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Inversion handling for stable deformable modeling

Abstract In 3D deformable modeling approaches based
on FEM, inverted tetrahedral elements can cause unde-
sired visual artifacts and the breakdown of the simula-
tion. As inversion can never be avoided and sometimes
even is the correct behavior of elements, there is a strong
need for stable inversion handling. In this paper, we pro-
pose a novel method to resolve inverted elements which
is motivated by previous work of Irving et al. [6]. In
combination with an efficient handling of degenerated
elements, our approach yields a stable simulation of ar-
bitrary deformations. Although we focus on the corota-
tional formulation of linear FEM, the method can be
implemented within arbitrary constitutive models.

Keywords Deformable Modeling · Finite Element
Method · Corotational FEM · Inverted Elements

1 Introduction

In Computer Graphics, the simulation of deformable ob-
jects based on physical laws started with the pioneer-
ing work of Terzopoulos [14]. Since then, several defor-
mation models have been established, e. g. mass-spring-
approaches, geometrically motivated models [10] or po-
tential based methods [15]. Recently, the Finite Element
Method (FEM) became famous to achieve physically re-
alistic animations. In this context, 3D deformable mod-
eling approaches are based on tetrahedral elements. Due
to the computational cost of nonlinear FEM, linear FEM
is commonly used in interactive simulations which have
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a great variety of applications in e. g. virtual surgery or
games. However, the fact that linear FEM is not invari-
ant under rigid body rotations has turned out to be a
problem. It implies that the rotation of an object has
to be extracted prior to the force computation. In many
FEM applications, this is done by a polar decomposition
of the deformation gradient, e. g. Hauth and Strasser [5]
and Mueller and Gross [9]. However, this does not guar-
antee to return a pure rotation. Instead, it returns a
rotation if and only if the tetrahedron is not inverted.
Otherwise, the polar decomposition returns an orthogo-
nal matrix that includes a reflection. Unfortunately, this
results in force discontinuities when a tetrahedron gets
inverted. Further, the forces of an inverted tetrahedron
erroneously act to keep it inverted. Fig. 1 illustrates this
problem.

(a) (b)

Fig. 1 (a) shows the tetrahedral mesh of a cube falling onto
the ground. (b) shows an erroneous equilibrium state after the
impact if inverted tetrahedrons are not adequately handled.

At this point, we want to emphasize that inversion is
not a problem of linear FEM itself, but only of the coro-
tational formulation. In Sec. 4.2, we show that problems
with inverted elements are solely caused by the possibly
improper rotation returned by the polar decomposition.

One way to address this problem would be to prevent
the inversion of elements. However, this requires addi-
tional forces that are difficult to motivate. Further, it
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is difficult to guarantee that inversion is really avoided.
Besides, there are cases where inversion is the correct
behavior of elements (see e. g. [6]). As the linear model
works well for inverted elements, it seems to be more ap-
propriate to allow the inversion and to adequately handle
inverted elements.

In order to process inverted elements, a particular
inversion direction has to be determined. This direction
cannot be extracted by simply considering the current
deformation state. If an inappropriate direction is cho-
sen, the computation results in force discontinuities. Irv-
ing et al. [6] induced an inversion handling approach
based on the heuristic assumption that an inverted tetra-
hedron is ”as uninverted as possible”. This implies that
an inverted tetrahedron should get uninverted along the
direction that causes the minimum movement of a ver-
tex. While the underlying heuristic is very useful and
appropriate, there exist cases where the inversion han-
dling of [6] is not conform to this assumption.

1.1 Contribution

In this paper, we propose a new method to determine the
inversion direction of inverted elements. The approach is
similar to [6]. It is based on the same heuristic that el-
ements are as uninverted as possible. However, we show
that the proposed method exceeds the approach of Irving
et al. in the fact that it always chooses the direction that
is implied by the heuristic assumption. We further illus-
trate positive effects of our inversion handling approach
in dynamic simulations. Compared to other strategies,
inversions are efficiently resolved within a small num-
ber of simulation steps. Our approach requires that the
deformation gradient can be transformed to a diagonal
form. Thus, it can be implemented within any material
constitutive model. The approach can easily be imple-
mented in combination with a stable handling of degen-
erated elements. It improves the robustness and stability
of FE based deformable modeling approaches.

2 Related work

The Finite Element Method has been used in various ap-
plications, e. g. muscle simulation [1], virtual surgery [13]
and fracture simulation [11,12,4]. Debunne et al. [2] have
introduced a multi-resolution model to use the Finite
Element Method in interactive simulations. The first ap-
proach to adapt linear FEM to interactive simulations
was the warped stiffness concept introduced by Mueller
et al. [8]. In this approach, rotations are computed per
vertex. However, ghost forces can occur. This issue has
been addressed by Hauth and Strasser [5] and Mueller
and Gross [9]. Hauth and Strasser [5] propose to extract
the spatial rotation from the deformation gradient. And
Mueller and Gross [9] show how this can easily be done if
the barycentric coordinates are used as shape functions.

In [6], Irving et al. discuss that many deformation
models are not valid for inverted elements and there-
fore, many FEM algorithms are not capable of inversion.
However, as strategies like untangling meshes [3,16] are
not guaranteed to work, they show the necessity to intro-
duce a method that can handle inversion. They further
propose to modify constitutive models near the origin,
e. g. by a linearization, in order to avoid corruption in
the case of inversion. This is justified as otherwise even
a single inverted element could cause the breakdown of
a simulation.

Our approach is motivated by [6]. Basically, an inver-
sion direction is determined to handle inverted elements.
In contrast to existing approaches, the proposed method
estimates intuitive inversion directions in all cases.

3 Deformation model

In our work, we are interested in dynamic simulations of
deformable objects. An object is characterized by a time-
dependent mapping Φ : [0,∞)×Ω → R

3 with Ω ⊂ R
3. Φ

maps each point in material coordinates to its position
in world coordinates. For a fixed point in time t, the
function can be written as Φt : Ω → R

3. In the Finite
Element Method, one partitions the object into a set
of primitives and replaces Φt by a piecewise polynomial
interpolation ΦP

t , where every polynomial is defined on a
primitive. Usually, tetrahedrons are used as primitives.
Let ΦP

t,e be the restriction of ΦP
t to some tetrahedron

e. In the corotational model of Hauth and Strasser [5],
the rotation of e is extracted by a polar decomposition
of the deformation gradient DΦP

t,e. If we apply linear

shape functions, ΦP
t,e is an affine linear mapping and can

be written as ΦP
t,e(x) = Bex + b, where b ∈ R

3 is a

translation. Clearly we have DΦP
t,e = Be, and we will

refer to Be as the deformation gradient from now on.
In the case that we take the barycentric coordinates as
shape functions, Mueller and Gross [9] show a simple way
to compute Be. As stated in the introduction, [9] and [5]
compute the rotational part Re by a polar decomposition
Be = RBe

SBe
of Be.

Looking at the determinant of Be, we can decide on
the state of the tetrahedron. A tetrahedron is inverted
if and only if det(Be) < 0, it is degenerated if and only
if the deformation gradient is singular, i. e. det(Be) = 0,
and in a ”normal” deformation state otherwise.

3.1 Notation

For a brief review of the force computation and to show
that problems with inversion come up with the corota-
tional model, we introduce a few terms that are used in
this paper. As forces are always computed at a fixed
point in time, we dismiss the index t. For a tetrahe-
dron, x0, . . . ,x3 denote the current positions of its ver-
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tices, xcm denotes its center-of-mass, and we set ri :=
xi −xcm, i = 0, . . . , 3. x ∈ R

12 without an index denotes
a vector that contains the coordinates of all vertices, i. e.
x = (xT

0
, . . . ,xT

3
)T . An apostrophe ′ indicates the ini-

tial value of a variable. Ke ∈ R
12×12 denotes the stiff-

ness matrix of element e and fe ∈ R
12 collects the forces

that act on the vertices like x collects the coordinates.
With Re ∈ R

12×12 we denote a blockdiagonal matrix
with RBe

∈ R
3×3 being the four nonzero blocks along

the diagonal and zero entries at all other positions.

3.2 Force computation

In linear FEM, the internal forces are computed by the
equation fe,lin = Ke(x − x′) =: Keqlin. To eliminate
the rotation from the force computation, the deformed
tetrahedron is rotated by RT

Be

, so x is rotated by Re, and
the forces are rotated back by RBe

resp. Re afterwards:

fe = ReKe(R
T
e x − x′) =: ReKeq. (1)

The corotational displacement q = (RT
e x− x′) contains

only the symmetric part of the deformation. For the dy-
namic simulation, the equation Mẍ + fe,lin = 0 resp.
Mẍ + fe = 0 is solved, where M is the mass matrix. If
we assume mass lumping and distribute the mass equally
to all vertices, the equation simplifies to mẍ = −fe. For
the further discussion we do not need to consider friction
and external forces and therefore omit the corresponding
terms.

For later use note, that we could equivalently define
the corotational displacement using SBe

. For this pur-
pose, we denote with Se ∈ R

12×12 a blockdiagonal ma-
trix with SBe

as the blocks along the diagonal and zero
entries elsewhere. As RBe

Be = SBe
, we see that RT

e x

and Sex
′ differ only by a translation. Therefore, defining

the corotational displacement as qS := (Sex
′−x) would

result in the same forces like q.

4 Inversion handling

In this section, our inversion handling approach is ex-
plained. In Sec. 4.1, we briefly describe the polar decom-
position in order to illustrate the problem that has to be
addressed. And in Sec. 4.2, we show that the problem can
be solved by computing a proper rotation for inverted
elements. In Sec. 4.3, the basic idea of the inversion han-
dling method is outlined, while Sec. 4.4 briefly describes
the idea of Irving et al. [6]. The properties of [6] are dis-
cussed in Sec. 4.5. In particular, a case of a non-intuitive
inversion direction is shown. Our approach, described in
Sec. 4.6, addresses this issue. In Sec. 4.7, the incorpora-
tion of degenerated elements is explained.

4.1 Polar decomposition

Let Be be some nonsingular deformation gradient of a
tetrahedron e and Be = RBe

SBe
its polar decomposi-

tion. Then we know that RBe
is an orthogonal matrix

and SBe
is symmetric positive definite. It follows that

det(RBe
) = sign(det(Be)). This implies that if e is in-

verted and hence, det(Re) = −1, the internal forces are
not only rotated, but also reflected. Hence, they act to
keep the tetrahedron inverted (see Fig. 2). Furthermore,
the reflection of forces implies force discontinuities dur-
ing the inversion of a tetrahedron which cause visual ar-
tifacts.

For convenience, we briefly summarize one variant of
the polar decomposition. First, we compute the square
root of BT

e Be. This is done by computing the diago-
nalization De = QT BT

e BeQ of Be, where Q is an or-
thonormal matrix with the eigenvectors of BT

e Be be-
ing the columns of Q. The diagonalization exists be-
cause BT

e Be is symmetric. The square root of BT
e Be

then is simply given by
√

BT
e Be = Q

√
DeQ

T . Then we

set SBe
:=

√

BT
e Be and compute the rotation RBe

as

RBe
= BeS

−1

Be

. The inverse S−1

Be

is simply computed as

Q
√

De
−1

QT and does not produce significant computa-
tional overhead.

An overview of various techniques of polar decompo-
sition can be found in [17].

4.2 Inversion problems due to rotation

In this section, we show that problems with inverted ele-
ments must be located in the improper rotation returned
by the polar decomposition. Therefore, they can be re-
solved by computing a proper rotation.

We consider a tetrahedron e. As translation does not
cause any forces, we can assume w. l. o. g. xcm = x′

cm.
For the analysis of the linear FEM, we assume that the
deformation does not contain a rotational part. How-
ever, the tetrahedron might be inverted. As Ke is sym-
metric, it is diagonalizable. Furthermore, it is positive
semidefinite. Let v0, . . . ,v11 be the eigenvectors of Ke

with eigenvalues λ0, . . . , λ11 and consider the displace-
ment qlin represented using the eigenvectors, i. e. qlin =
∑

11

i=0
qi
linvi. We can simply write the internal forces as

fe,lin =
∑

11

i=0
λiq

i
linvi. For the dynamic equation, it fol-

lows mẍ =
∑

11

i=0
(−λiq

i
lin)vi. The minus sign indicates

that each component of the accelerating forces along
an eigenvector acts opposite to the causal displacement.
Hence, the displacement is reduced and the tetrahedron
tends to its uninverted resting state. Note that we do not
use any knowledge whether the tetrahedron is inverted
or not. Thus, this argument holds true also for inverted
tetrahedrons.

In the same manner, we can decompose the coro-
tational displacement q into its components along the
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eigenvectors and analogously conclude that each com-
ponent causes a force that accelerates the vertices in
the direction opposite to the causal displacement com-
ponent. If the displacement is computed correctly, the
forces will be, too. Therefore, the only possible reason
for any errors that occur when inverted elements are in-
volved must be located in the rotation Re. As seen in
Sec. 4.1, element inversion yields an improper rotation
in the polar decomposition. Due to this fact, the com-
puted forces cause an acceleration of the vertices to the
positions of the reflected resting state. This is described
in the two-dimensional example in Fig. 2.

(a) (b)

(c) (d)

Fig. 2 This figure shows the error in the corotational force
computation due to an improper rotation. In (a) we see the
original triangle. (b) shows the current deformation state x,
where the triangle is inverted. The arrows indicate the correct
forces that should be computed in this state. (c) visualizes
an intermediate step in the corotational force computation
(see eq. (1): fe = ReKe(R

T
e x − x′)), where the computation

is decomposed in its single steps. It shows the transformed
deformation state RT

e x. The internal forces are computed
w. r. t. this virtual state. As det(RBe

) = −1, this virtual state
is the reflection of the correct state seen in (b). Therefore, the
triangle seems not to be inverted during force computation.
The arrows depict the intermediate forces fe,i = Ke(R

T
e x −

x′) that are caused by this virtual state. In (d), we see the
current deformation state of the triangle and the corotational
forces fe = Refe,i, which are just the reflected intermediate
forces shown in (c) and therefore act in the wrong direction.

4.3 Basic idea

Having recognized that problems with inverted elements
are caused solely by the corotational formulation and
come up due to polar decomposition, we see that elimi-
nating the arising lacks should only be done by a modifi-
cation of the polar decomposition. The idea of the coro-
tational formulation was to separate the rotational part
from the deformation, which is violated if RBe

contains
a reflection. So, we have to modify the polar decomposi-

tion in such a way that the reflection is contained in SBe

and RBe
is an orthonormal matrix.

Let ŜBe
= QT SBe

Q be the diagonalization of SBe
.

To include a reflection in SBe
, we can invert either one

or three of the diagonal entries of ŜBe
which results

in some Ŝ′
Be

with det(Ŝ′
Be

) < 0 and redefine SBe
:=

QŜ′

Be

QT , computing RBe
= BeS

−1

Be

afterwards. Opti-
mally, we could identify the direction in which the tetra-
hedron got inverted and choose the corresponding en-
try of ŜBe

to be negative, because inverting another one
would lead to force discontinuities. As this is not possible
by just looking at the current state of the tetrahedron,
we have to make some heuristic assumption about the
current deformation.

4.4 Existing approach

Irving et al. [6] assume that a tetrahedron is as unin-
verted as possible, which implies two aspects: Only one
component of ŜBe

should be chosen to be negative and
this component should correspond to the direction that
causes minimum movement to uninvert the tetrahedron
in this direction. They use singular value decomposition
(SVD) Be = UBe

ŜBe
VT

Be

, where UBe
and VBe

are or-
thogonal matrices, to diagonalize the deformation gradi-
ent. This leads to the same diagonal matrix as the po-
lar decomposition (see Sec. 4.7), where they choose the

smallest diagonal entry of ŜBe
which should correspond

to the desired direction.

4.5 Discussion of the existing approach

The choice of Irving et al. [6] seems to be founded in [7],
where the minimization of the quadratic form

3
∑

i=0

||ri − Rr′i||2 (2)

among all rotations R is considered. Remember that we
set ri = xi − xcm to be the coordinates relative to the
center-of-mass. They show that the optimal rotation can

be extracted from the matrix Arr′ :=
∑

rir
′T
i by polar

decomposition Arr′ = Rrr′Srr′ in the case det(Arr′) >

0. If det(Arr′) < 0, they show that one has to compute

the diagonalization Ŝrr′ of the symmetric part Srr′ of
the polar decomposition and indeed invert the smallest
diagonal entry to obtain the optimal rotation Rrr′ , like
it is proposed by [6] for the deformation gradient.

However, Arr′ generally does not equal the deforma-
tion gradient Be. Although they differ only by a sym-
metric matrix (see [10]), e. g. Be = Arr′ · Asym, their
polar decompositions return different rotations. This is
founded by the fact that the product of two symmetric
matrices is symmetric if and only if both matrices are
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simultaneous diagonalizable. Therefore, Srr′ · Asym in
general is not symmetric and Be = Rrr′ · (Srr′ ·Asym) is
not equal to the polar decomposition RBe

SBe
of Be. It

follows that the inversion of the smallest diagonal entry
of ŜBe

does not necessarily minimize (2), which seemed
to be a motivation, and that the minimization of (2) is
not the goal of the corotational model, as Be 6= Arr′ in
general.

Further, choosing the smallest diagonal entry does
not necessarily fulfill the heuristic assumption as it does
not always correspond to the direction that causes mini-
mum movement to uninvert the tetrahedron. This is eas-
ily seen by the two-dimensional example in Fig. 3 which
could analogously be performed in R

3. The upper trian-
gle shows its resting state that has small extension h in
y-direction. The lower one shows its current deformation
state. It is inverted in y-direction and compressed in x-
direction, so the deformation gradient Be is diagonal. As
it has the same y-height h as in the resting state, the en-
try corresponding to this direction is −1, while the entry
in x-direction is a little smaller than one, say 0.9. Then,
the deformation gradient Be would be Be =

(

0.9 0

0 −1

)

and
the symmetric part SBe

= ( 0.9 0

0 1
). Hence, as the entry

corresponding to the x-direction is smaller, the triangle
is chosen to reinvert along x-direction. This clearly con-
tradicts the heuristic assumption. The problem is that
the smallest diagonal entry does not reflect the distance
of any vertex to its opposite face, because it obviously de-
pends on the resting state. The flatter the triangle is, the
more probable it is that this rule chooses a non-intuitive
component.

Fig. 3 This figure illustrates a non-intuitive choice of the in-
version direction. The upper triangle shows the resting state,
and the lower one shows the current deformation. The tri-
angle is deformed such that it is inverted in y-direction and
slightly compressed in x-direction. The entry of Be corre-
sponding to the y-direction is −1, because it is inverted and
has the same height h as in the initial state. Hence, the entry
of SBe

corresponding to the y-direction is 1. The entry in x-
direction is smaller than 1 and therefore, it is chosen as the in-
version direction. Consequently, the triangle gets uninverted
in x-direction as indicated by the arrows. However, according
to the heuristic assumption, obviously the y-direction should
be chosen.

4.6 Our approach

Our approach is based on the heuristic assumption of Irv-
ing et al. [6] which states that the tetrahedron is as un-
inverted as possible. This assumption demands that we
locate the direction that causes minimum movement to
uninvert the tetrahedron. As this direction does not nec-
essarily correspond to the smallest entry in SBe

, there is
some more work to do. First we recognize that the direc-
tion to reinvert the tetrahedron should be the direction
in which one of the vertices has the shortest distance to
its opposite face. Note that ”distance” must not be inter-
preted as the standard orthogonal distance, but it rather
means ”distance along some given direction”. The reason
is that ŜBe

restricts the choice to three directions, which
are given by the eigenvectors of SBe

. If we took the or-
thogonal direction, we would not know which diagonal
entry to invert. Hence, we have only three predetermined
directions that can be chosen as the inversion direction,
and we have to compute the shortest distance along one
of these directions.

To determine the direction causing minimum move-
ment, we look for a pair (c,v) consisting of an eigenvec-
tor v of SBe

with ||v|| = 1 and a vertex c such that the
distance from c along v to its opposite face Fc is mini-
mized among all possible pairs. This is done by comput-
ing a parameter λc,v for each pair (c,v) with ||v|| = 1
such that xc + λc,v · v lies on Fc, where xc denotes the
position of c. Clearly, |λc,v| then denotes the distance of
c along v to Fc. Hence, the desired pair (c0,v0) is the
one that corresponds to the minimum |λc0,v0

|.
For the computation of λc,v, we have to note that

the eigenvectors of SBe
are related to the unrotated co-

ordinate frame, while the current deformation state con-
tains a rotation. Remembering Sec. 3.2, we see that we
could compute the forces equivalently with respect to the
state Sex

′. This state is related to the unrotated coordi-
nate frame and obviously fits to the eigenvectors of SBe

.
However, as shown in Sec. 4.2 it does not contain the
inversion and therefore, it causes erroneous forces. In-
verting one of the diagonal entries of ŜBe

now is equiv-
alent to inverting the reference state Sex

′ in order to
get the correct forces. Sex

′ and the current deformation
state x differ by translation, rotation and inversion. Since
none of these changes any distance, looking for the di-
rection that causes minimum movement to uninvert the
deformed, rotated tetrahedron is equivalent to looking
for the direction that causes minimum movement to in-
vert the unrotated reference state Sex

′. Therefore, we
can compute the parameters λc,v with respect to Sex

′.

Now let c′ be any vertex of the face Fc and xS
c′ its

position in the reference state Sex
′. Let xS

c be the posi-
tion of c in this state. As λc,vv and (xS

c′−xS
c ) are vectors

that point from c to some point on the plane that con-
tains Fc, they have the same component along the face
normal of Fc. With nc being the unit face normal of Fc,
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this fact could be expressed by the following equation.

λc,vv · nc = (xS
c′ − xS

c ) · nc (3)

Now it follows that λc,v can be computed using

λc,v =
(xS

c′ − xS
c ) · nc

v · nc

. (4)

Choosing v0 according to the minimum |λc0,v0
| provides

the direction with minimum movement to invert the ref-
erence state Sex

′. As argued above, v0 also provides the
direction causing minimum movement to uninvert the
tetrahedron, and we change the sign of the diagonal en-
try that corresponds to v0. Since the length of nc cancels
out in (4), we can drop the condition that it has to be a
unit vector.

Further, we store c0 as the vertex that is seen as
the one that caused the inversion by crossing Fc0

. Un-
til the tetrahedron returns to an uninverted state, we
compute the optimal direction v0 with respect to c0, so
that the tetrahedron gets uninverted by c0 crossing Fc0

again. Note that we cannot store any direction, because
the eigenvectors of SBe

and therewith the possible in-
version directions change in each time step. Hence, we
have to refer to a vertex to achieve a consistent choice of
inversion directions in subsequent iterations.

We introduced this approach for the corotational for-
mulation of linear FEM. However, it can be implemented
for arbitrary deformation models. The only condition is
that the deformation gradient can be transformed into
diagonal form. This is always possible using the SVD
Be = UBe

ŜBe
VT

Be

, where UBe
can be interpreted as

a rigid body rotation, and VBe
as a material rotation

(see [6]). The columns of VBe
can be interpreted as the

possible inversion directions that are needed in our ap-
proach. Irving et al. [6] show how this can be generalized
to anisotropic materials.

4.7 Degenerated tetrahedrons

As seen in Sec. 3, a tetrahedron is inverted if and only
if det(Be) < 0, whereas it is degenerated if and only if
det(Be) = 0. Therefore, inverted elements and degener-
ated elements are handled completely independent from
each other. Together with an efficient handling of degen-
erated elements, our approach yields a stable simulation
of arbitrary deformations.

Like inversion, problems with degenerated elements
occur only in the corotational formulation. The problem
is again located in the polar decomposition. We adopt a
simple solution shown in [6] that is based on SVD and
leads to a solution for the polar decomposition, which is
described in this section. The polar decomposition and
the SVD of a deformation gradient Be are connected by
Be = RBe

SBe
= RBe

QŜBe
QT =: UŜBe

QT , which is
the SVD of Be. If Be is singular, then at least one of the

diagonal entries of ŜBe
is zero. If it is exactly one en-

try, the two columns of U corresponding to the nonzero
entries are uniquely determined. The third column then
is computed as the cross product of the other two and
therefore is unique, too. Hence RBe

= UQT results in
an unique solution for the polar decomposition. If more
than one diagonal entry equals zero, the solution is no
longer unique and we choose a system of orthonormal
columns for U. In every case, RBe

is guaranteed to be a
proper rotation.

5 Results

We performed several experiments to show how our new
approach works. Remember the heuristic assumption that
a tetrahedron always is as uninverted as possible. In
Sec. 5.1, we show that our method chooses the direction
corresponding to this assumption and that it guarantees
fast and reliable recovery from inversion. In Sec. 5.2, we
show that it can easily be implemented together with a
stable handling of degenerated elements.

5.1 Recovery from inversion

In the first experiment, we take a single tetrahedron and
invert it manually. The resting state and the inverted
state are shown in Fig. 4.

After the manual inversion, we simulate the behav-
ior of the tetrahedron starting with the inverted state.
The inversion direction that is chosen by the existing
approach is indicated by the red line in Fig. 5(a). Com-
pared to Fig. 4(c), we see that this choice is non-intuitive.
Fig. 5(b) illustrates the resting state that is reached us-
ing the existing approach.

(a) (b) (c)

Fig. 4 This figure illustrates the setting of the first exper-
iment. (a) shows the resting state of the tetrahedron. (b)
shows an inverted state where the top vertex was moved be-
low its opposite face. (c) depicts the expected inversion di-
rection, which is preferred by the heuristic assumption.

In Fig. 6, we show that the tetrahedron is uninverted
correctly by our method. As the picture illustrates, our
approach locates the correct direction and uninverts the
tetrahedron as expected.

In the experiment shown in Fig. 7, a cube falls down
onto the ground (Fig. 7(a)) which leads to the inver-
sion of many tetrahedrons. It demonstrates that inver-
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(a) (b)

Fig. 5 (a) illustrates the reinversion direction that is chosen
by the existing approach. (b) shows the resting state after
the existing approach is applied.

(a) (b)

Fig. 6 (a) repeats the expected reinversion direction to il-
lustrate that our approach restores the intuitive resting state
which is depicted in (b).

(a) (b)

Fig. 7 (a) shows a cube that is falling down onto the ground.
(b) If inversion is not handled correctly, the cube stays in an
erroneous equilibrium state.

sion handling is required (Fig. 7(b)) and that the chosen
inversion direction significantly influences the behavior
of an object (Fig. 8). Fig. 7(b) depicts what happens if
we use the corotational FEM approach without any in-
version handling. Many tetrahedrons stay inverted due
to the improper rotations, and as a consequence the cube
loses volume. Also, its energy gets lost in this example,
and it does not bounce up any more.

Fig. 8 illustrates a naive inversion handling, where
just any diagonal entry is chosen as the inversion direc-
tion. The cube recovers to its original shape, but it takes
a long time and it suffers from self intersections during
the recovery. Due to this fact, it loses energy and does not
bounce as high as it should. In Fig. 9, we illustrate the
behavior of the falling cube using our approach. First of
all, it is not deformed as much as in the other two cases,
because the inversion handling locates the correct in-
version direction and therefore, the internal forces react
faster. The original shape is restored after a few simu-
lation steps, which shows the efficiency of the approach.
Further, we can see that the inversion handling does not
result in an artificial rotation of the object.

(a) (b) (c)

Fig. 8 Naive inversion handling. (a) shows the maximum
compression of the cube. (b) illustrates that there are self-
intersections during inversion recovery. (c) shows that the
cube restores its original shape.

Fig. 9 Our approach. Compared to Fig. 8, the original shape
is restored in less simulation steps.

5.2 Handling degenerated elements

This section shows the combination of inversion handling
with degenerated elements. We shrink a cow in a virtual
sphere until the radius of the sphere is zero and all tetra-
hedrons are degenerated to a single point. After that, the
spherical boundary is removed and the internal forces re-
store the shape of the cow. During the deformation and
the recovery process, many inverted tetrahedrons have to
be processed. As stated in Sec. 4.7, the rotation in the
degenerated case is not unique when a tetrahedron is de-
generated in more than one direction. Therefore, when
all tetrahedrons are compressed to a single point, one
has to choose any kind of rotation. Hence, it is possible
that although the cow does restore its correct shape, it
does find the correct rotation.

6 Conclusion

In this paper, we have shown that there is a strong need
for efficient and stable inversion handling in FEM algo-
rithms that are commonly based on a corotational formu-
lation. We have reviewed an existing approach, where we
have recognized a non-intuitive behavior in some configu-
rations. Therefore, we have introduced a new method for
inversion handling that always chooses the most appro-
priate direction to uninvert an inverted tetrahedron. In
contrast to existing approaches, our method can store the
inverted component to guarantee a consistent process-
ing of inverted elements in subsequent simulation steps.
Thus, our approach improves the stability and robust-
ness of FE based deformable modeling approaches.
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(a) (b)

(c) (d)

(e) (f)

Fig. 10 A cow is shrunk by a virtual sphere ((a)-(c)). After
the sphere is removed, the cow restores its original shape
((d)-(f)).
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