
Adaptive surface decomposition for the distance computation of arbitrarily
shaped objects

Marc Gissler Matthias Teschner

Computer Science Department
University of Freiburg

Germany

Abstract

We propose an adaptive decomposition algorithm
to compute separation distances between arbitrar-
ily shaped objects. Using the Gilbert-Johnson-
Keerthi algorithm (GJK), we search for sub-mesh
pairs whose convex hulls do not intersect. We show
how to employ characteristics of GJK to guide a re-
cursive decomposition of the objects in the case of
intersections. We further show how to employ GJK
to derive lower and upper distance bounds in non-
intersecting cases. The bounds are used in a spatial
subdivision scheme to enforce a twofold culling of
the domain. Experiments show the applicability of
the algorithm in dynamic scenarios with dynami-
cally moving rigid and deformable objects.

1 Introduction

Proximity queries find their applications in vari-
ous fields such as computational surgery, virtual
reality, path planning, robotics and bioinformat-
ics [LCN99, ZHKM08]. Each of them calls for
different kinds of proximity queries. In virtual
reality simulations, collision detection is used to
find intersecting object pairs. An estimation of the
penetration depth can be used in computational
surgery to provide haptic feedback. The compu-
tation of the separation distance is employed in
path planning to accelerate the computation of
collision-free paths. In general, proximity query
algorithms should be able to handle arbitrarily
shaped, dynamically moving, rigid or deformable
objects.

Our contribution: We propose a novel ap-
proach to the computation of the minimum distance
between pairs of arbitrarily shaped objects. We

show how to use GJK to recursively decompose
the meshes into pairs of sub-meshes whose con-
vex hulls do not overlap. For each of these sub-
mesh pairs, we can extract lower and upper distance
bounds. We employ these bounds to set up a spa-
tial subdivision scheme that only considers a small
part of the simulation domain to determine the exact
minimum distance between the sub-meshes. The
sub-mesh with the smallest minimum distance gives
the minimum distance between the pair of objects.
The proposed algorithm does not depend on spatial
or temporal coherence.

2 Related work

A large variety of proximity query algorithms has
been proposed over the last decades. They can be
classified by the queries that can be performed and
by the prerequisites they pose on the object repre-
sentation. There exist algorithms for collision de-
tection, separation distance computation and pen-
etration depth computation. Excellent surveys can
be found in [LM04, Eri04, TKH+05]. Since the re-
search on proximity queries is a huge area, we focus
our discussion of the related work on approaches for
the computation of separation distances.

2.1 Convex objects

Many of the early algorithms exploit the proper-
ties of convex sets to be able to formulate a lin-
ear programming problem. In [GJK88], Gilbert
et al. propose an iterative method to compute the
minimum distance between two convex polytopes
using Minkowski differences and a support map-
ping. Extensions of the algorithm handle general
convex objects [GF90] and return a penetration dis-
tance [Cam97]. A fast and robust implementa-

VMV 2008 O. Deussen, D. Keim, D. Saupe (Editors)

tion is given by [vdB99] which is also incorporated
in the Software Library for Interference Detection
(SOLID).In [LC91], an algorithm that employs lo-
cal search over the Voronoi regions of convex ob-
jects to descend to the closest point pair is proposed.
The approach is used at the lowest level of collision
detection in the software package I-Collide.

In dynamic environments, all of the approaches
mentioned above exploit geometric and time coher-
ence to track the closest points. It is assumed that
the displacement of the objects between two time
steps is small. In [LC91], hill climbing is employed
to search the neighboring Voronoi regions and re-
turn the new closest pairs in nearly constant time.
Hill climbing is also used in [Cam97] to find new
support vertices more efficiently. In [GFT08], the
approach of [GJK88] is employed in a two-stage al-
gorithm to compute distances between non-convex
objects. Unfortunately, this approach only works on
objects, whose convex hulls do not overlap.

2.2 Non-convex objects

The restriction to convex objects can be overcome
in several ways. A non-convex object can be
seen as the composition of several convex sub-
parts [GJK88, LC91]. The algorithms are then ap-
plied to the convex pieces or subparts, respectively.
Similarly, a non-convex polyhedron could be de-
composed into convex subparts. In most cases, it
suffices to decompose the boundary of the polyhe-
dron into convex patches [CDST95]. Thus, sur-
face decomposition can be used to perform prox-
imity queries on general, rigid bounded polyhe-
dra [EL01]. The surface is decomposed into con-
vex patches and the proximity query algorithms for
convex objects can be applied to the patches. To ac-
celerate the pairwise proximity query, the patches
can be stored in bounding volume hierarchies. Dif-
ferent types of bounding volumes have been investi-
gated, such as spheres [Qui94, Hub96], axis-aligned
bounding boxes [vdB97], k-DOPs [KHM+98] or
oriented bounding boxes [GLM96]. Further, var-
ious hierarchy-updating methods have been pro-
posed [LAM01], some of them employing the un-
derlying deformation model [SBT07]. An algo-
rithm that employs surface decomposition together
with bounding volume hierarchies is integrated in
the software package SWIFT++ [EL01].

Surface decomposition is a nontrivial and time
consuming task. In rigid-body dynamics, the ob-

jects fortunately have to be decomposed only once.
Therefore, surface decomposition is made a pre-
processing step. Unfortunately, this is not the case
in simulations with deformable models.

2.3 GPU-based proximity queries

Graphics hardware can be used to accelerate var-
ious geometric computations. Image-space tech-
niques are employed for the detection of colli-
sions [KOLM02, KP03, GRLM03] as well as self-
collisions [HTG04]. Discrete Voronoi and dis-
tance fields can be efficiently computed on the
GPU [HKLM99, SGGM06] which can be used to
answer penetration and distance queries [SGG+06].
Possible drawbacks of GPU-based approaches are
that their accuracy is limited by the frame buffer res-
olution. In [SGG+06], this problem is avoided by
using the discrete Voronoi diagram computed in im-
age space only as input to accelerate the proximity
computation in object space. On the other hand, the
time for read-back of frame buffers takes up con-
siderable time, even on todays graphics hardware.
In [GRLM03], the amount of read-back is reduced
with the introduction of occlusion queries for colli-
sion detection.

In contrast to existing approaches, our algorithm
focuses on deformable objects with arbitrary shape.
A combination of GJK and spatial hashing is used
to compute the exact distance between objects. We
show that GJK can be used to efficiently compute
distance bounds for non-convex objects. We fur-
ther show that these distance bounds allow for an
efficient setup of a spatial hashing scheme for the
computation of the exact distance. Further, arbi-
trary shapes and arbitrary object movements can
be handled. Thus, the proposed scheme is partic-
ularly appropriate for the handling of dynamically
deforming objects. This approach is an extension
of [GFT08]. It overcomes its main limitation which
is the restriction to objects whose convex hulls do
not overlap.

3 Algorithm overview

Now, we give an overview of our distance compu-
tation algorithm. The algorithm returns the min-
imum separation distance between a pair of arbi-
trarily shaped objects. The objects are given as
closed non-convex polyhedra in three-dimensional

space. The polyhedral surface is represented by a
set of three-sided faces and is commonly referred
to as the surface mesh of the object. The three-
sided faces are the so-called mesh primitives. The
algorithm proceeds recursively and can be divided
into three stages. The first stage employs the GJK
algorithm [GJK88] to determine a maximally sep-
arating plane between the convex hulls(CH) of
a mesh pair. If such a separating plane is found,
we derive lower and upper distance bounds from
the results of GJK (see Sec. 4) and proceed with
stage two. The second stage employs spatial hash-
ing [THM+03] for the efficient culling of mesh
primitive pairs with a distance outside the bounds
found in the first stage. The minimum distance be-
tween the two meshes is found as the minimum of
the distances between the remaining primitive pairs
(see Sec. 5).

If the convex hulls of the mesh pair overlap, we
do not find a separating plane in stage one. In this
case, we utilize information computed by GJK to
adaptively decompose the meshes into sub-meshes
in stage three and pair-wise repeat the process in
stage one recursively (see Sec. 6). The overall min-
imum distance between the object pair is the min-
imum of the set of distances computed for all the
sub-mesh pairs. An overview of the algorithm is
given in Algorithm 1.

Algorithm 1: RecursiveMinDist

Input: pair of surface meshes (M1, M2)
Output: separation distance ofM1 andM2

mindist = ∞1

chdist(M1, M2) := separation distance of2

CH(M1) andCH(M2) found with GJK
if chdist(M1, M2) > 0 then3

dist(M1, M2) := separation distance of4

M1 andM2 found with spatial hashing
if dist(M1, M2) < mindist then5

mindist = dist6

else7

DecomposeMesh(M11, M12, M1)8

DecomposeMesh(M21, M22, M2)9

RecursiveMinDist(M11, M21)10

RecursiveMinDist(M11, M22)11

RecursiveMinDist(M12, M21)12

RecursiveMinDist(M12, M22)13

return mindist14

Algorithm 1 might give the impression that the
number of sub-mesh pairs grows very fast and that
many recursions might be necessary. As we will
discuss in section 7, our results indicate that the re-
cursion depth and the number of sub-mesh pairs is
fairly small, even for pairs with complex shapes.

In the remainder of this paper, we describe the
algorithm in more detail. In section 4, we give a
short summary of the GJK algorithm and describe
how to extract the lower and upper distance bounds.
Section 5 describes the spatial hashing and how to
derive the hash cell size from the distance bounds.
Details on the splitting algorithm for recursion are
given in section 6. We conclude the paper with the
presentation of some results in section 7.

4 GJK

In this section, we describe stage one of the algo-
rithm. We recapitulate the main steps of the GJK
algorithm and explain how we derive lower and up-
per distance bounds from its results. For a more
detailed description of the GJK algorithm and some
of its improvements, we refer to [GF90], [Cam97]
and [vdB99].

Given two objectsO1 and O2, the GJK algo-
rithm implicitly computes the separation distance
between their convex hulls. This is done iteratively.
In each iteration step, GJK evaluates a support map-
ping function that returns the support points ofO1

andO2 according to a given support direction. The
support points are used to update a pair of simplices
S1 andS2, respectively. A sub-algorithm then com-
putes the minimum distance between the two sim-
plices. If the distance is zero, the convex hulls inter-
sect and the algorithm stops. Otherwise, the vector
that connects the closest points of the simplices is
used as the new support direction in the next itera-
tion step. The updated simplices are guaranteed to
contain points that are closer to each other than the
closest points of the simplices from the previous it-
eration. For polyhedra, the algorithm terminates in
a finite number of steps.

The fast evaluation of the distance sub-algorithm
is crucial for the efficiency of the GJK algorithm.
Therefore, the algorithm utilizes the findings of the
Carath́eodory theorem, which basically says that
each point of a convex object inRd can be ex-
pressed as the convex combination of not more than
d + 1 points of the object. Thus, the simplices con-

structed from the support points in the GJK algo-
rithm do not have to store more thand + 1 support
points to express the closest point pair between the
simplices, i.e. the simplices are either a point, an
edge, a triangle, or tetrahedron.

As stated above, the GJK algorithm computes
the separation distance between the convex hulls
of two objects. However, if the object is concave,
it only returns a lower bound of the separation
distance. Furthermore, we make the following
observation:

Observation 1: The support points that define the
simplices returned by GJK lie on the convex
hulls of the objects as well as on the surfaces
of the objects, even if the objects are not
convex.

Therefore, the distance between any pair of sim-
plex points is also a distance betweenO1 andO2.
We compute the distances between all pairs of sup-
port points and choose the smallest value to be an
upper bound to the separation distance (see Fig. 1).

Figure 1: Lower and upper distance bounds (yellow
lines) derived from GJK. The lower bound is the
margin between the support planes (black lines), the
upper bound is the minimum distance between pairs
of support points (black dots). The actual separation
distance (red line) lies within the bounds.

In summary, we use the GJK algorithm to derive
lower and upper distance bounds of the separation
distance between the convex hulls of two objects. In
the next section, we describe how to utilize this in-
formation for the efficient culling of possibly large
amounts of primitive pairs with separation distances

outside the distance bounds.

5 Spatial hashing

Now, we describe how to perform a spatial subdivi-
sion based on the lower and upper distance bounds
we established with GJK. The goal is to exclude
those parts of the objectsO1 andO2 from the dis-
tance computation sub-algorithm that do not con-
tribute to the final solution. The remaining parts
contain the primitives that support the separation
distance between the objects.

We employ the spatial hashing algorithm de-
scribed in [THM+03]. The algorithm implicitly
subdivides a possibly infinite simulation domain
into regular grid cells. A hash function is used
to map the three-dimensional grid cells to a one-
dimensional hash table. Primitives can be hashed to
table cells by finding the grid cells they intersect and
then execute the mapping. We choose the cell size
depending on the lower and upper distance bounds.
Furthermore, we show that no primitive pair with
a separation distance within the distance bounds is
culled away using this cell size.

The primitives of a pair with a distance within the
bounds have to have entries in a common hash cell.

5.1 Grid alignment

As a first step, we align the maximum-margin hy-
perplane extracted from the results of the GJK al-
gorithm and its normal with the implicit regular grid
of the spatial hashing algorithm. In this local coor-
dinate system, the hyperplane aligns with the xy-
plane and its normal of the hyperplane aligns with
the z-axis. With this local coordinate system, we are
now able to describe the computation of the hash
cell size based on the distance bounds.

5.2 Cell size computation

Now, we describe how to determine the actual grid
cell size. We denote the grid cell size with the vec-
tor c = [x, y, z]T , with cx, cy andcz being the
extensions of the grid cell along the x-, y- and z-
axis of a local coordinate system. To determinecz,
we consider the point pair(p,q) with p ∈ O1

and q ∈ O2. If |pz| > distupper(O1, O2) −
1

2
· distlower(O1, O2), the distance between the

points is greater than the upper bound:‖p − q‖ ≥

distupper(O1, O2). The same holds for|qz|. Thus,
we set:

cz = 2 · distupper(O1, O2) − distlower(O1, O2).
(1)

To determinecx andcy, let t = (tx, ty, tz)
T :=

r − s be the vector that connects the support
points r ∈ O1 and s ∈ O2 with ‖t‖ =
‖r − s‖ = distupper(P, Q). As r ands are sup-
port points and lie on the margins, we know that
tz = distlower(O1, O2). We now investigate
which point pairs(p,q) with p ∈ O1, q ∈ O2

can be excluded from the exact distance compu-
tation. As‖t‖ = distupper(O1, O2), (p,q) can
be discarded if‖p − q‖ > ‖t‖. Since |tz| =
distlower(O1, O2), we know that|pz − qz| ≥ |tz|
for every point pair(p,q). Thus, if we postulatep

(px − qx)2 + (py − qy)2 >

q
t2x + t2y, (2)

we get‖p − q‖ > ‖t‖, and we can discard the
point pair(p,q). Therefore, we choose:

cx = cy :=
q

t2x + t2y. (3)

As triangles are generally not aligned to the hash
cells, we always have to consider a cell together
with its eight neighbors inx- andy-direction. Also
note, that the hash cells of interest are located
around the xy-plane of the local coordinate system
and stretch from− cz

2
to cz

2
.

5.3 Distance query

With the established hash cell size, we can utilize
the spatial hashing algorithm to find the primitive
pair with the minimum separation distance. There-
fore, we first loop over all trianglesti of O1. If ti

does not intersect with a hash cell of interest, it is
discarded. Otherwise, we insert it into all hash cells
it intersects. We repeat the process with the trian-
glestj of O2 and compute the distances for triangle
pairs(ti, tj) that are located in the same hash cell
(see Fig. 2). In summary, spatial hashing allows for
the efficient culling of primitive pairs along every
axis in the local coordinate system.

6 Overlapping convex hulls

To complete the distance computation algorithm,
we have to account for the case where the convex

Figure 2: Twofold culling using spatial hashing: 1.
Only the object parts inside the margins (horizontal
black lines) are hashed. 2. Only primitives inside
the same cell and its one-ring are considered in the
pair-wise primitive test.

hulls ofM1 andM2 overlap and no distance bounds
can be computed. Therefore, we propose a recur-
sive subdivision scheme that splitsM1 andM2 into
two sub-meshes. For each sub-mesh pair, we search
for non-intersecting convex hulls of the sub-meshes
using GJK. If the convex hulls do not intersect, we
apply spatial hashing to find the separation distance
for the sub-mesh pair. Otherwise, we split again.

6.1 Sub-mesh generation

We do not simply split the meshes in half. Instead,
we utilize the results of an intermediate step of GJK
to direct the splitting procedure.

As stated in section 4, the GJK algorithm com-
putes support points using a support mapping func-
tion. This function is defined asSM : R

3 → M

that maps a vectorv ∈ R
3 to a pointSM (v) ∈ M .

This support function returns the point inM that is
farthest in the direction ofv:

hM (v) = max{p · v : p ∈ M} (4)

Thus, the support mapping searches for the support
pointSM (v) ∈ M such that:

v · SM (v) = hM (v). (5)

We denote the support point ofM1 as s1 and for
M2 ass1, respectively. The planesE1 andE2 go-
ing throughs1 ands2 are used to split the objects.
All primitives of M1 that lie on one side of the ob-
ject form a new sub-meshM11, the remaining prim-
itives formM12. M2 is split accordingly. We build

pairs of sub-meshes, e.g.(M12, M22) and start the
recursive call for this pairs (see Alg. 1). An exam-
ple for the splitting procedure and the recursive call
is shown in figure 3. If one of the sub-meshes is
empty, no pair is built with this sub-mesh. Further-
more, if one of the sub-meshes only contains one
primitive, we stop the recursion and compute the
separation distance for this mesh pair directly.

Figure 3: The convex hulls of a circle (green) and
a semicircle (gray) intersect (upper left). We uti-
lize the results of the support mapping onto the sup-
port vector (black arrow) to compute support planes
(dashed lines) that split the objects into sub-meshes
M11, M12, M21, M22 (upper right). The convex
hulls of M12 andM22 still intersect. Thus, they
are split again (lower left). The minimum of the set
of separation distances of the sub-mesh pairs gives
the separation distance (red line) between the ob-
jects (lower right).

6.2 Adapted cell size computation

With the introduction of sub-mesh pairs, we have to
slightly adapt the cell size computation in the spa-
tial hashing stage. As described in section 5, we
compute the hash cell size from distance bounds for
the particular sub-mesh pair. Let thelocal distance
bounds be the lower and upper bounds computed
for the current sub-mesh pair. Furthermore, let the
global upper bound be the minimum distance be-
tween the objects and theglobal cell size be the hash
cell with the smallest extension so far. Then, the fol-
lowing update and rejection rules apply: First, if the
local upper and lower bound define a smaller cell
size along the z-axis (see Equation 1), we update
cz accordingly. Second, if the local upper bound
defines a smaller cell size along the x- and y-axis

(see Equation 3), we updatecx andcy accordingly.
Third, if the local lower bound is bigger than the
global upper bound, we can skip separation distance
computation of the current sub-mesh pair, since it
does not contribute to the overall minimum distance
computation.

7 Results

We have tested our novel distance computation ap-
proach on a variety of benchmark scenarios with
multiple objects of arbitrary shape and surface res-
olution. The set of benchmark scenarios includes:
(1) a pair of cows (see Fig. 4), (2) a pair of horses,
(3) a stick and a dragon (see Fig. 5), (4) a pair of
deforming teddies (see Fig. 6). The scenarios were
performed on an Intel Core 2 PC, 2.13 GHz with 2
GB of memory. The code is not parallelized. Our
measurements follow the approach of [SGG+06].

Figure 4: Left: The convex hulls of a pair of cows
overlap. Right: The four sub-meshes after the first
adaptive decomposition.

We compare the results of the benchmarks with
the computation times gathered with the software
package SWIFT++ [EL01]. SWIFT decomposes
the surface of a non-convex object into convex
pieces. The convex parts are stored in a bounding
volume hierarchy (BVH). The query is then exe-
cuted on the hierarchy of convex pieces. E.g., in
scenario 1, decomposition of one of the cow mod-
els into over a thousand convex pieces takes 240 ms
and the construction of the BVH takes 600 ms. The
minimum distance computation takes less than one
millisecond. If the scene is considered to be un-
known in each time step, the total computation time
is 1681 ms in each time step.

In comparison, our approach decomposes the ob-
jects into pairs of sub-meshes whose convex hulls
do not overlap (see Fig. 4). This is more gen-
eral when compared to a decomposition into con-

vex pieces. However, it is also more adaptive with
respect to the current configuration in the scenario.
Depending on the relative position of the two cows
in scenario 1, the number of sub-meshes varies be-
tween one and several hundred. Moreover, only
fifty of them enter the spatial hashing stage, at most.
All other pairs can be quickly rejected because of
their distance bounds. Therefore, our algorithm
achieves an average computation time of 680 ms.

Please note that SWIFT++ is optimized for the
application in rigid body simulations. Therefore,
the surface decomposition and the construction of
the BVH can be executed as preprocessing steps.
Thus, they are probably not optimized. Neverthe-
less, the timings indicate that the decomposition is
less suitable for online computations in the context
of deformable objects or for single-shot algorithms
like the approach proposed here.

Regarding the recursion depth, the experiments
show that it is fairly small even for complex objects
like the Stanford dragon in scenario 3 (see Fig. 5).
Here, we experienced a maximum recursion depth
of thirteen. Note, that we do not construct a perfect
recursion tree (i. e. not all leaves are at the same
depth), since recursion is immediately stopped for
the sub-meshes of which the convex hulls do not
overlap (see also Fig. 3).

Figure 5: Stanford dragon with a surface resolution
of 6000 triangles. Despite the high complexity of
the surface mesh, the algorithm reaches a maximum
recursion depth of thirteen.

In scenario 4, we demonstrate the applicability
of our algorithm to deformable objects. Two teddy
bears tumble into the scene and collide with each
other (see Fig. 6). The average distance computa-

tion time is 67 ms. Computation of the minimum
distance is possible for more than one pair of ob-
jects. We are currently investigating how to share
information about separating sub-meshes among
object pairs.

Figure 6: Our approach is able to handle de-
formable objects.

Table 1 gives an overview of the results of the
performance measurements. The average computa-
tion time results from the distance computation of
1000 consecutive frames. As we compare our ap-
proach with SWIFT++, we add those timings in the
last column.

Scenario # of our algorithm SWIFT
triangles avg. [ms] avg. [ms]

(4) 4400 67 1518
(3) 6000 90 1250
(1) 12000 680 1681
(2) 19800 762 2904

Table 1: Benchmark results. The timings resemble
the average distance computation time in millisec-
onds.

The measurements in Table 1 illustrate the ef-
ficiency of the proposed adaptive decomposition
strategy compared to the existing SWIFT++ algo-
rithm. The different performance gains result from
varying recursion depths of our adaptive splitting
and from a varying culling efficiency of the spatial
hashing.

8 Conclusion

We have presented an algorithm for pair-wise mini-
mum distance computation. We employ GJK to re-

cursively find sub-mesh pairs with separating hy-
perplanes. For such pairs, we efficiently compute
the minimum distance by employing spatial hash-
ing. The overall separation distance between the
object pair is governed by the minimum of all sep-
aration distances of the sub-mesh pairs. We have
illustrated the applicability of the algorithm in a set
of scenarios. Currently, we are investigating how
we can efficiently determine a support direction that
might reduce the recursion depth and thus, mini-
mize the amount of sub-meshes. We also want to
employ the algorithm in a path planning framework,
where it should speed up the finding of collision-
free paths.

9 Acknowledgments

This work has been supported by the German Re-
search Foundation (DFG) under contract number
SFB/TR-8.

References

[Cam97] S. Cameron. Enhancing GJK: Com-
puting minimum and penetration dis-
tances between convex polyhedra.
IEEE International Conference on Ro-
botics and Automation, 4:3112–3117,
1997.

[CDST95] B. Chazelle, D.P. Dobkin,
N. Shouraboura, and A. Tal. Strategies
for polyhedral surface decomposition:
An experimental study. InSCG ’95:
Proceedings of the eleventh annual
symposium on Computational geom-
etry, pages 297–305, New York, NY,
USA, 1995. ACM Press.

[EL01] S.A. Ehmann and M.C. Lin. Ac-
curate and fast proximity queries be-
tween polyhedra using surface de-
composition. Computer Graphics
Forum (Proc. of Eurographics’2001),
20(3):500–510, 2001.

[Eri04] C. Ericson. Real-Time Collision De-
tection. Morgan Kaufmann (The Mor-
gan Kaufmann Series in Interactive 3-
D Technology), 2004.

[GF90] E.G. Gilbert and C.-P. Foo. Com-
puting the distance between general
convex objects in three-dimensional

space.Robotics and Automation, IEEE
Transactions on, 6(1):53–61, 1990.

[GFT08] M. Gissler, U. Frese, and M. Teschner.
Exact distance computation for de-
formable objects. InProc. of CASA
2008, to appear, 2008.

[GJK88] E.G. Gilbert, D.W. Johnson, and S.S.
Keerthi. A fast procedure for comput-
ing the distance between complex ob-
jects in three-dimensional space.IEEE
Transactions on Robotics and Automa-
tion, 4(2):193–203, 1988.

[GLM96] S. Gottschalk, M.C. Lin, and
D. Manocha. OBB-Tree: a hier-
archical structure for rapid inter-
ference detection. InSIGGRAPH
’96: Proceedings of the 23rd annual
conference on Computer graphics
and interactive techniques, pages
171–180, New York, NY, USA, 1996.
ACM Press.

[GRLM03] N.K. Govindaraju, S. Redon, M.C.
Lin, and D. Manocha. CULLIDE: In-
teractive collision detection between
complex models in large environ-
ments using graphics hardware. In
HWWS ’03: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware,
pages 25–32, Aire-la-Ville, Switzer-
land, Switzerland, 2003. Eurographics
Association.

[HKLM99] K. Hoff, J. Keyser, M.C. Lin, and
T. Manocha, D. andCulver. Fast com-
putation of generalized voronoi dia-
grams using graphics hardware. In
SIGGRAPH ’99: Proceedings of the
26th annual conference on Computer
graphics and interactive techniques,
pages 277–286, New York, NY, USA,
1999. ACM Press.

[HTG04] B. Heidelberger, M. Teschner, and
M. Gross. Detection of collisions and
self-collisions using image-space tech-
niques. In WSCG, pages 145–152,
2004.

[Hub96] P.M. Hubbard. Approximating poly-
hedra with spheres for time-critical
collision detection.ACM Transactions
on Graphics, 15(3):179–210, 1996.

[KHM +98] J.T. Klosowski, M. Held, J.S.B.
Mitchell, H. Sowizral, and K. Zikan.
Efficient collision detection using
bounding volume hierarchies of k-
DOPs. IEEE Transactions on Vi-
sualization and Computer Graphics,
4(1):21–36, 1998.

[KOLM02] Y.J. Kim, M.A. Otaduy, M.C. Lin,
and D. Manocha. Fast penetra-
tion depth computation for physically-
based animation. InSCA ’02: Pro-
ceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on
Computer animation, pages 23–31,
New York, NY, USA, 2002. ACM
Press.

[KP03] D. Knott and D.K. Pai. CInDeR: Colli-
sion and interference detection in real-
time using graphics hardware. InProc.
of Graphics Interface, pages 73–80,
2003.

[LAM01] T. Larsson and T. Akenine-Moeller.
Collision detection for continuously
deforming bodies. InEurographics,
pages 325 – 333, 2001.

[LC91] M.C. Lin and J.F. Canny. A fast al-
gorithm for incremental distance cal-
culation. InIEEE International Con-
ference on Robotics and Automation,
pages 1008–1014, 1991.

[LCN99] J.-C. Lombardo, M.-P. Cani, and
F. Neyret. Real-time collision de-
tection for virtual surgery. InProc.
of Computer Animation, pages 82–90,
1999.

[LM04] M. C. Lin and D. Manocha. Hand-
book of Discrete and Computational
Geometry, chapter 35, pages 787 –
806. CRC Press, 2004.

[Qui94] S. Quinlan. Efficient distance com-
putation between non-convex objects.
IEEE International Conference on Ro-
botics and Automation, 4:3324–3329,
1994.

[SBT07] J. Spillmann, M. Becker, and
M. Teschner. Efficient updates of
bounding sphere hierarchies for
geometrically deformable models.J.
Visual Communication and Image
Representation, 18(2):101–108, 2007.

[SGG+06] A. Sud, N. Govindaraju, R. Gayle,
I. Kabul, and D. Manocha. Fast
proximity computation among de-
formable models using discrete
Voronoi diagrams. ACM Trans.
Graph., 25(3):1144–1153, 2006.

[SGGM06] A. Sud, N. Govindaraju, R. Gayle,
and D. Manocha. Interactive 3d dis-
tance field computation using linear
factorization. InI3D ’06: Proceed-
ings of the 2006 symposium on Inter-
active 3D graphics and games, pages
117–124, New York, NY, USA, 2006.
ACM Press.

[THM+03] M. Teschner., B. Heidelberger,
M. Mueller, D. Pomeranets, and
M. Gross. Optimized spatial hashing
for collision detection of deformable
objects. InVision, Modeling, Visual-
ization VMV’03, Munich, Germany,
pages 47 – 54, 2003.

[TKH+05] M. Teschner, S. Kimmerle, B. Heidel-
berger, G. Zachmann, L. Raghupathi,
A. Fuhrmann, M.-P. Cani, F. Faure,
N. Magnenat-Thalmann, W. Strasser,
and P. Volino. Collision detection for
deformable objects.Computer Graph-
ics Forum, 24(1):61 – 81, 2005.

[vdB97] G. van den Bergen. Efficient collision
detection of complex deformable mod-
els using AABB trees. J. Graphics
Tools, 2(4):1–13, 1997.

[vdB99] G. van den Bergen. A fast and robust
GJK implementation for collision de-
tection of convex objects.J. Graphics
Tools, 4(2):7–25, 1999.

[ZHKM08] Liangjun Zhang, Xin Huang, Young J.
Kim, and Dinesh Manocha. D-plan:
Efficient collision-free path computa-
tion for part removal and disassembly.
Computer-Aided Design and Applica-
tions, 5(6):774–786, 2008.

