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Abstract

In this paper, we present an adaptive model for dynamically deforming hyper-elastic rods. In contrast to existing
approaches, adaptively introduced control points are not governed by geometric subdivision rules. Instead, their
states are determined by employing a non-linear energy-minimization approach. Since valid control points are
computed instantaneously, post-stabilization schemes are avoided and the stability of the dynamic simulation is
improved.
Due to inherently complex contact configurations, the simulation of knot tying using rods is a challenging task.
In order to address this problem, we combine our adaptive model with a robust and accurate collision handling
method for elastic rods. By employing our scheme, complex knot configurations can be simulated in a physically
plausible way.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism: Animation

Keywords: Deformation Modeling, Elastic Rods, Adaptive Resolution, Contact Handling, Knot Simulation

1. Introduction

Physically-based simulation of one-dimensional elastic ob-
jects (rods) is a challenging problem in the area of computer
animation. Although elastic rods are related to deformable
solids and thin shells, rods in contact are particularly diffi-
cult to simulate due to their negligible volume and poten-
tially complex contact geometries.

Real-world elastic rods are characterized by continu-
ous mass distributions and displacement fields. In contrast,
spatially discretized models have a restricted number of
degrees-of-freedom (DOF). In order to achieve optimal sim-
ulation results with a limited computation power, the DOFs
should adapt to varying configurations. If e. g. rods are em-
ployed in knot-tying simulations, different parts of a rod un-
dergo time-varying small and large deformations. Moreover,
segments can be collision free, or they can be involved in
settings with a large number of contacts.

Spatially adaptive discretizations can be realized in vari-
ous ways. In case of ageometric adaptation, the DOFs are
arranged according to the geometric configuration of a rod.
DOFs are introduced in regions with high curvature and re-

moved in regions with low curvature. This technique is em-
ployed in cloth simulation to avoid artifacts if cloth is draped
over sharp edges [BMF05]. As an alternative to geometric
adaptation,mechanical adaptationis governed by contacts
or other interactions [LGCM05,GLM06].

Main results: We propose an adaptive simulation of elas-
tic rods in contact. Our approach works with any discrete
hyper-elastic deformation model, i. e. a deformation model
that defines a (necessarily convex) strain energy function
W from which a stress-strain relationship can be derived.
Our approach unifies contact handling with a dynamic multi-
resolution technique. However, we do not pre-compute dif-
ferent resolutions. Instead, DOFs are arranged based on geo-
metric and mechanical adaptation criteria. Further, in con-
trast to previous work, we do not employ a virtual node tech-
nique [SSIF07], but refine the DOFs and adapt the govern-
ing differential equations. The approach faces the following
challenges:

• Elastic rods are characterized by stiff differential equa-
tions and large deformations that have to be handled.
Thus, it is generally not optimal to place a new control
point at the barycenter of a segment as proposed in pre-
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Figure 1: In knot-tying simulations, large parts of the elastic rod are undeformed while a high mechanical accuracy is required
to simulate the knot, which calls for adaptive methods. Left: A network linked by Prusik knots carries a bar element. The delicate
equilibrium requires a robust collision handling method. Right: The double Fisherman’s knot is used to tie together two ropes
of unequal radii.

vious works (e. g. [TWS06]). In contrast, we propose to
determine the position of a new point as the root of a non-
linear system of equations in order to obtain a stable con-
figuration. This novel technique could also be employed
for adaptive cloth and body simulation.

• Due to the negligible volume of elastic rods, the discrete-
time setting, and potentially complex contact configura-
tions, penalty approaches and other local schemes are less
appropriate to handle contacts. Thus, inspired by previ-
ous work on rigid and cloth collision handling [MS01,
MHHR07], we propose an iterative scheme to solve a non-
linear system of non-penetration constraints.

• The dynamic refinement of the resolution causes discon-
tinuous changes in the contact configuration. These dis-
continuities have to be considered by the contact handling
method to guarantee a robust processing of contacts.

The proposed approach provides a stable and efficient sim-
ulation of virtual rods in contact. In combination with the
CORDE deformation model [ST07], we show that complex
tangled rods and knots can be simulated in a physically plau-
sible way.

2. Related work

Contact handling. Little work exists that focuses on col-
lision handling of elastic rods. Previous work includes the
knot planning scheme of Saha et al. [SI06] and the dynamic
knot-tying simulation of Brown et al. [BLM04] that shifts
rope segments in a non-physical manner. Collisions occur
frequently in hair simulation. Amongst others, Choe et al.
[CCK05] and Bertails et al. [BKCN03, BAC∗06] compute
penalty forces based on interpenetrations. However, the vol-
ume of elastic rods is in general negligible compared to their
longitudinal extent. Thus, a collision immediately results in
an inconsistent state that comes along with the interpene-
trations. In contrast to cloth collisions [BWK03, VMT06],
such inconsistent states cannot be easily detected and re-
solved. Instead, collisions have to be avoided. Further, com-
plex knots are characterized by a large number of simulta-
neous collisions that should be handled by a global response
scheme. Such global schemes are widely used in rigid body
collision response and result in a system of equations.

Usually, the problem of finding feasible impulsive or non-

impulsive contact forces is formulated as a Linear Com-
plementary Problem (LCP). Baraff published a variety of
articles on how to compute contact forces that incorporate
friction [Bar89, Bar91, Bar94]. LCP formulations have also
been employed to resolve collisions of deformable volumet-
ric objects [DDKA06] and quasi-rigid point clouds [PPG04].
However, solving an LCP is expensive, and the resulting
solution is not necessarily more "correct" than other ap-
proaches, as pointed out by Kaufman et al. [KEP05]. They
proposed to compute impulses by solving two separable
Quadratic Programs (QP) per body. Non-penetration con-
straints can also be handled with Lagrange multipliers, as
e. g. proposed by Galoppo et al. [GOM∗06, GOT∗07] in
the context of deformable skin collision response. Other
efficient alternatives have been proposed by Redon et
al. [RKC02] and Bender et al. [BS06], where the latter pro-
poses an iterative way to propagate impulses. The propaga-
tion of impulses can be accelerated by employing a contact
graph, as shown by Guendelman et al. [GBF03].

Elastic rods have some resemblance with articulated rigid
bodies [WTF06, GLM06], thin shells and cloth. In cloth
collision response, most approaches assume rigidimpact
zones[Pro97] and solve for feasible velocities, either di-
rect [HMB01] or in an iterative fashion [BFA02]. Similar to
these approaches, we also compute impact zones, but drop
the rigidity assumption since this would produce unrealistic
behavior of knots.

Our approach shares similarities with a class of schemes
that first compute feasible positions and then apply forces
such that these positions are met after integration. Volino
et al. [VMT00] employed a geometric scheme for comput-
ing positions, velocities and accelerations. Later, Milenkovic
and Schmidl proposed a physically-based method for com-
puting optimal configurations of rigid bodies [MS01] by
solving a QP. And recently, Müller et al. presented a
position-based simulation where non-penetration constraints
are solved iteratively [MHHR07]. Our approach combines
the accurate method of [MS01] with an efficient iterative
scheme in the spirit of [GBF03] and [MHHR07] to compute
feasible positions. Further, we ensure temporal coherence of
the contact forces and consider that the mechanical adap-
tivity implies discontinuous changes in the contact state. In
combination with the adaptive model, this results in an el-
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egant and robust contact simulation of knotted threads and
ropes.

Adaptive methods. To improve the efficiency and accu-
racy of deformable object simulation, adaptive methods re-
duce the DOFs in regions where mechanical or numerical
accuracy is not mandatory. The refinement or reduction is
governed by an error criterion which measures the adequacy
of a given resolution. For three-dimensional meshes, this
implies that either meshes at different resolutions are pre-
computed, or that the domain is remeshed. Since the latter
is known to be a hard task, most works take the first ap-
proach. Debunne et al. [DDCB01] propose an adaptive sim-
ulation framework by employing finite element methods. At
the interface, they interpolate the physical properties linearly
between the nodes at different resolutions. By employing fi-
nite element methods, it is easier to guarantee that physical
properties do not vary along different resolutions, which is
in contrast to previous methods on adaptive mass-spring net-
works [HPH96]. Multi-resolution hexagonal grids allow for
an efficient representation with octrees [BPWG07], and pre-
computed tetrahedral meshes can be avoided [CGC∗02]. Re-
cently, approaches that work with ’virtual particles’ in order
to adapt the resolution of a mesh gained increasing atten-
tion [EEHS00, SSIF07]. These approaches have proven to
work well in practice although a plausible binding between
virtual and real points can be difficult to realize.

For two-dimensional meshes that model e. g. thin
shells, there exists a well-established theory of subdivi-
sion [ZS∗99], which enables dynamic mesh refinement.
An implementation of the multigrid scheme for thin shells
is proposed by Green et al. [GTS02]. High-resolution
meshes are particularly important for simulating folds and
wrinkles in cloth. While geometric subdivision approaches
such as [BFA02] aim at increasing the visual quality,
Thomaszewski et al. [TWS06] propose a physically-based
simulation of cloth where the elements are refined by em-
ploying Loop’s scheme. Jain et al. [JKG∗05] employ a multi-
resolution algorithm to speed-up collision detection. A dif-
ferent way is proposed by Grinspun et al. [GKS02]. In-
stead of refining the elements, they enlarge the approxima-
tion space by refining the basis functions. As a consequence,
they avoid the compatibility problems at the interfaces be-
tween resolutions.

One-dimensional objects have an inherently simple topo-
logical structure that can be exploited by adaptive schemes.
Pai proposed a physically-based deformation model for elas-
tic rods that is based on the Cosserat theory [Pai02]. The rod
is evolved by solving a boundary value problem. The step
size can be chosen based on an adaptation criterion. Fur-
ther, this model has the advantage that the control points
are computed directly, analogous to a linear time dynamics
algorithm for articulated rigid bodies. An adaptive method
for snake-like articulated rigid bodies has been proposed by
Gayle et al. [GLM06]. They rigidify joints in regions without
collisions. And Bertails et al. [BKCN03] employed adaptiv-
ity in the context of hair clustering. They focus on control
structures that approximate the large-scale coherent motion.

In our work, we focus on the adaptive simulation of dis-

crete one-dimensional elastic objects. We start with a pre-
defined mesh whose control points constitute the DOFs of
the undeformed model. The mesh is then refined to meet the
required accuracy. Lenoir et al. proposed an adaptive simula-
tion of mechanical B-splines [LGCM05], where new control
points are inserted based on geometric spline subdivision.
However, for general elastic rod deformation models, it is
not possible to compute the position of new control points
analytically. By introducing the new control points at the
barycenter of old control points, the potential energy is not
minimized. In turn, the simulation becomes inevitably insta-
ble. To fight this problem, Phillips et al. [PLK02] proposed
to add damping springs to the system after control point in-
troduction. In contrast, we propose an adaptive simulation
scheme that guarantees temporal coherence of the rod with-
out employing any stabilization method. We show that the
position of a refined node corresponds to the roots of a non-
linear system of equations.

3. Adaptive simulation overview

In this section, we briefly introduce the simulation loop for
the constrained dynamic evolution of elastic rods. The subse-
quent sections explain the steps in detail. We employ the fol-
lowing simulation framework that has been previously pro-
posed by e. g. [WTF06,DDKA06].

Simulation loop(g0: initial configuration)

repeat
deform:elastic forces of rodgt

predict: integration results in unconstrained rodg̃t+h

collision detection:detect interferences ofg̃t+h

collision response:compute contact forces
correct: integration results in collision-free rodgt+h

adapt:(un)refine rod based on adaptation criteria
until stop;

The key idea is to predict the unconstrained state of the rod
at timet +h by integrating the equations of motion, thereby
neglecting contact forces. Then we detect interferences and
compute contact forces that, if applied to the rod at timet, re-
sult in a interference-free state att +h. Thus, difficulties re-
lated to post-stabilization techniques are avoided [WTF06].

In Sec. 4, we briefly describe the deformation model. The
adaptive (un)refinement of the rod is discussed in Sec. 5.
Collision detection and contact force computation are ex-
plained in Sec. 6, and the paper is concluded by presenting
results in Sec. 7.

4. Deformation model

In this work, we assume that the deformation model for the
rod is hyper-elastic. That means, there exists a scalar-valued
strain energy density functionW(g− ĝ), where g(σ, t) :
Ω×R→RN is the configuration of the rod at timet defined
on a domainΩ⊂ R, andĝ is the stress free resting configu-
ration of the rod. The static equilibrium configuration is then
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characterized as a critical point of the functional
∫

Ω
W(g(σ)− ĝ(σ))dσ−

∫

Ω
g(σ)Fdσ (1)

whereF are generalized external forces. The dynamic equi-
librium is obtained by considering the mass matrix and
dissipation potentials. We requireW to be convex, with a
minimum atW(0). Examples for such deformation mod-
els include the deformation models introduced by Phillips
et al. [PLK02], Spillmann et al. [ST07], or Theetten et
al. [TGAB07].

To numerically simulate the rod, a finite element method
usually solves the weak form of the governing differential
equation. The domainΩ is discretized into a disjoint union
of M−1 elements. The nodes orcontrol pointsgi ∈RN then
comprise the DOFs of the elastic rod. For the CORDE de-
formation model, we e. g. have control pointsgi = (r T

i ,q
T
i )

T,
with spatial control pointsr i ∈ R3 and quaternionsqi ∈ R4.
We collect the control pointsgi in a control point vector
g = (gT

1 · · · gT
M)T ∈ RMN, replacing the previously defined

continuous configuration functiong(σ). The resulting equa-
tions of motion are then

Mg̈+d(ġ,g)+k(g)−F = 0 (2)

with mass-matrixM , dissipation functiond and stiffness
functionk.

5. Adaptive model

The simulation of knots requires a large number of DOFs
in a small spatial region in order to meet the necessary me-
chanical accuracy. Still, large parts of the elastic rod stay un-
deformed and can be represented by employing only a few
DOFs. That is why adaptivity is attractive in the simulation
of elastic rods.

In this section, we present a solution for the adaptive sim-
ulation of rods. We work in the element point of view, i. e. we
split or merge elements instead of basis functions [GKS02].
We first describe the adaptation criteria that govern the
(un)refinement of the elements before focusing on the prob-
lem of node insertion and removal.

5.1. Adaptation criteria

Most existing adaptive schemes define adaptation crite-
ria (sometimes also denoted as quality criteria or error
criteria) solely on geometric properties, i. e. how well
the basis functions approximate the current deformation
state [DDCB01, CGC∗02]. In multigrid approaches, one
usually compares the solutions at different hierarchy lev-
els [GTS02,OGRG07]. However, as Lenoir et al. [LGCM05]
recognized, a pure geometric criterion is not sufficient for
elastic rods. Instead, colliding elements have to be refined in
order to meet the required DOFs. While Lenoir et al. only
consider user interactions with the rod, we follow Gayle
et al. [GLM06] who incorporate the contact configuration.
More precisely, we bisect an elementi if there is at least one
contact on the left and on the right subelement. With this
adaptation criterion, we can avoid the instabilities that are

related to cascaded refinements. Two elements are merged
if there has not been a contact for a user-defined time span
tmerge.

We further define a geometric adaptation criterion that
considers the local curvature of the rod, i. e. we refine the rod
if the local curvature exceeds a user-defined threshold value.
Similar to [DDCB01,LGCM05], we use a smaller threshold
value to unrefine an element. In the experiments, we use a
threshold value of 0.6 to refine and a threshold value of 0.2
to unrefine elements.

5.2. Element refinement

If the adaptation criteria for an elementi are met, the element
is bisected into two subelementsi1 and i2, and a new con-
trol pointg+

i is introduced. Likewise, the element domainΩi
is partitioned into disjoint subelement domainsΩi1 andΩi2
with Ωi = Ωi1∪Ωi2 in order to preserve the resting length of
the rod. Previous approaches propose to place the introduced
control pointg+

i at the barycenter of the old control points
g−i−1 andg−i . However, since the curvature in the new control
point g+

i will be 0, the curvature energies are not distributed
uniformly over the elements, which in turn causes instabili-
ties in the underlying differential equations. While previous
approaches recommend to add artificial damping springs to
stabilize the simulation over time [PLK02], we propose a
procedure that computes valid, i. e. energy-minimizing con-
trol points instantaneously.

Since a new control point cannot be inserted without ei-
ther the stretch or the curvature varying discontinuously, the
left or the right control point has to be displaced accordingly.
For efficiency purposes, we always choose the neighboring
control point whose adjacent line segments are involved in
less collisions. The goal is to find new control point positions
g+

i andg+
i+1 such that the strain energy over the new elements

is minimized (see Fig.2). More precisely, the new positions
g+

i and g+
i+1 constitute the solution of the non-linear con-

strained minimization problem

i+1

∑
j=i−1

∫

Ω j

W(g− ĝ)dσ−
i+1

∑
j=i

gT
j F j →min (3)

subject to the holonomic boundary conditions

g+
i−1−g−i−1 = 0 (4)

g+
i+2−g−i+1 = 0 (5)

where theF j are external forces such as gravity or contact
forces acting on the control points. The incorporation of con-
tact forces is important since displacing control points even-
tually result in interferences (see Sec. 6.6 for details). Intu-
itively, we seek the control pointsg+

i andg+
i+1 that minimize

the strain energy while preserving all other control points in
the mesh (notice thatg−i+1 becomesg+

i+2 after refinement, as
indicated in Fig.2). Since the lengths of the new elements
sum to the length of the old element, and since all other con-
trol points are fixed during refinement, both the current and
the resting length of the rod are preserved.

The solution of this system of equations is computed by
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Figure 2: By placing the new control pointg+
i at the

barycenter ofg−i−1 andg−i , the curvature changes discontin-
uously. In contrast, we compute energy-minimizing control
pointsg+

i andg+
i+1.

a non-linear conjugate gradient (CG) method. The neces-
sary analytic differentiation and integration ofW is done
with a symbolic computer algebra software. Notice that the
gradient ofW conforms to the restitution force vector. If
analytic integration is not possible, the expressions can be
obtained by a quadrature method. The step length for the
line search in the CG algorithm is determined by employ-
ing the Wolfe conditions [NW99], with the initial guess de-
pending on the employed deformation model (see Appen-
dix). The conjugate direction parameter is computed with the
Fletcher-Reeves formula. By only updating the coordinates
of the control pointsg+

i andg+
i+1 during minimization, we

enforce the boundary conditions. Since we restrictW to be
convex, the computed constrained minimum is guaranteed
to be global. The necessary number of iterations depends on
the deformation model. For moderately damped elastic rods
simulated with CORDE, usually 5 to 10 iterations suffice to
stabilize the simulation.

To preserve the dynamics of the rod, the mass-matrixM
in (2) has to be updated. For approaches that assume mass-
lumping, this conforms to recomputing the point-masses,
which can be done efficiently. Further, the velocities of the
new control points are linearly interpolated from the old con-
trol points.

5.3. Element unrefinement

To unrefine the rod, two neighboring elements are merged
into one. Again, it is not possible to just remove a control
point g−i . Instead, either the left or the right control point
has to be displaced to the energy-minimizing position. The
solution of this non-linear minimization problem is similar
to the refinement-case.

5.4. Remarks

The scheme in its present form always bisects elements in
the middle. It is, however, easy to extend the scheme to
general bisection rules. Moreover, since remeshing is triv-
ial for one-dimensional structures, the scheme allows for
both structured and unstructured refinement. Depending on
the deformation model, it is necessary to enforce upper and
lower bounds on the domainsΩi , i. e. Ωi ∈ [Ωmin,Ωmax]. A
mathematical analysis on these bounds is, however, beyond
the scope of this paper.

The rods are skinned with a spline-interpolated tubical
mesh. To avoid visible popping artifacts of the skin during
refinement, we smoothly blend the old skin with the new
skin. Thus, visual interferences might occur, especially in
coarsely sampled regions with high curvature. We underline
that this does not harm the mechanical accuracy since all
physical operations are performed on the simulated meshg.
Still, skinning is part of ongoing work.

6. Contact handling

In this section, we propose a novel approach for robust
global contact handling of elastic rods. Together with the
adaptive model, the approach allows for the accurate sim-
ulation of knots. After an unconstrained temporal evolution
of the rods, we detect collisions in the (possibly) interfering
state. We employ hierarchies of axis-aligned bounding boxes
to detect collisions and self-collisions [TKH∗05]. Similar to
Müller [MHHR07], we impose non-penetration constraints
on the primitives. We then seek for the minimum displace-
ments that satisfy the constraints. By applying constraint
forces, the rods meet the non-penetration constraints after
evolution. Notice that since collisions are detected at dis-
crete times, collisions can be missed in case of large relative
velocities. However, this occurred very rarely in our experi-
ments.

6.1. Constraint-based contact forces

In the following discussion, we assume that we can always
extract spatial coordinatesr i ∈ R3 from the generalized co-
ordinatesgi . The pairSi = (r i , r i+1) constitutes asegmentof
the rod. Let

md(i, j) = md(r i , r i+1, r j , r j+1) > 0

be the minimum Euclidean distance between two rod seg-
mentsSi andSj . Then the collision detection procedure pro-
vides a set ofcollisions(Si ,Sj ), i. e. segmentsSi andSj for
which md(i, j) < d. Here,d = r i + r j is the enforced mini-
mum distance between the rod segments, withr i andr j the
radii of the rods. The penetration depthεi j > 0 of a collision
(Si ,Sj ) is thend−md(i, j).

We define the contact space of a collision(Si ,Sj ) to be
spanned by the minimum distance vectorni j betweenSi and
Sj . We are looking for displacements∆r i such that the co-
ordinatesr i + ∆r i define an interference-free configuration.
The displacement∆r i is a linear combination

∆r i = ∑
j∈C(i)

ni j χi j (6)

with C(i) the set of all pairs of interfering segments thatr i is
adjacent to, and unknown scalarsχi j . The non-interference
conditions for the set of collisions are written as

md(r i +∆r i , r i+1 +∆r i+1, r j +∆r j , r j+1 +∆r j+1) ≥ d

md(rk +∆rk, rk+1 +∆rk+1, r l +∆r l , r l+1 +∆r l+1) ≥ d

... (7)
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As a second condition, the momentum must be conserved,
i. e.

∑
i

∆r imi = 0 (8)

According to Gauss’ principle of least work (see
e. g. [RKC02]), we are looking for the minimum dis-
placements that result in an interference-free configuration,
i. e. we require

∑
i
‖∆r i‖2 →min (9)

Together, these equations define a non-linear optimization
problem. This formulation is similar to the optimization-
based algorithm in [MS01] with the difference that we ex-
plicitly enforce the conservation of momentum.

6.2. Iterative solution

Computing the exact solution of the system of equations
(7-9) is hardly feasible at interactive rates. Instead, we pro-
pose an iterative solution in the spirit of [GBF03,MHHR07]
to obtain interference-free positions. We first group inter-
acting collisions toimpact zones(according to the defin-
ition of Provot [Pro97]). In contrast to [HMB01, BFA02],
we do not treat these impact zones as rigid. We then solve
for feasible positions for each collision individually: Let

ξ = mj w j+mj+1(1−w j )
miwi+mi+1(1−wi)+mj w j+mj+1(1−w j )

be the barycentrically

weighted ratio of masses that accounts for conservation
of momentum of the collision(Si ,Sj ), with wi being the
barycentric coordinates of the contacts on the line segments.
Notice thatξ = 1

2 if all four points have same masses. Then
the collision displacements

∆r i = ni j ξ(md(i, j)−d)wi

∆r i+1 = ni j ξ(md(i, j)−d)(1−wi)
∆r j = ni j (1−ξ)(d−md(i, j))w j

∆r j+1 = ni j (1−ξ)(d−md(i, j))(1−w j ) (10)

effect that the penetration depthεi j for this collision is at
least halved, if the collision is considered in isolation. We ac-
count for spatial continuity by weighting the displacements
with the barycentric coordinates of the collision. By process-
ing all collisions per impact zone in a sequential manner, and
summing the displacements per pointr i , we obtain displace-
ments that conserve the momentum (8). This process consti-
tutes one step of the iterative scheme.

By repeating this process, displacements quickly propa-
gate through the impact zone and secondary collisions are
resolved (impact zones are merged if segments from differ-
ent impact zones become colliding). The iterative search is
stopped ifεi j < εmax for all collisions(Si ,Sj ) in the impact
zone, whereεmax is the error tolerance. Experiments indi-
cate that the number of iterations depends linearly on the
number of contacts, as expected. The number of iterations
could be reduced by employing a contact graph, as proposed
in [GBF03]. However, building a contact graph for knots is
not straight-forward.

6.3. Friction

The incorporation of frictional forces complicates the prob-
lem. Still, friction is crucial for simulating knots. Analytical
solutions approximate the friction by a friction cone [Bar91,
DDKA06]. We propose a position-based approximative so-
lution for frictional effects that is consistent with our it-
erative method. For each collision(Si ,Sj ), we compute a
Coulomb friction force componentFfric orthogonal to the
contact space. We then approximate the friction displace-

ment∆r fric
i for the pointr i as∆r fric

i = Ffricwi
h2

mi
, where we

assumed that the massmi is lumped in the pointsr i . Fur-
ther,h is the time step. In each iteration and for each colli-
sion, we add the friction displacements to the collision dis-
placements. We account for the exponential decrease of the
collision displacements in the course of the iterative compu-
tation by weighting the friction displacements∆r fric

i with a
factor2−iter, whereiter denotes the current iteration. While
this approximative friction produces plausible results at mi-
nor computational overhead, more elaborated models could
eventually improve the accuracy and support perfect stick-
ing.

6.4. Contact forces

Having computed the displacements∆r i that yield feasi-
ble positionsr i + ∆r i , we compute a contact force that
accelerates the mass points towards the feasible position.
More precisely, we look for contact forcesFi that, if time-
integrated numerically at timet, result in the feasible po-
sitions r t+h

i = r t
i + ∆r i . Algebraic transformations lead to

Fi = 1
h2 ∆r imi . Similar formulations have been successfully

applied for geometric constraint maintenance [GBT06],
hair dynamics [CCK05] and deformable body collision re-
sponse [SBT07]. Since this formulation considers the simu-
lation time step, instabilities due to large contact forces are
largely inhibited [SBT07].

The computed displacements and corresponding contact
forces result in entirely inelastic collisions. This corresponds
nicely to the fact that the textile material of ropes and threads
is best modeled with inelastic collisions.

6.5. Contact handling in the element refinement

When the rod is refined, then control pointsg+
i andg+

i+1 are
displaced in order to minimize the elastic energy over the
new elements (see Sec. 5). The iterative displacement of the
control points in the CG method eventually results in sec-
ondary interferences, which in turn causes instabilities. We
avoid these interferences by detecting collisions of the bi-
sected elements in each CG iteration (which can be done ef-
ficiently since the potentially colliding elements are already
known in advance). By considering the resulting contact
force in the static equilibrium functional (3), interference-
free control points are guaranteed.
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7. Evaluation and applications

We have staged a series of experiments in order to evaluate
our adaptive rod simulation. We exemplify our method by
employing the CORDE deformation model [ST07]. We first
show that our adaptive scheme preserves the dynamic behav-
ior of the rod. We then investigate into the characteristics of
the proposed collision response, and further present interac-
tive applications. All experiments have been performed on
an Intel Xeon PC, 3.8Ghz.

Adaptive model. One of the main benefits of the pro-
posed adaptive model is that it determines the exact con-
trol point positions instantaneously. It does not assume time-
coherence, i. e. by damping the control points over time as
in previous approaches. Fig.3 illustrates a collision of two
angular accelerated rods with a rigid bar. While one rod has
a fixed resolution, the other rod is refined to respond more
accurately to the collision. As the images illustrate, the dy-
namic behavior of the refined rod does not significantly dif-
fer from the dynamics of the unrefined rod. In average, 10-20
CG iterations are necessary to obtain stable control point po-
sitions. The average time to insert or remove a control point
is 1.5ms, which includes the time to update the data struc-
tures.

Elastic rods can be used to model threads or ropes in knot
simulations. Here, large parts of the thread are undeformed
while a high mechanical accuracy is required to represent the
knot, therefore making an adaptive model particularly attrac-
tive. Fig.4 illustrates a simulation of the shoelace knot. As
the figure indicates, the sampling density in the knot and at
the contact points with the poles is higher than in the unde-
formed parts. Black bullets indicate original control points
while white bullets indicate dynamically inserted control
points. In this challenging simulation, the user can interact
with the thread. When the user unties the shoelace knot, the
thread slips down, illustrating the effect of Coulomb friction.

To investigate the gain in efficiency when employing an
adaptive model, we have simulated two ropes tied together
with the double Fisherman’s knot (see Fig.5). We compare
the behavior of an adaptive rope versus a uniformly sam-
pled high-resolution rope whose sampling density conforms
to the maximum resolution of the adaptive rod, and versus
a uniformly sampled low-resolution rope whose sampling
density conforms to the minimum resolution of the adaptive
rope. For the adaptive rope, the allowed minimum element
length isΩmin

i = 1
4Ω0

i for all elementsi. As a consequence,
the maximum number of nodes for the adaptive rope (con-
forming to the number of nodes for the high-resolution rope)
is four times the number of nodes of the low-resolution rope.
As Tab.1 indicates, simulating an adaptive rope is almost
twice as efficient as the high-resolution rope. The number
of collisions for both cases do not vary significantly, indi-
cating that the adaptive rope does not result in a loss of ac-
curacy. On the other hand, simulating the knot with a low-
resolution rope results in physical and visual artifacts exhib-
ited in Fig.5. These artifacts are induced by the insufficient
control point sampling.

For these moderately damped ropes, 10 iterations are suf-

Figure 5: Simulation of two ropes tied together with the dou-
ble Fisherman’s knot. Top: A high-resolution rope with 252
nodes. Middle: An adaptive rope with 116 nodes and the
same maximum resolution as the high-resolution rope. Bot-
tom: A low-resolution rope with 63 nodes.

ficient to stabilize the simulation. If fewer iterations are per-
formed, then the simulation becomes instable. The average
time to (un-)refine the adaptive rope is 1.35ms. Still, since
the adaptation criteria are only met in about 5% of all simu-
lation steps, only 0.41% of the total simulation time is spent
for node insertions and deletions.

Employing an adaptive model always pays off in interac-
tive knot-tying simulation when the location of the knot is
not known in advance. Currently, the limiting factor for the
refinement is the enforced minimum element lengthΩmin,
which depends on the deformation model and on the sim-
ulation parameters. A worst-case scenario for an adaptive
rope is illustrated in Fig.7, where most elements of the
rope are involved in collisions. Thus the number of nodes
of the adaptive rope conforms to the number of nodes of the
high-resolution rope. Still, the simulation step timings for
the adaptive and the high-resolution rope are about the same,
illustrating that the overhead of the adaptivity is negligible.

Contact handling. Our physically motivated collision re-
solving scheme iteratively computes feasible collision-free
positions of interfering rod elements. In each iteration, all
contacts are processed to determine the locally feasible posi-
tions. Since displacing one rod element produces secondary
collisions, the number of iterations depends linearly on the
number of colliding elements. As a consequence, the com-
plexity of the scheme is inO(n2) with n the number of con-
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Figure 3: Two rods with equal material properties are colliding with a rigid obstacle. One rod is dynamically refined while the
other rod has a fixed resolution. The four images illustrate that the dynamic behavior is not affected by the refinement.

Figure 4: Interactive simulation of adaptive knot-tying. A thread is tied around four poles, and a shoelace knot prevents it from
slipping down. As the user unties the knot, the pressure is reduced and the thread slips to the ground. This simulation illustrates
the effect of Coulomb friction.

High res. Adaptive Low res.

Nodes (Fig.5) 252 (avg.) 116 63
Avg. collisions 70 69 22
Simulation step [ms] 13.3 7.3 2.6

Nodes (Fig.7) 2K (avg.) 1.9K 0.5K
Avg. collisions 10K 9.7K 2.6K
Simulation step [ms] 710 694 77

Table 1: Statistics on the adaptive refinements. The upper
three rows show the measurements of the simulation of the
double Fisherman’s knot (Fig.5). As the measurements indi-
cate, simulating the knot with adaptive ropes is almost twice
as efficient and requires less than half the number of nodes
than uniformly sampled ropes at the same maximum reso-
lution. Still, the number of collisions does not vary signifi-
cantly, illustrating that the knot is simulated with similar ac-
curacy. In contrast, the low-resolution ropes cannot repro-
duce the knot configuration accurately enough. The lower
three rows show the measurements of a worst-case scenario
for adaptive ropes (Fig.7), illustrating that the overhead for
the adaptivity is negligible.

tacts. Still, since computing locally feasible positions is a
cheap operation, the running times are comparable to state-
of-the-art response schemes. Fig.6 relates the time to com-
pute feasible positions to the number of contacts and under-
lines the theoretical result.

To show that we can resolve complex self-contact config-
urations, we ran a simulation of a falling coiled rope with 2K
control points, as depicted in Fig.7. The simulation time step
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Figure 6: The complexity of our global response scheme
is in O(n2). However, usually fewer thann iterations are
necessary to resolven collisions with sufficient accuracy.
In the experiment, we have considered an error tolerance
εmax = 10−3r, with r the radius of the rod.

is 10−4s. Collision detection of 10K collisions takes 355ms
and computing feasible positions takes 255ms. The average
initial penetration depth isε = 1.8 ·10−3r, with r the radius
of the rod. 34 iterations are necessary to reduce the pene-
tration depth toε < εmax = 10−3r. Force computation and
integration takes 100ms, the simulation runs at 1.5 frames
per second.

8. Conclusion and future work

We have presented an adaptive model for hyper-elastic rods.
Since the refinement of the rod should be governed by the
contact configuration, our approach unifies adaptivity with
robust collision handling. We have recognized that the stiff
underlying differential equations do not allow to place new
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Figure 7: Simulation of a coiled rope. The rope consists of
2K control points, with 10K collisions in average. This ex-
periment illustrates global collision response in the context
of massive self-collisions. Since most elements are involved
in collisions, this simulation represents the worst-case sce-
nario for adaptivity.

control points based solely on geometric rules, as in pre-
vious approaches for cloth [TWS06] and deformable bod-
ies [DDCB01]. In contrast, the control points result from an
energy-minimization problem that is solved by employing a
non-linear conjugate gradient method. In return, valid con-
trol points positions are found instantaneously, and no artifi-
cial damping is necessary to stabilize the system after refine-
ment. As a consequence, the dynamic behavior of the elas-
tic rod is not affected by the refinement, and the stability of
the simulation is improved. The robust position-based con-
tact handling method computes physically-plausible contact
forces. Challenging knot simulations illustrate the benefits
of the proposed method.

We detect and handle collisions and self-collisions at dis-
crete time steps, which limits the allowed maximum relative
velocity between rods. If the relative velocity exceeds this
limit, then collisions can be missed. Currently, we are inves-
tigating into continuous collision handling methods. More-
over, since the collision handling is staged on a piecewise
linear contact hull, rods tend to rattle if they slide on each
other. Handling the collisions on a Cosserat contact hull
would require to know the analytical curve. Still, the linear
hull could be smoothed by employing e. g. spline curves.

Another issue that we have not convincingly solved is
the skinning of the rods. Instead of employing spline-
interpolated tubes, a more accurate skinning technique
would be favorable. Moreover, a volume-preserving skin de-
formation [AS07] would further improve the realism.
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Appendix A: Finding energy-minimizing control points
for CORDE rods

The CORDE deformation model [ST07] employs quaternionsqi to
relate the local frame of an elementi to the reference frame. The po-
tential energyW isW = Vs+Vb +Ep, with Vs the stretching energy,
Vb the bending energy, andEp the constraint energy that aligns the
local framesqi with the tangent of the centerline. The initial config-
uration of the rods is user-defined, and the minimum element length
Ωmin depends on both the stiffness and the simulation time step.

Since the quaternionqi corresponds to the direction of the ele-
menti, the number of unknowns in (3) is 18, notably two positions
r i and r i+1 ∈ R3, and three quaternionsqi−1, qi and qi+1 ∈ R4.
The boundary conditions arer+

i−1 − r−i−1 = 0, r+
i+2 − r−i+1 = 0,

q+
j−2−q−j−2 = 0 andq+

j+2−q−j+1 = 0.

The initial guesses for the step sizes in the non-linear CG al-

gorithm are α(r)
0 = h2m−1

i for the mass-pointsr i and α(q)
0 =

h2trace(I)−1 for the quaternionsqi , with h the simulation time step,
andI the inertia tensor. Intuitively, these guesses guarantee conver-
gence for the applied time step.
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