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Barbara Frank Cyrill Stachniss Rüdiger Schmedding Matthias Teschner Wolfram Burgard

Abstract— In this paper, we consider the problem of mo-
bile robots navigating in environments with non-rigid objects.
Whereas robots can plan their paths more effectively when
they utilize the information about the deformability of objects,
they also need to consider the influence of the interaction
with the deformable objects on their measurements during the
execution of their navigation task. In this paper, we present a
probabilistic approach to identify the measurements influenced
by the deformable objects. Based on a learned statistics about
the influence of the deformable objects on the measurements,
the robot is able to perform a sensor-based collision avoidance
of unforeseen objects. We present experiments carried out with
a real robot that illustrate the practicability of our approach.

I. INTRODUCTION

The ability to safely navigate in their environment is one

of the fundamental tasks of mobile robots. Accordingly,

the problem of safe navigation has received considerable

attention in the past. The majority of approaches for nav-

igation, however, has been developed for environments with

rigid obstacles [17, 13] and does not consider the potential

deformations imposed on the corresponding objects while

the robot navigates through the environment. In the real

world, however, not all obstacles are rigid and taking this

knowledge into account can enable a robot to accomplish

navigation tasks that otherwise cannot be carried out. For

example, in our everyday life we often deal with deformable

objects such as plants, curtains, or cloth and we are also

able to utilize the information about the deformability of the

corresponding objects. Consider, for example, the situation

in which a curtain blocks a potential path of the robot as

depicted in Fig. 1. Without the knowledge that the curtain can

be deformed, the robot would always have to take a detour.

Precise information about the cost of potential deformations,

however, allows the robot to plan cost-optimal paths through

the corridor, thereby deforming the curtain at minimal cost.

For robots that operate in environments with deformable

objects, two tasks are essential. First, the robot needs to

be able to take the cost of deformations resulting from its

interaction with deformable objects into account during the

path planning process. Furthermore, the robot needs to be

able to appropriately interpret its sensory input during the

interaction with the deformable objects. For example, during

the interaction, the robot necessarily gets close to the de-

formable object so that its field of view might get obstructed.

However, for safe navigation the robot still needs to be able
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Fig. 1. The mobile robot Albert reasoning about its trajectory.

to identify the measurements that do not correspond to the

deformable object and come from other, possibly even rigid

objects.

In this paper, we present a probabilistic approach that

allows a mobile robot to distinguish measurements caused

by deformable objects it is interacting with from ordinary

measurements. This allows the robot to utilize standard re-

active collision avoidance techniques like potential fields [12]

or dynamic window techniques [4, 3, 14] simply by filtering

out measurements that are caused by the objects the robot is

interacting with. Additionally, the ability to reliably identify

measurements not perceiving parts of the deformable object

enables the robot to correctly interpret them also for the sake

of collision avoidance. Our approach has been implemented

on a real robot and evaluated in a collision avoidance task

carried out while the robot interacts with a curtain. The re-

sults demonstrate that our approach allows the robot to safely

avoid obstacles while it is interacting with a deformable

object.

This paper is organized as follows. After discussing related

work in the following section, we present in Section III an

overview of our current navigation system for robots operat-

ing in environments with deformable objects. In Section IV,

we describe how our robot estimates the cost of deforming

objects and how it incorporates this information during the

path planning process. Section V then contains our approach

to determining which sensors measurements are influenced

by the deformable object and how this information can be

incorporated into the collision avoidance process. Finally,

Section VI contains experimental results.



II. RELATED WORK

Most approaches to mobile robot path planning assume

that the environment is static and that all objects are rigid [13,

11, 2]. In the last years, however, path planning techniques

for deformable robots in static environments have been

presented [7, 10].

In case objects in the environment are deformable, the

underlying model for deformations and the model of the

environment have a substantial influence on the accuracy of

the estimated deformations as well as on the performance

of the planner. There exist geometric approaches such as

the free-form deformation (FFD) that can be computed

efficiently, for example, the FFD method of Sederberg and

Parry [19]. Physically motivated approaches use either mass-

spring systems [16] or Finite element methods (FEMs) which

reflect physical properties of the objects in a better way,

see [8, 15].

Kavraki et al. [10] developed the f-PRM-Framework that

is able to plan paths for flexible robots of simple geometric

shapes such as surface patches [9] or simple volumetric

elements [1]. They apply a mass-spring model and the

planner selects the deformation of the robot that minimizes

its deformation energy. Similar to this technique, Gayle

et al. [7] presented an approach to path planning for a

deformable robot that is based on PRMs. To achieve a more

realistic simulation of deformations they add constraints for

volume preservation to the mass-spring model of the robot.

In the context of collision avoidance, several successful

methods have been presented. They are typically executed

with a higher frequency compared to path planning, operate

mainly on the sensor data itself with the task to ensure

collision free motion of the robot. Such methods can roughly

be divided into map-based approaches such as road-map

or cell-decomposition techniques (see [13] for an extensive

overview), and reactive, sensor-based approaches [4, 14, 20].

Such methods are designed to react to unforeseen obstacles

but assume all objects to be rigid.

The techniques described by Fox et al. [5] as well as

Schmidt and Azarm [18] combine the sensory information

with a given map of the environment to deal with objects

that cannot be detected with the robot’s sensors. Brock and

Kathib [3] presented an integration of path planning and

reactive collision avoidance. There exist also methods that

incorporate speed into the planning process in combination

with collision avoidance [22].

The techniques mentioned above that are able to deal with

deformable objects have been mainly used in simulations and

not on real robots. When applying those techniques in the

real world, a series of problems arise such as how to interpret

the sensor data perceived by the robot while it is deforming

an object as well as adaptation to the collision avoidance

system.

Our planning system applies FEMs to compute object

deformations. In order to perform the path planning task

efficiently, we precompute potential deformations for a set

of robot movements through the objects and estimate the

costs by means of regression. This is based on our previous

approach [6]. In contrast to [6], we realize in this paper a

planning system on a real physical mobile robot and not only

in simulation which requires a series of adaptations and new

techniques for successfully planning paths in environments

with deformable objects. This includes a sound way on

how to interpret the sensor data a mobile robot perceives

while deforming an object. Our approach allows for filtering

the range data obtained with the robot’s sensor to label

beams that are reflected from a deformable objects. This,

in turn, makes our technique orthogonal to other collision

avoidance techniques and enables the robot to combine

existing techniques with our method. Thus, we explicitly

address these open issues and are able to deploy a real robot

with the capability of safely moving though environments

with deformable objects, leaving the world of simulation

behind.

III. SYSTEM OVERVIEW

Our approach to mobile robot motion planning in real

environments with deformable objects uses a typical lay-

ered architecture for realizing the navigation functionalities.

Besides drivers for sensors and the robot, the hardware

abstraction layer, etc., three key components are the

• path planning module, the

• collision avoidance module, and the

• localization module.

The path planning system computes trajectories that guide

the robot to its desired goal location and is executed with

rather low frequency. In contrast to that, a collision avoidance

module operates with high frequency in order to avoid colli-

sions with unforeseen and/or dynamic obstacles. Finally, the

localization module runs Monte-Carlo localization keeping

track of the robot’s pose.

In the context of navigation in real environments with

deformable objects the key questions are: (i) how to plan

trajectories in the presence of such obstacles and (ii) how

to interpret the sensor data so that the robot can distinguish

between unforeseen obstacles to avoid and deformable ob-

jects, which is needed for collision avoidance as well as for

localization.

A prerequisite to address these issues is an appropriate

model of the environment. First, a traditional map (here

grid map) is needed to represent static obstacles. Second,

deformable objects need to be modeled. It is, however,

significantly more complex to represent deformable objects

since one needs to store the three-dimensional structure of

the object as well as its elasticity parameters to allow for

adequate simulation of deformations.

IV. ROBOT TRAJECTORY PLANNING

CONSIDERING OBJECT DEFORMATIONS

A. Learning Deformation Cost Functions

To allow for efficient generation of trajectories for a

mobile robot in environments with deformable objects, we

build upon our recent work [6]. The key idea is to learn cost

functions for the individual deformable objects parameterized



by different trajectories leading to deformations. In order

to carry out this task in an efficient manner, a physical

simulation engine is used in a preprocessing step to calculate

the corresponding cost functions. For making adequate pre-

dictions of the object deformations, we apply finite element

methods to model the deformations.

Once a set of trajectories deforming an object is simulated

in order to obtain the corresponding costs, these values can

be used to approximate the deformation cost function. Our

path planner then evaluates trajectories using A⋆ according

to the cost function

C(path) = α Cdef (path) + (1 − α)Ctravel (path), (1)

where α ∈ [0, 1] is a user-defined weighting coefficient that

determines the trade-off between deformation and path costs.

Given our current implementation, the robot is able to

answer path queries in typical indoor environments in less

than 1 second – in contrast to several hours that would

be needed if the deformation simulations were carried out

at runtime. For further details, we refer the reader to our

previous work [6]. It should be noted that our approach

makes the assumption that there are no interactions between

the different deformable objects and that they are fixed in

the environment, such as curtains or (rather heavy) plants.

B. Object Reconstruction

Our previous work dealt with the path planning issues

on an abstract level carried out only in simulation. We

furthermore assumed that accurate 3D models incorporating

the deformation parameters are known. In this work, we go

a step further and also learn the 3D model of the objects.

This is done by using a real mobile robot equipped with a

laser range finder mounted on a pan-tilt unit.

The robot perceives 3D range scans of the object from

different perspectives and generates a consistent 3D model

by means of the iterative closest point (ICP) algorithm. For

the simulation of deformable objects, a tetrahedral mesh is

needed, which is reconstructed from the 3D model as shown

in [21]. This method can handle un-orientable, non-manifold

or damaged surfaces, and is therefore particularly suitable for

the reconstruction from 3D scans. Based on the 3D scan, a

signed distance field is computed where the set of voxels

having negative sign represents the volume of the object.

Next, a uniform axis-aligned grid is laid over the distance

field. All cells outside the volume are discarded and the

remaining cubical cells are split into tetrahedrons. Finally, a

smoothing filter is applied to optimize the tetrahedral mesh

(see Fig. 2 for example models). Deformations of objects are

then computed using a linear relation between the forces and

displacements q of the single elements (i.e. the tetrahedrons):

f = K(E, ν)q (2)

with stiffness matrix K(E, ν) depending on the elasticity

parameters Poisson ratio ν and Young modulus E.

One open issue is the question of how to determine the

elasticity parameters of the individual objects after acquiring

the 3D model. In our current system, these parameters are

Fig. 2. Generating a model of a curtain (top) and a plant (bottom) for
predicting the deformation cost: Left: photo. Second from left: point cloud.
Second from right: tetrahedral mesh. Right: 3D model .

set manually. However, in a future step, we plan to acquire

this information autonomously by the robot itself from force-

displacement relations obtained with a 7-DoF manipulator.

By applying a force to unknown objects and by measuring

the displacement, we hope to learn the elasticity parameters.

Such a procedure, however, is not yet implemented in our

current system.

V. COLLISION AVOIDANCE

In this section, we describe the collision avoidance system

developed for our robot that navigates in environments with

deformable objects. Our robot is equipped with a SICK laser

scanner with 180 degree opening angle. We use the range

measurements for a basic collision avoidance behavior.

When navigating autonomously, the robot constantly has

to observe its environment in order to react to unforeseen

obstacles. At the same time, it might get close to deformable

objects when deforming them. Therefore, the main problem

in our setting is to figure out which measurements cor-

respond to a deformable object, which means that these

measurements can be ignored by the collision avoidance

system. Note that we do not claim that our approach can

distinguish deformable from rigid objects only based on laser

data in general. However, by combining the knowledge about

objects in the environment and their geometry with estimates

of range scans during deformations, we can estimate the

deformability of an observed object.

We model this problem in a probabilistic fashion: Let ci

denote the binary random variable which describes the event

that beam i hits a deformable object. Then, p(ci | x, zi)
describes the probability that beam i hits a deformable object

given the robot position x and the range measurement zi.

Applying Bayes’ formula, we obtain

p(ci|x, zi) =
p(zi|x, ci)p(ci|x)

p(zi|x, ci)p(ci|x) + p(zi|x,¬ci)p(¬ci|x)
.

(3)

Here, p(zi | x, ci) is the sensor model and p(ci | x) is

the prior denoting the probability of observing a deformable

object from position x. We will shortly go into detail of

how to learn these models. The sensor model p(zi | x,¬ci)
corresponds to the common sensor model p(zi | x) when no

deformable objects are present.
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Fig. 3. Sensor model for the trajectory depicted in the left figure: shown are the probabilities p(ci | x) (second from left), the average beam length when
observing the deformable object (second from right) as well as the standard deviation σ (right) for the robot position and the viewing angle.

A. Learning sensor models for deformable objects

The sensor model p(zi | x, ci) not only depends on the

robot position but also on the trajectory relative to an object.

For instance, the robot will measure a different distance

to the curtain when it is situated in front of it than it

would while passing through and deforming the curtain.

Therefore, we determine sensor models corresponding to

different trajectories of the robot relative to an object.

For each trajectory, we record different datasets consisting

of the robot positions x (provided by the localization module)

and the ranges zi and then manually label the beams reflected

by the deformable object. From the labeled measurements

obtained along these trajectories, we compute the statistics

p(ci | x) =
hitsdef

hitsdef + missesdef

, (4)

where hitsdef is the number of beams reflected by a de-

formable object and missesdef states, how often no de-

formable object was observed for position x and viewing

angle i. The sensor model p(zi | x, ci) is described by a

Gaussian with average range µ and variance σ2. An example

of the deformable sensor model for a typical robot trajectory

through the curtain is shown in Fig. 3.

B. Avoiding collisions

During path execution, the robot constantly monitors its

position and also its sensor measurements for utilization in

the collision avoidance system. In our case, the robot has

to distinguish between allowed collisions with deformable

objects and impending collisions with unforeseen or dynamic

obstacles which have to be avoided. This is done by filtering

out the range measurements that observe a deformable object

with high probability. Therefore, we evaluate Eq. (3) for each

beam and identify those beams that can be neglected for the

collision avoidance.

Note that this labeling or filtering of the range measure-

ment offers a great potential since it is done orthogonal

to traditional collision avoidance methods. As a result, this

technique can be combined with any other collision avoid-

ance technique as, for example, with the dynamic window

approach [4] or the nearness diagram technique [14].

The detected measurements which are identified as be-

longing to dynamic obstacles can be incorporated into the

navigation system to update the path of the robot or into any

existing sensor based collision avoidance routine. Our current

implementation performs replanning if a path is blocked by a

dynamic object or simply stops the robot if the distance to an

obstacle is too close. An example of the collision detection

is given in Fig. 4.

VI. EXPERIMENTAL RESULTS

We performed several experiments to evaluate the perfor-

mance of our developed planning system on a real robot.

We used an iRobot B21r platform equipped with a SICK

laser range finder. Our implementation is based on CARMEN

which is a navigation software allowing independent modules

to communicate via a middle-ware. To integrate our approach

into CARMEN, we replaced the collision detection method

inside the module “robot” as well as the planning module

termed “navigator” with our software. In addition to that, we

extended the localization module which is based on MCL

so that the laser beams hitting a deformable object during

deformation are not considered in the sensor model.

We mounted a set of curtains in the corridor of our lab

as deformable objects. First, we evaluate our sensor model

for deformable objects. Next, we analyze the performance

of our collision avoidance system during path execution in

the presence of unforeseen and dynamic obstacles. Finally,

we give some examples of how the incorporation of the

deformation cost function influences the path search.

A. Sensor model prediction

In the first experiment, we evaluated how well our sensor

model for deformable objects is able to predict the presence

of deformable objects. We learned a sensor model for two

different trajectories through the curtain that were chosen

preferably by our path planner. To compute the sensor model

statistics, we recorded the laser data and the robot position

and manually labeled the laser beams that were reflected by

the curtain. For each trajectory, we performed a leave-one-out

cross-validation using 11 trajectories for learning the model

and one for evaluation. The results of this experiment are

summarized in Table I and demonstrate, that the system is

able to distinguish between deformable and static obstacles

with high accuracy. While the number of false positives is

at around 3%, the number of false negatives is below 1%.

B. Recognition of dynamic obstacles

While it is intuitive that the sensor model is able to

distinguish between deformable and static obstacles, it is

not clear how well the classification works in the presence

of dynamic obstacles in the vicinity of the deformable
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Fig. 4. Different collision avoidance scenarios (top row): Laser beams are evaluated with respect to their likelihood of observing a deformable object.
In the second row, the classification of the individual laser beams is illustrated while in the bottom row, the probability of each beam together with the
ground truth is shown.

True label

Detected label Deformable Object No deformable Object

Deformable Object 43857 (97.1%) 621 (0.9%)

No Deformable Object 1292 (2.9%) 65907 (99.1%)

Total 45149 66528

TABLE I

CONFUSION MATRIX FOR PREDICTING WHETHER A BEAM HITS A

DEFORMABLE OBJECT IN A STATIC ENVIRONMENT.

objects. The key question is whether the system is able to

distinguish well between these obstacle classes and therefore

is able to navigate safely. An important precondition for

this is of course that the sensor can perceive a dynamic

obstacle and that it is not completely occluded by the

deformable object. To answer this question we performed

several experiments where our robot moved on a trajectory

deforming the curtain while dynamic obstacles were blocking

its path. The recorded laser scans were labeled accordingly

and evaluated with respect to the prediction performance.

The results are listed in Table II. In this experiment, the

number of false negatives is comparable to the situation

in static environments while the number of false positives

is around 1% higher than in the previous experiment. Our

experiments, however, showed that this still leads to a safe

behavior. In the worst case, the false negatives forced the

robot to stop when it was not necessary while the false

positives usually where outliers in a region of correctly

classified dynamic obstacle beams. Therefore, the robot was

True label

Detected label Deformable Object Dynamic Object

Deformable Object 8563 (96.5%) 98 (2.1%)

Dynamic Object 314 (3.5%) 4600 (97.9%)

Total 8877 4698

TABLE II

CONFUSION MATRIX FOR AN ENVIRONMENT CONTAINING BOTH

DEFORMABLE AND DYNAMIC OBJECTS.

still able to recognize dynamic obstacles and thus avoided

collisions with these obstacles.

C. Example Trajectories through Curtains

For our experimental setup, we varied the trade-off be-

tween the deformation cost and the travel cost. The results

for an example trajectory can be seen in Fig. 5. When

the weighting coefficient α, which determines the trade-

off between deformation and travel cost, is set to moderate

values, then the planner prefers trajectories going through

easily deformable objects. Note that in our scene, the cur-

tain consists of two individual, neighboring curtains. The

minimal-cost path, therefore, guides the robot through the

contact point of both curtains. This fact can be observed

in Fig. 6, where the curtains are moved compared to the

previous example. Here, the planner chooses a slightly longer

trajectory in order to minimize the deformation costs. Finally,

a sequence of snapshots of our real robot navigating through

the curtains is shown in Fig. 7. The execution of this



Fig. 7. The mobile robot Albert moving through a curtain.

Fig. 5. Planning a trajectory for different weightings of the deformation
cost (α = 0 (left), α = 0.2 (middle), α = 0.8 (right)).

Fig. 6. The planner prefers trajectories that minimize object deformations.
The curtains in the left picture are moved 40 cm along the positive y-axis
compared to the picture on the right. The weighting coefficient α is set to
0.2 in both examples.

path together with demonstrations of the collision avoidance

system can be found in the accompanying video.

VII. CONCLUSIONS

In this paper, we presented an approach for navigation in

environments with deformable objects that explicitly takes

into account the influence of the interaction between the

robot and the deformable objects onto the measurements.

Our approach is purely probabilistic and estimates for each

measurement as to whether or not it might be caused by the

deformable object in the environment. This allows the robot

to get close to deformable objects and still avoid collisions

with non-deformable objects. In our planning system, the

costs of object deformations are determined using finite ele-

ment methods to appropriately model the physical properties.

Additionally we perform pre-computations to allow for an

efficient online-calculation of path queries.

Our approach has been implemented and tested on a real

robot and in a practical experiment, in which the robot is

able to deform objects and at the same time avoid collisions

with people. Future work will include the learning of the

parameters of the deformable object based on the interaction

between the robot and the objects so that better statistics

about the influence on the sensory input can be calculated.
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