been accumulated
at the replaced mass point. External forces are computed per
constraint set. Thus, the resulting forces at a constraint set
and at the replaced mass point are equal. These characteris-
tics guarantee that constraint sets do not influence the elasto-
mechanical properties of an object and its dynamic behavior.

Constraint sets can easily be combined with deformation
models that are independent of the actual mass of affected
mass portions, i. e. FEM and mass-spring. If mass-dependent
forces are computed for an object primitive, the overall mass
of a constraint set has to be considered instead of the respec-
tive mass portion in order to guarantee unaltered forces com-
pared to the original object representation without constraint
sets.

The numerical integration processes constraint sets in-
stead of mass portions. Therefore, the overall mass and the
overall force of a constraint set is considered. Integrated
properties of a constraint set, such as position and velocity,
are assigned to all mass portions. Since the overall mass and
force of a constraint set equals mass and force of the replaced
mass point, constraint sets do not influence the dynamics of
an object. In our applications, the Verlet integration is used.

3.3. Topological changes

Updates of data structures in case of topological changes are
now reduced to inserting mass portions into constraint sets
in case of merging or deleting mass portions from constraint
sets in case of breaking. This is particularly interesting for
the merging and breaking of objects with different densi-
ties. In this case, the explicit update of masses is avoided by
processing the respective mass portions within a constraint
set.

3.4. Computational aspects

Constraint sets are basically abstract containers for mass por-
tions that carry all information. Thus, the required memory
for constraint sets is given by the number of mass portions
which is given by the number of primitives. In case of a tetra-
hedral mesh, four mass portions are required per tetrahedron.
This number is fixed and independent of the topology of an
object. The topology just defines the number of constraint
sets and the number of mass portions per set. The memory
requirement is linear in the number of primitives.

Although there is some memory overhead for constraint
sets, their overhead in terms of computational costs is negli-
gible. It does not make any difference whether to accumulate
forces into a constraint set or into the replaced mass point.
Forces are calculated exactly the same way in both scenar-
ios. The numerical integration is performed once for each
constraint set that replaces an original mass point. Thus, the
same number of elements is integrated in both scenarios. The
only overhead in the constraint set data structure is the prop-
agation of the integration result (position and velocity) to all
mass portions of a constraint in case of a topology change.

3.5. Non-conforming meshes

The handling of non-conforming meshes is an important
issue in the simulation of merging objects. In order to al-
low for non-conforming meshes, additional constraints can

c© The Eurographics Association 2007.



Gissler et al. / Constraint Sets for Topology-changing Finite Element Models

be attached to a constraint set. In our application, point-to-
line, point-to-face, and point-to-tetrahedron constraints can
be considered within a constraint set. The approach is in-
spired by [GBT06] and constrains a constraint set position
to a position on a line, face, or tetrahedron.

3.6. Implementation

Containers for constraint sets might constitute memory over-
head with redundant information on forces, positions, and
velocities, accumulated from or to be transferred to their
mass portions. Further, constraint set containers have to
be generated or deleted dynamically in case of topological
changes. As an alternative to an explicit container represen-
tation, constraint sets can simply be realized by adding a
state and a pointer to the original mass point data structure.
Exactly one arbitrary mass portion within a constraint set is
defined to be a master. All other mass portions are slaves
and have a pointer to their master. Now, a constraint set ei-
ther consists of a master or of a master with a number of
slaves (see Fig. 3). This concept enables the communication

Figure 3: All mass portions of an object are stored in an

array. One arbitrary mass portion is declared master of a

constraint set. All other mass portions of the respective con-

straint set store a pointer to its master in the array.

of forces, positions, and velocities between a master and its
slaves and the numerical integration only considers masters.
With the master-slave concept, dynamic data structures are
avoided since the number of mass portions is constant and
independent of any topology change. If two constraint sets
are merged, one master is turned into a slave and all slaves
point to the remaining master. If a constraint set is split, the
group of mass portions containing the master does not have
to be processed. In the second group, a master is defined and
the pointers of the slaves are updated accordingly.

4. Results

In order to illustrate the properties and the performance of
the proposed data structure, we discuss four scenarios. All
experiments have been performed on an Intel Core 2 PC,
2.13 GHz with 2.0 GB of memory.

In the first scenario, two block-shaped tetrahedral meshes
with identical geometry are attached to a wall. The cuboid on
the right-hand side is represented with mass points. For the
cuboid on the left-hand side, constraint sets have been em-
ployed. Fig. 4 shows three frames of a dynamic simulation
with varying elasto-mechanical properties. The images show
the identical dynamic behavior of both objects. This illus-
trates that the elasto-mechanical properties of the FE model
are preserved if mass points are replaced by constraint sets.

Figure 4: Two cuboids with identical geometry are simu-

lated using constraint sets (left) and mass points (right).

In the three images, the Youngt’s Modulus is varied from

5kN/m2 (left), 500kN/m2 (middle), to 5000kN/m2 (right).

The Poisson ratio is always 0.3.

Each cuboid consists of 2400 tetrahedrons. Masses are
represented with 748 nodes and with 748 constraint sets with
9600 mass portions, respectively. The computation of the in-
ternal forces takes 21 ms for each cuboid. The integration
takes 0.08 ms for the nodes and 0.13 ms for the constraint
sets. The propagation of velocities and positions from all 748
masters to their 8852 slaves takes 1.1 ms. The propagation,
however, is only required in case of a topology change and
is only performed for a small number of affected constraint
sets. These measurements illustrate that the computational
overhead of constraint sets is negligible.

In a second scenario, the application of constraints to frac-
turing objects is shown (see Fig. 5). The teddy consists of
4300 tetrahedrons, 1k constraint sets, 17k mass portions.
Forces and numerical integration are computed in 40 ms. If
a connection within the tetrahedral mesh breaks down, con-
straint sets are updated by re-organizing the respective mass
portions. The computational overhead for the data structure
update including propagation is 0.005 ms. This means that in
case the object fractures into single tetrahedrons, the compu-
tational costs for the update would be 5 ms. As the number
of splits is in general much lower than the number of nodes,
this overhead is negligible compared to the computation of
internal forces and numerical integration. The propagation of
velocities and positions is only performed for a small num-
ber of affected constraint sets. This results in constant com-
puting times for each time step throughout the simulation.
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Figure 5: A teddy model is fractured. The object is repre-

sented with a tetrahedral mesh and a high-resolution sur-

face mesh for visualization purposes. In case of topologi-

cal changes, the data structure is efficiently updated by re-

assigning mass portions to the respective constraint sets. The

computational overhead in order to maintain a consistent

mesh is negligible.

In a third scenario, the processing of non-conforming
meshes is demonstrated (see Fig. 6). Two deformable ob-
jects are glued to each other. The dynamic merging process
is governed by a spatial subdivision approach that detects
collisions and self-collisions [THM∗03]. Detected collisions
result in geometric constraints that are added to a constraint
set. The scenario consists of 2088 tetrahedrons, 780 con-
straint sets, and 8352 mass portions. The computation in-
cluding FE forces and integration takes 18 ms. Again, there
is no significant overhead for updating the constraint sets in
case of a topology change.

Figure 6: Objects are glued to each other. Connections are

realized with geometric constraints that can be added to a

constraint set. Collisions and self-collisions are handled.

The last scenario illustrates the versatility of the data
structure. Two objects are merged and split arbitrarily (see
Fig. 7). The scenario consists of 2160 tetrahedrons, 686 con-
straint sets, and 8640 mass portions. The computation time is
19 ms, the overhead for data structure updates is negligible.
As can be seen in Fig. 7, constraint sets enable a very flexible
processing of combinations of merge and split operations.

Figure 7: Two objects are merged and split. Constraint sets

allow for a very simple and efficient combination of arbi-

trary split and merge operations.

5. Conclusion

We have proposed constraint sets as an efficient data struc-
ture for topology-changing tetrahedral meshes. Mass points
are replaced by constraint sets in order to accelerate and sim-
plify data structure updates for merge and split operations.
Processed meshes are guaranteed to be consistent and elasto-
mechanical properties are preserved without any additional
effort. Complex combinations of merge and split operations
for tetrahedral meshes can efficiently be processed. The data
structure handles conforming and non-conforming meshes.
It is independent of the underlying deformation model. We
have shown, that the computational overhead for the consis-
tent and property-preserving data structure update in case of
topological changes is negligible compared to the computa-
tion of FE forces and the numerical integration. Even for the
rare case of an object fracturing into single tetrahedrons the
costs for the data structure update are only about 10% of the
force and integration costs. Due to its ease, the risk of im-
plementation errors and differences in computing times per
simulation step are minimized.
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