
Time-critical collision handling
for deformable modeling

Marc Gissler Ruediger Schmedding Matthias Teschner

Collision handling is a comparatively time-

consuming task in dynamic simulations and the

computational efficiency of collision handling

techniques can vary significantly dependent on

the spatial configuration of the environment.

These issues have to be addressed in interactive

simulations such as games or surgical simula-

tors, where a pre-defined response time should

be guaranteed for each simulation step.

We present a time-critical collision handling

approach for deformable objects. The technique

employs spatial subdivision for the detection of

collisions and penetration depth information is

computed to estimate penalty forces. Detection,

penetration depth estimation and response are di-

vided into atomic tasks. In case of an interrup-

tion, the algorithm basically resumes in the next

time step. If collisions are not completely han-

dled in one simulation step, the algorithm ensures

that persistent collisions are handled in a subse-

quent simulation step. If an exact response can-

not be computed in a given time frame, the algo-

rithm efficiently approximates penalty forces for

colliding points.

Experiments indicate that the proposed tech-

nique provides a physically-plausible collision

handling in the case of incomplete or inconsistent

collision information. User-defined limits for the

computation time can be guaranteed with an effi-

ciency gain of up to factor three.

Keywords: time-critical collision detection,

time-critical collision response, deformable mod-

eling

Introduction

In the context of virtual reality systems and in-

teractive applications such as games and surgical

simulators, there is a growing interest in the de-

velopment of time-critical visualization and an-

imation techniques that allow for the balancing

of performance and quality [1]. Here, the chal-

lenge is to develop techniques that produce ap-

proximate, but also acceptable results consider-

ing a given time constraint. This is particularly

challenging in the area of dynamic simulations,

where the interplay of collision detection and

response has to be considered for a physically-

plausible collision handling.

Collision handling and the computation of the

dynamics are commonly the two main tasks in

physically-based animations. While the compu-

1



tation time for the dynamics is generally con-

stant, the time for the collision handling can sig-

nificantly vary. If objects are far away, the colli-

sion handling is very efficient. If, on the other

hand, objects are in close proximity or collid-

ing, the collision handling is rather expensive and

may hinder interactive response rates of an appli-

cation.

In order to meet a user-defined response time,

time-critical methods tolerate an approximate, in-

complete or inconsistent collision handling as

long as the result is accepted by the user [2].

If, for example, adaptive representations are em-

ployed, the appropriate level-of-detail can be

used to maintain a given response rate. This strat-

egy is particularly useful in rigid-body simula-

tions where bounding-volume hierarchies com-

monly accelerate the detection of collisions. In

this case, an approximate collision detection can

be realized by aborting a query at an arbitrary

layer of the hierarchy.

However, since bounding-volume hierarchies

are comparatively expensive to update, simple

uniform grids are an efficient alternative for the

collision detection of deformable objects. In this

case, a time-critical collision handling approach

has to work on the original object representation

and a given response rate could be maintained by

distributing the collision handling over multiple

simulation steps. Our algorithm follows this idea.

Our contribution: We propose a time-critical

collision handling algorithm for deformable ob-

jects. In contrast to approximate solutions that

work on adaptive object representations, we pro-

pose to distribute the collision handling over mul-

tiple simulation steps.

In order to guarantee a given time constraint,

collision detection, penetration depth estimation

and response force computation can be inter-

rupted at various points and postponed to subse-

quent time steps. The resulting inconsistencies

and problems due to incomplete collision infor-

mation are addressed by two approaches. First,

if a collision is not handled in a simulation step,

the algorithm ensures that a persistent collision is

handled in a subsequent simulation step. Second,

the algorithm efficiently predicts penalty forces,

if the penetration depth and an exact response

cannot be computed in time.

We show that the proposed scheme can be used

to obtain physically-plausible results for an ef-

ficiency gain of up to factor three. We also il-

lustrate that our technique is superior over naive

solutions where collisions are simply handled in

every second simulation step.

Related work

There exists a plethora of collision detection

schemes for both rigid and deformable solids.

Excellent surveys can be found in [3, 4, 5].

We first discuss collision detection schemes that

are employed in collision handling approaches

followed by a discussion of collision response

schemes that specifically deal with collision in-

formation from interruptible collision detection

approaches. Finally, we discuss the application

of multi-resolution approaches to accelerate col-

lision detection.

Time-critical collision detection

The first time-critical algorithm for collision de-

tection was proposed by Hubbard [6, 7]. The au-

thor uses a bounding volume hierarchy (BVH)

with spheres as bounding volumes (BV) to ap-

2



proximate polyhedral objects. Collisions are de-

tected by traversing the hierarchies and refining

the approximations. The refinement process can

be interrupted at any level in the hierarchy to

meet a time-constraint. If the bounding spheres

still collide at this point, a collision response is

invoked based on the approximation. The accu-

racy of the response can be estimated using infor-

mation stored in the bounding spheres. In [8], the

algorithm is extended to also handle deformable

objects using a hybrid update method to update

the BVs [9].

In [10, 11], the notion of average-distribution

trees (ADB-trees) is introduced. They are an ex-

tension of conventional BVHs. In each BV, vari-

ous characteristics about the average distribution

of the set of primitives within the BV is stored.

Based on this average distribution, an estimation

of the probability that there exists a pair of inter-

secting primitives is derived. The approach al-

lows for a numeric measure of the quality of the

results. Thus, the quality of the collision detec-

tion can be reduced in a controlled way, while

increasing the speed. Computing the additional

information in the BVs is quite expensive. There-

fore, the algorithm is best suited for rigid solids

where these computations can be executed as a

preprocessing step. Furthermore, only a general

collision response can be derived from the BVs

of the ADB-trees, since no information about the

geometric orientation of the primitives is stored

in the BVs.

In [12], perception-based prioritization is ex-

plored and several priority scheduling methods

are proposed. Furthermore, information about

colliding BVs is employed to approximate the

response forces. The priority scheduling meth-

ods only consider one frame. Thus, collisions

with low priority might not be handled. [13]

propose stride-scheduling that prevent starving of

low-priority collisions. They propose priority ag-

ing which increases the priority of an element in

the queue with the time it spends waiting in the

queue. Additional prioritization functions are de-

scribed to minimize latencies and gaps between

colliding objects, such as taking the masses and

velocities of the objects into account. Further-

more, they are able to test at different frequencies

independent of the fixed simulation frequency.

Collision response

Collision handling needs more than the pure de-

tection of a collision, e.g. penetration depth

and penetration direction is needed to compute a

proper response [14, 15]. In the context of a time-

critical collision handling scheme, a collision re-

sponse scheme has to be robust in case of incom-

plete collision detection information. In [16], a

method for the calculation of a consistent colli-

sion response in rigid body collision handling is

proposed using information gathered with a time-

critical collision detection scheme [7]. In [17], an

extension of the method addresses the applica-

tion of time-critical collision detection schemes

on deformable models.

Multi-resolution approaches

Another category of methods that address the

problem of consistent frame-rates is the category

of adaptive meshes [18, 19, 20, 21]. Adaptive

meshes store information on how to coarsen or

refine a mesh to a certain resolution. Of course,

a coarsened mesh can also be used to acceler-

ate collision detection. The main challenge of

3



adaptive meshes is the transition between differ-

ent resolutions.

In contrast to the multi-resolution and bound-

ing volume hierarchy approaches, our approach

directly works on the actual geometry, similar

to [13]. Furthermore, it is applicable to de-

formable objects, which to our knowledge was

not shown before.

Algorithm overview

In this section, we give an overview of our time-

critical collision handling approach. We first give

a short description of the object representation

and clarify some terminology. We then recapit-

ulate the basic principles of the collision detec-

tion, penetration depth computation and response

force computation algorithms before we summa-

rize the basic principles of our time-critical ap-

proach.

Object representation and
terminology

In our simulation, we represent the volume of

a deformable object by a tetrahedral mesh. Its

surface is given by a triangular mesh (see Fig. 1

left). We need both representations in our col-

lision handling scheme. If two objects penetrate

each other, their points are classified as either col-

liding or non-colliding. A border edge pierces a

surface triangle and connects a colliding with a

non-colliding point. The edge-triangle intersec-

tion test returns an intersection point. And finally,

border points are colliding points that share a bor-

der edge (see Fig. 1 right).

Figure 1: Left: Objects are represented as tetra-

hedral meshes that consist of points,

edges, surface triangles and tetrahe-

drons. Right: In case of collisions,

points are classified either as collid-

ing or non-colliding. Further, border

points, border edges and intersection

points have to be determined for the

penetration depth estimation.

Collision handling overview

The collision handling scheme can be sectioned

into three phases: collision detection, penetra-

tion depth estimation and collision response (see

Fig. 2). Throughout the rest of this paper, we de-

note one execution of those three stages in se-

quence as onecollision cycle. For collision de-

tection, we employ a modified spatial hashing

scheme in the spirit of [22]. It efficiently narrows

down the candidates for a point-in-volume detec-

tion that finds collisions between any pair of ob-

jects. If collisions occur between objects, a colli-

sion response is computed in the second and third

phase. We use a penalty-based response scheme

that relates the magnitude of the response force

per collided point to its penetration depth. A con-

sistent penetration depth is estimated for collid-

ing points by employing the approach described

in [15].

4



Figure 2: One collision cycle consists of three parts: collision detection, penetration depth estimation

and collision response. Depending on the time constraint, execution of one collision cycle

may takei + j time steps.

Interruptible collision handling
overview

In non-interruptible collision handling schemes,

there is no limitation on the computation time

for one collision cycle, whereas a time constraint

is introduced in interruptible collision handling

approaches. Collision detection and response

are performed once per simulation time step in

our framework. In our interruptible collision

handling scheme, we follow the basic idea of

processing granular tasks in the collision han-

dling scheme until the time limit is reached and

postponing unfinished tasks to the subsequent

time step. We then continue collision handling

with the processing of the first task in the list of

unfinished tasks in the next time step. Thus, one

collision cycle may be scattered over several time

steps. We start a new collision cycle only after all

tasks of the previous one were successfully per-

formed. Furthermore, we propose an extrapola-

tion scheme for the approximate computation of

response forces. It is applied to colliding points

in stage one, where collisions are detected. If

time permits, these estimates are replaced by an

accurate response force in stage three based on

the penetration depth in stage two. One of the

benefits is that we avoid inconsistencies in the ap-

plication of response forces on points that are in

contact for more than one time step.

Time-critical collision handling

In this section, we describe our time-critical col-

lision handling scheme. We split the discus-

sion into three parts. We first describe our

time-critical collision detection scheme followed

by the description of a time-critical penetration

depth estimation. Finally, we describe how we

maintain a plausible collision response in the

case of incomplete collision information.

5



Time-critical collision detection

For collision detection, we employ the spatial

hashing scheme from [22]. We choose this

scheme, because it has been proven to be most

suitable and very efficient in simulations where

inter-object and intra-object collisions have to

be found between deformable objects. Further-

more, all collision tests can be executed in a sin-

gle query pass and the test may be interrupted in

any and every iteration of the query pass. The

scheme implicitly subdivides the possibly infinite

simulation domain into a regular grid. There-

fore, a hash function maps the three-dimensional

cells of the grid into a one dimensional hash ta-

ble of finite size. Primitives are hashed by find-

ing the grid cells they intersect, mapping those

grid cells into the hash table and leaving an im-

print of the primitive in the corresponding hash

table index. For collision detection, we perform

a point-in-volume test. Therefore, all tetrahe-

drons are hashed and stored in the hash table in

a first pass. In a second pass, point collisions are

queried by hashing all points. If a point is as-

sociated with the same hash cell as one or more

tetrahedrons, they might be in close proximity

and an exact intersection test is performed for

every point-tetrahedron pair. If all tetrahedrons

and points are hashed and all collision tests are

executed without interruption, the collision han-

dling algorithm proceeds with the computation

of a consistent penetration depth . On the other

hand, if the time limit for collision handling is

exceeded, the collision detection is interrupted

and the collision response has to be provided with

some estimations of the penetration depth .

Now, we discuss the locations that are feasible

to interrupt the collision detection. Algorithm 1

Algorithm 1: Collision detection
Input: primitives of all objects in the scene
Output: point-tetrahedron pairs that are in

collision with extrapolated response
forces

foreach tetrahedron t do
hash t and store in hash table

foreach point p do
hash p into hash table
foreach pair (p, t) in hash cell do

query collision
if collision then

extrapolate response
if time is up then interrupt

if time is up then interrupt

shows the sequence of atomic tasks that are exe-

cuted in the collision detection algorithm. There

are only two locations at which the algorithm

may be interrupted. Basically, it could be inter-

rupted after any atomic task, but we believe that

this is not preferable. First, we make the assump-

tion that the upper time limit for the collision

handling and the resolution of the scene geom-

etry is chosen such that the collision handling

could be processed within the time limit in case

none of the objects in the scene is in close prox-

imity of any other object. Otherwise, it would

never be possible to handle collisions within the

given time limit ever. Thus, we omit interrup-

tion tests after hashing one tetrahedron into the

hash grid and after hashing all of them. The ear-

liest feasible interruption location, therefore, is

after querying a point for collision. In case a

collision is found, an efficient collision response

force estimation (see section ”Response forces”)

is executed before interruption. We place the

second spot for interruption after collision de-

tection is completed. In the case of interrup-

tion, all remaining tasks are postponed to the next

6



simulation step. Depending on the interruption

spot, collision detection is resumed or we con-

tinue with the penetration depth estimation de-

scribed in the next section. Note that hashing of

the tetrahedrons is not repeated for the remaining

collision tests to save computation time.

Time-critical consistent penetration
depth

In order to resolve or avoid collisions, many col-

lision handling schemes [23, 24] require some

kind of interpenetration measure. We employ an

efficient algorithm described in [15] to compute

consistent penetration depths for colliding points.

The algorithm works on the domain representa-

tion described in section ”Algorithm overview”,

too.

The algorithm proceeds in four steps. In the

first step, it searches for the border edges in the

tetrahedral mesh of the colliding object. In the

second step, the border edges are tested for inter-

section with the surface triangles of the mesh it is

colliding with, returning the intersection points.

Furthermore, the colliding points that share a bor-

der edge are marked as border points. The pene-

tration depth of a border point is then computed

by weighting the distances between the border

point and all the adjacent intersection points in

the third step. The fourth and final step propa-

gates the penetration depths of the border points

to colliding points that are no border points. For

more details, see [15]. Algorithm 2 summa-

rizes the main steps together with the interrupt-

ible spots.

Like in section ”Time-critical collision detec-

tion”, we now discuss the locations that are fea-

sible to interrupt the penetration depth computa-

Algorithm 2: Consistent penetration depth
Input: primitives of the colliding objects
Output: PDs for all colliding points
foreach surface triangle f do

hash f and store in hash table
if time is up then interrupt

foreach colliding point p do
foreach adjacent edge e of p do

hash e into hash table
foreach pair (f, e) in hash cell do

query intersection
if intersection then

query intersection point
mark p as border point

if p is border point then
compute penetration depth for p

if time is up then interrupt
if time is up then interrupt
while PD is not computed for all points p do

propagate PD to adjacent colliding points
if time is up then interrupt

tion. First, we consider the computation of the

intersection points. For efficiency, we again em-

ploy spatial hashing as in the collision detection

algorithm to narrow down the pairs of triangles

and edges that have to be tested for intersection.

Thus, we hash and store all the surface triangles

of the colliding meshes. Interruption is possible

each time a surface triangle has been processed

completely. Please note, that the triangle’s cur-

rent position is used for hashing to work on up-

dated data. From here on, we process each collid-

ing point on its own. First, we compute the pen-

etration depth for each of the border points. For

each adjacent edge of a border point, we test for

intersection with a surface triangle using the spa-

tial hashing scheme and then compute a weighted

distance to the border points. As a result, we

get the penetration depth of the border point and

immediately derive a consistent response force.

7



This force overrides the estimated response force

computed after the collision detection (see sec-

tion ”Time-critical collision detection” and sec-

tion ”Response forces”). After the penetration

depths and response forces are computed for all

the border points, we can propagate the penetra-

tion depth to all adjacent colliding points that are

no border points and then continue layer by layer.

We may interrupt every time a colliding point has

been completely handled (see algorithm 2).

Response forces

Now, we discuss the computation of the response

forces for our interruptible collision handling

scheme. For efficiency, we employ a simple

penalty-based method that relates the magnitude

of the response force per collided point to its pen-

etration depth [15] using a response constantcr:

fp = dp ∗ dp ∗ cr, wheredp is the penetration

depth for a colliding pointp anddp its penetra-

tion direction. Additionally, some friction and

damping forces may be applied to the response

forces.

In our time-critical collision handling ap-

proach, we have to consider two cases. First, if

the collision handling can be completed within

the given time limit, response forces are com-

puted for all collisions in stage one and three in

every time step. In stage one, response forces are

efficiently approximated. If time permits, these

estimates are replaced by an exact computation in

stage three based on the penetration depths com-

puted in stage two. Thus, for all detected colli-

sions, a response force is either approximated or

accurately computed.

In the extrapolation scheme, we consider the

response forces of a pointp in contact computed

in two previous time steps. A good choice is

to use response forces based on the penetration

depths. Otherwise, the input of the extrapolation

scheme would be forces that were extrapolated

themselves. We denotef response
c−1

and f
response
c−2

to be those response forces from the last two

collision cycles. We linearly interpolate these

two forces over the time interval that spans the

last collision cycle to get the force difference be-

tween two consecutive time steps:f
response
diff =

f
response

c−1
−f

response

c−2

n
, wheren is the number of time

steps of the last collision cycle. Here, we assume

that the current collision cycle requires the same

amount of time steps to be completed. As was

mentioned previously, the response forces could

be composed of more than just the penalty forces

based on the penetration depth, e.g. friction and

damping forces may be added as well. However,

they are implicitly considered in the force extrap-

olation, since they are included in the force dif-

ference. Furthermore, there is one special case

we have to account for. If the response force is al-

ready decreasing, it is possible that the estimated

force we add may lead to a response force that

changes its direction . In this case, we simply

cancel it out the and compute the response force

based on the penetration depth in stage three. Ap-

plication of estimated response forces for points

that are in collision across many collision cycles

and simulation time steps is crucial for the ro-

bustness of the simulation. For example, consid-

erable jitter can be avoided in stacking scenarios

like the one described in the results section.

8



Figure 3: The test scenarios demonstrate various effects in collision handling: Resting contact (left)

and bouncing contact (right).

Results

We evaluate our interruptible collision handling

approach using a set of test scenarios. We sim-

ulate the scenarios with and without time con-

straints for the collision handling.

In the first scenario, 20 plates are stacked up

to show the impact of time constraints on resting

contact (see Fig. 3 left). In the second scenario, a

sneaker falls on a piece of grass to show bounc-

ing contact (see Fig. 3 right). Using these scenar-

ios, we discuss various properties and challenges

of interruptible collision handling for deformable

modeling: meeting time constraints, latency and

speedup, and plausibility of the visualized simu-

lation results. The approach has been integrated

into a deformable modeling framework based on

the Finite Element Method for tetrahedrons [25]

to exemplify its applicability on deformable ob-

jects. All timings have been performed on an In-

tel Core 2 PC, 2.13 GHz with 2 GB of memory.

The code is not parallelized.

Meeting time constraints

In order to reduce the percentage of collision han-

dling in the overall computation time of the sim-

ulation, one naive solution would be to perform

collision handling only every second or more

simulation step. However, this approach leads

to inconsistent collision response forces and rest-

ing contact is hard to maintain (see the accom-

panied video). With the introduction of the in-

terruptible spots in the collision handling scheme

and the force extrapolation scheme, it is possi-

ble to both maintain a target frame rate for col-

lision handling and maintain plausible collision

behavior. The charts in figure 4 show the compu-

tation times for the collision handling with and

without time constraints for the test scenarios.

They demonstrate that the time constraints are

met with a granularity of less than five percent of

the assigned computation time. Despite the time-

constraint, the simulation still computes plausi-

ble resting and bouncing contacts, which is fur-

ther discussed in the next section (see also the

9



Figure 4: Computation time of the collision handling scheme for the resting contactscene (left) and

bouncing contact scene (right) with and without interruptions. In the caseof interruption,

the user-defined time constraint is set 40 and 15 milliseconds, respectively. Time con-

straints are met with a granularity of less than five percent of the given computation time.

accompanied video). Please note that the time

constraint should be chosen appropriate to the

test scenarios. It should be possible to hash and

store at least all tetrahedrons and hash all points

located in the scene. Otherwise, the collision de-

tection cycle would always take more than one

simulation time step, even in a collision-free sim-

ulation environment.

Latency

In time steps with high amounts of collisions, a

collision cycle may span several simulation time

steps due to the user-specified time constraint.

This introduces a delayed collision response for

newly colliding objects (i. e. points that are

not already in contact and where the response

force extrapolation cannot be applied) and may

increase the interpenetration. On the other hand,

response forces may be applied onto objects that

are in contact for too long using the force extrap-

olation. Furthermore, objects might move right

through each other, while the response force are

just computed in one of the later frames of the

collision cycle. These phenomena are already in-

herent in the penalty-based response force com-

putation approaches. Thus, the question is how

much latency may be introduced by the interrupt-

ible collision handling approach without ampli-

fying the described effects too much. Our test

scenarios show that the answer depends on the

relative velocities of colliding objects. For exam-

ple, in the stacking scenario, a latency of up to

four frames still produces robust results, whereas

in the massive scene with the very fast moving

heavy sphere, a latency of up to two frames guar-

antees the execution of response forces in time, i.

e. no torus moves through the sphere and the sim-

ulation keeps stable. We believe that prioritizing

objects with high velocities in the collision han-

dling could increase the acceptable latency in the

second scenario as well. Depending on the sce-

nario and the chosen time constraint, interrupt-

10



ible collision handling saves up to two third of

the computation time for collision handling per

frame when compared to the same scenario with-

out a time constraint. For example, in frame 700

of the stacking scenario, collision handling takes

120 milliseconds in the standard collision han-

dling scheme and only 40 milliseconds using our

interruptible approach. In the next subsection, we

will discuss the topic of plausibility in more de-

tail.

Plausibility

It is obvious and inevitable that any interruptible

collision handling approach trades accuracy and

realism for efficiency. The outcome of such a

trade-off is a simulation of lower quality. Luck-

ily, studies have shown that people have certain

weaknesses in detecting anomalies in dynamic

simulations [26]. Thus, simulations of possibly

lower quality such as the ones using an interrupt-

ible collision handling may still look plausible

and believable to the viewer. To check this as-

sumption, we designed our scenarios and chose

the time constraint for the interruptible scheme

such that we avoid obvious artifacts like objects

moving through each other, severe interpenetra-

tions or unstable behavior due to very large re-

sponse forces. We then recorded sequences with

and without the time constraint and presented

them to people from inside and outside the re-

search group. The task was to name the se-

quences that were recorded with the time con-

straints. This quick experiment revealed that it

seems difficult to label the sequences correctly.

However, it is also difficult to specify the size of

a collision cycle that avoids obvious artifacts.

Discussion: O’Sullivan et al. [27] present a

set of psychophysical experiments that estab-

lish thresholds for human sensitivity to dynamic

anomalies, including angular, momentum and

spatio-temporal distortions applied to simple an-

imations depicting the elastic collision of two

rigid objects. In previous research [2], they also

show that the latency between expected and dis-

played time of collision response impacts be-

lievability. The longer the collision handling

approach spends processing collisions and the

longer the delay that is thus generated, the less

believable the resulting collisions will be. It is

hard to judge how some of these findings carry

over to deformable objects. Non-rigid objects

deform on collision either elastically or plasti-

cally and therefore absorb parts of the collision

energy. As a result, they may stay longer in con-

tact than rigid bodies during an elastic collision.

A quick survey among 20 people from inside and

outside the research group revealed some inter-

esting aspects. First, the expected time of col-

lision response varies considerably. Participants

described it difficult to predict the amount of de-

formation and the duration of contact for pairs of

colliding objects. Second, it seems to be difficult

to predict the trajectory of colliding objects after

collision and contact is resolved. Of course, these

findings are in no way the results of a qualitative

examination like in [2] and it would be interest-

ing to extend their findings to the more complex

animations of the collision of two deformable ob-

jects.

Conclusion

We have presented an interruptible collision han-

dling approach for deformable objects. Our ap-

proach works on the original object representa-

11



tion and a given response rate could be main-

tained by distributing the collision handling over

multiple simulation steps. We have shown and

discussed the various points where it is reason-

able to interrupt the collision handling. Further-

more, we have shown, how a persistent colli-

sion is handled in a subsequent simulation step

and how a response force can be predicted un-

til the penetration depth and an exact response

force can be computed within the given time

constraints. Experiments have shown that the

proposed scheme can can be used to obtain

physically-plausible results for an efficiency gain

of up to factor three. In future research, would

like to evaluate the visual fidelity of the anima-

tion of deformable objects in a more qualitative

experimental investigation.

Acknowledgments

We would like to thank Roman Engels for many

fruitful discussions. Furthermore, this work has

been supported by the German Research Founda-

tion (DFG) under contract number SFB/TR-8.

References

[1] A. van Dam. VR as a forcing function: Software
implications of a new paradigm. InIEEE 1993

Symposium on Research Frontiers in Virtual Re-

ality, pages 5–8, 1993.

[2] C. O’Sullivan and J. Dingliana. Collisions and
perception.ACM Trans. Graph., 20(3):151–168,
2001.

[3] M. Lin and D. Manocha. Collision and proxim-
ity queries. InHandbook of Discrete and Com-

putational Geometry, 2003.

[4] M. Teschner, S. Kimmerle, B. Heidelberger,
G. Zachmann, L. Raghupathi, A. Fuhrmann,
M.-P. Cani, F. Faure, N. Magnenat-Thalmann,
W. Strasser, and P. Volino. Collision detection
for deformable objects.Computer Graphics Fo-

rum, 24:61–81, 2004.

[5] C. Fares and Y. Hammam. Collision detection
for rigid bodies: A state of the art review. In
GraphiCon 2005, 2005.

[6] P. M. Hubbard. Interactive collision detection.
In IEEE Symp. Research Frontiers in Virtual Re-

ality, pages 24–31, 1993.

[7] P. M. Hubbard. Approximating polyhedra
with spheres for time-critical collision detection.
ACM Trans. Graph., 15(3):179–210, 1996.

[8] J. Dequidt, D. Marchal, and L. Grisoni. Time-
critical animation of deformable solids: Colli-
sion detection and deformable objects.Comput.

Animat. Virtual Worlds, 16(3-4):177–187, 2005.

[9] T. Larsson and T. Akenine-Moeller. Collision
detection for continuously deforming bodies. In
Eurographics, pages 325 – 333, 2001.

[10] J. Klein and G. Zachmann. Time-critical colli-
sion detection using an average-case approach.
In VRST ’03: Proceedings of the ACM sympo-

sium on Virtual reality software and technology,
pages 22–31, New York, NY, USA, 2003. ACM.

[11] J. Klein and G. Zachmann. ADB-Trees: Con-
trolling the error of time-critical collision detec-
tion. InProceedings of the 8th International Fall

Workshop Vision, Modeling, and Visualization

2003 (VMV 2003), pages 37–45, 2003.

[12] C. O’Sullivan and J. Dingliana. Real-time colli-
sion detection and response using sphere-trees.
In Spring Conference on Computer Graphics,
pages 83–92, 1999.

[13] D. S. Coming and O. G. Staadt. Stride schedul-
ing for time-critical collision detection. InVRST

12



’07: Proceedings of the 2007 ACM sympo-

sium on Virtual reality software and technology,
pages 241–242, New York, NY, USA, 2007.
ACM.

[14] S. Cameron. Enhancing GJK: Computing mini-
mum and penetration distances between convex
polyhedra. IEEE International Conference on

Robotics and Automation, 4:3112–3117, 1997.

[15] B. Heidelberger, M. Teschner, R. Keiser,
M. Müller, and M. Gross. Consistent penetra-
tion depth estimation for deformable collision
response. InProceedings of Vision, Modeling,

Visualization VMV04, pages 339–346, 2004.

[16] J. Dingliana. Graceful degradation of collision
handling in physically based animation. InProc.

Eurographics 2000, pages 239–247, 2000.

[17] O’Sullivan C. Mendoza, C. Towards time-
critical collision detection for deformable ob-
jects based on reduced models. InProceedings

of the Conference on Computer Animation and

Social Agents (Posters), pages 1–2, 2005.

[18] O. Staadt and M. Gross. Progressive tetrahedral-
izations. InProceedings of the Conference on

Visualization, pages 397–402, 1998.

[19] E. Grinspun, P. Krysl, and P. Schröder. Charms:
a simple framework for adaptive simulation. In
SIGGRAPH ’02: Proceedings of the 29th an-

nual conference on Computer graphics and in-

teractive techniques, pages 281–290, New York,
NY, USA, 2002. ACM.

[20] G. Debunne, M. Desbrun, M.-P. Cani, and A. H.
Barr. Dynamic real-time deformations using
space & time adaptive sampling. InSIG-

GRAPH ’01: Proceedings of the 28th annual

conference on Computer graphics and interac-

tive techniques, pages 31–36, New York, NY,
USA, 2001. ACM.

[21] B. M. Klingner, B. E. Feldman, N. Chentanez,
and J. F. O’Brien. Fluid animation with dynamic

meshes. ACM Trans. Graph., 25(3):820–825,
2006.

[22] M. Teschner, B. Heidelberger, M. M̈uller,
D. Pomeranets, and M. Gross. Optimized spatial
hashing for collision detection of deformable
objects. InProceedings Vision, Modeling, Vi-

sualization (VMV’03), pages 47–54, 2003.

[23] K. Hauser, C. Shen, and J. F. O’Brien. Interac-
tive deformation using modal analysis with con-
straints. InGraphics Interface, pages 247–255,
2003.

[24] J. Spillmann, M. Becker, and M. Teschner. Non-
iterative computation of contact forces for de-
formable objects. Journal of WSCG, 15(1–
3):33–40, 2007.

[25] M. Müller and M. Gross. Interactive virtual ma-
terials. InGI ’04: Proceedings of Graphics In-

terface, pages 239–246, 2004.

[26] J. Clement. Students’ preconceptions in in-
troductory mechanics. American Journal of

Physics, 50(1):66–71, 1982.

[27] C. O’Sullivan, J. Dingliana, T. Giang, and M. K.
Kaiser. Evaluating the visual fidelity of phys-
ically based animations. InSIGGRAPH ’03:

ACM SIGGRAPH 2003 Papers, pages 527–536,
New York, NY, USA, 2003. ACM.

13


