
Deformable Proximity Queries and their

Application in Mobile Manipulation Planning

M. Gissler and C. Dornhege and B. Nebel and M. Teschner

Computer Science Department, University of Freiburg, Germany

Abstract. We describe a proximity query algorithm for the exact min-
imum distance computation between arbitrarily shaped objects. Special
characteristics of the Gilbert-Johnson-Keerthi (GJK) algorithm are em-
ployed in various stages of the algorithm. In the first stage, they are
used to search for sub-mesh pairs whose convex hulls do not intersect.
In the case of an intersection, they guide a recursive decomposition.
Finally, they are used to derive lower and upper distance bounds in
non-intersecting cases. These bounds are utilized in a spatial subdivision
scheme to achieve a twofold culling of the domain. The algorithm does
not depend on spatial or temporal coherence and is, thus, specifically
suited to be applied to deformable objects. Furthermore, we describe its
embedding into the geometrical part of a mobile manipulation planning
system. Experiments show its usability in dynamic scenarios with de-
formable objects as well as in complex manipulation planning scenarios.

1 Introduction

Proximity queries play an important role in robot motion planning, dynamic
simulation, haptic rendering, computer gaming, molecular modeling and other
applications [1]. A plethora of papers has been published on different aspects of
these queries in computational geometry and other research areas. Furthermore,
many systems and libraries have been developed for performing different prox-
imity queries. However, the attention to deformable proximity queries has been
of moderate extent when compared to the many techniques capitalizing the spe-
cial properties of rigid bodies. Regarding motion planning in robotics, distance
queries have been used to accelerate the verification of execution paths [2]. If a
deformable environment or flexible robots have to be considered in the planning
process, an efficient distance computation algorithm is needed in the geometrical
part of the motion planner that is capable of handling such environments.

Our contribution: We describe an approach for the computation of the
minimum distance between arbitrarily shaped deformable objects. Objects are
represented by triangulated surface meshes. We show how to use GJK for an
adaptive decomposition of the meshes. GJK is employed on the sub-mesh pairs
to find lower and upper bounds for the minimum distance. The bounds are used
for a spatial subdivision scheme that only takes a small part of the domain into
account to determine the exact minimum distance between the sub-meshes. The
algorithm does not depend on spatial or temporal coherence. Thus, it is suitable



2 M. Gissler and C. Dornhege and B. Nebel and M. Teschner

to be applied to deformable objects. We show the usability of the algorithm in a
planning system for mobile manipulation. The system is able to find execution
plans for complex tasks that require the replacement of objects to reach a specific
goal or to take the deformability of the manipulable objects into account.

Organization: The rest of the paper is organized as follows. Section 2 sur-
veys related work on proximity queries and manipulation planning. The prox-
imity query algorithm is described in section 3. The embedding of the proximity
queries into the manipulation planning framework is discussed in section 4. The
paper concludes by presenting results for the proximity query technique and its
application to manipulation problems in section 5.

2 Related work

Proximity queries. Proximity query algorithms find their application in many
research areas such as computer graphics, physically-based simulation, anima-
tion, interactive virtual environments and robotics. They include the query for
collision detection, distance computation or penetration depth. Extensive re-
search has produced a variety of specialized algorithms. They may differ in the
model representations they are able to process, the type of query they can an-
swer or the specific properties of the environment. Excellent surveys can be found
in [3–5]. Considering collision detection, many approaches exploit the properties
of convex sets to be able to formulate a linear programming problem. Gilbert
et al. propose an iterative method to compute the minimum distance between
two convex polytopes using Minkowski differences and a support mapping [6].
In contrast, Lin and Canny [7] execute a local search over the Voronoi regions
of convex objects to descend to the closest point pair. In dynamic environments,
geometric and time coherence can be exploited to employ feature-tracking to
improve the efficiency of the algorithms even more [7].The described techniques
can be applied to non-convex objects, if the non-convex objects are either com-
posed of [6, 7] or decomposed into [8] convex subparts. The algorithms then work
on the convex subparts as usual. However, surface decomposition is a nontrivial
and time consuming task and can only be considered as a preprocessing step
when applied to undeformable objects.

Apart from the family of feature-tracking algorithms, there is the class of
bounding volume hierarchies. For each object, a hierarchy of bounding vol-
umes is computed that encloses the primitives of the object at successive lev-
els of detail. Different types of bounding volumes have been investigated, such
as spheres [9, 10], axis-aligned bounding boxes [11], k-DOPs [12] or oriented
bounding boxes [13]. Further, various hierarchy-updating methods have been
proposed [14].

Spatial subdivision is the third family of acceleration techniques for proxim-
ity queries. The simplest but also most efficient subdivision would be the use of a
regular grid. Only primitives within the same grid cell are then queried for colli-
sion. This approach is best suited for n-body collision queries, since it only takes
linear time to query the collisions between the n2 object pairs. Furthermore, it is



Deformable Proximity Queries in Mobile Manipulation Planning 3

well-suited for the detection of collisions and self-collisions between deformable
objects [15]. An approach that combines the benefits of feature-tracking algo-
rithms and spatial subdivision algorithms is described in [16] and [17].

In the recent years, graphics hardware has been used to accelerate various
geometric computations such as collision detection [18, 19] or distance field com-
putation [20]. Possible drawbacks of GPU-based approaches are that their ac-
curacy is limited by the frame buffer resolution and the time for reading back
the frame buffers. However, in [19] the amount of read-back is reduced with the
introduction of occlusion queries for collision detection.

Manipulation planning. Solving the robotic planning problems in high-
dimensional configuration spaces is often addressed using probabilistic roadmap
(PRM) planners [21, 22]. Such planners randomly generate samples in the con-
figuration space and attempt to connect each newly generated sample to one of
the existing samples by means of shortest paths in configuration space. This pro-
cedure results in a connectivity graph that spans the configuration space. The
sampled nodes and the path segments stored in the graph have to be tested for
collision. The validation of a collision-free graph takes up most of the computa-
tion time in the construction of the PRM. Schwarzer et al. presented an approach
to integrate distance computation algorithms in the PRM framework for a more
efficient dynamic collision checking [2]. The problem of computing a measure of
distance between two configurations of a rigid articulated model has also been
addressed by Zhang et al. [23]. Furthermore, manipulation planning is addressed
by building a so-called “manipulation graph”. It consists of nodes representing
viable grasps and placements. Nodes are connected by transit or transfer paths
moving either the manipulator alone or together with a grasped object. Those
paths are solved using the above-mentioned PRM planners [24, 25]. Integrat-
ing symbolic and manipulation planning has been studied in the past. Cambon
et al. [26, 27] use the FF planner which they modified to integrate roadmap
planning into the planner. However, they do not provide a general interface to
the domain-independent planner. Therefore, we base our implementation on the
work of Dornhege et al. [28] that presents a general domain-independent plan-
ner interface to geometric planning. A comprehensive survey on robot planning
algorithms can be found in [29].

3 Proximity queries

In this section, the proximity query algorithm is described. It returns the min-
imum distance between pairs of arbitrarily shaped objects in three-dimensional
space. The objects may be given as closed non-convex triangulated surface
meshes. The algorithm can be divided into three stages. The first stage employs
a variation of the Gilbert-Johnson-Keerthi algorithm (GJK) [6]. It determines
the separation distance between the convex hulls of a pair of non-convex ob-
jects. Obviously, the points that define the separation distance lie on the convex
hulls of the objects, but not necessarily on their surfaces. Thus, we obtain a
lower distance bound for the exact separation distance. Furthermore, in GJK



4 M. Gissler and C. Dornhege and B. Nebel and M. Teschner

the closest points on the convex hull are expressed by a combination of points
on the actual surfaces, the support points. Thus, the closest pair of support
points gives an upper distance bound (see the left side of figure 1). If the lower

Fig. 1. Step one and two of the distance computation algorithm.
Left: Lower and upper distance bounds (gray lines) between the two shapes are derived
from GJK. The lower bound is the minimum distance between the two convex hulls
(red), the upper bound is the minimum distance between pairs of support points (black
dots). The actual separation distance (dotted gray line) lies within these bounds.
Right: Twofold culling using spatial hashing: 1. Only the object parts inside the mar-
gins (horizontal red lines) are hashed. 2. Only primitives inside the same cell (red
rectangle) are considered in the pair-wise primitive test.

distance bound is greater than zero, i.e. the convex hulls of the two objects do
not overlap, the algorithm proceeds with stage two. It employs spatial hash-
ing [15]. All surface triangles are hashed to the cells in the hash table. The cell
size c = [x, y, z]T of the hash grid is determined using the distance bounds found
in the first stage, with distupper and distlower being the upper and lower bound,
respectively. The grid is aligned to a local coordinate system, which has the z-
axis parallel to the vector that connects the closest points on the convex hulls.

We define the cell size along the different axes to be: cx = cy :=
√

t2x + t2y and

cz = 2 · distupper −distlower. Here, t = (tx, ty, tz)
T is the vector that connects

the support points for which ‖t‖ = distupper. Using this scheme, only triangles
within the same cell and its neighbors can still contribute to the exact minimum
distance. The distance for all other triangle pairs is guaranteed to be greater
than the upper distance bound. They are efficiently culled away by the intrinsic
properties of the subdivision scheme (see the right side of figure 1). If the con-
vex hulls of the mesh pair overlap, the algorithm proceeds with stage three. In
this stage, information computed by GJK is utilized to adaptively decompose
the meshes into sub-meshes and pair-wise repeat the process in stage one recur-
sively. In particular, GJK returns extremal points of the objects along a support
vector. Planes orthogonal to this support vector and going through the extremal
points divide the objects into sub-meshes (see figure 2). The overall minimum
distance between the object pair is the minimum of the set of distances com-
puted for all the sub-mesh pairs. In contrast to other approaches, the input data
does not need to be pre-processed, i. e. no full surface decomposition is executed



Deformable Proximity Queries in Mobile Manipulation Planning 5

Fig. 2. Step three of the algorithm is invoked, if the convex hulls of the two shapes
overlap.
Left: The objects are recursively divided into sub-meshes according to support planes
(dashed red lines).
Right: The minimum of the set of separation distances (red lines) of the sub-mesh
pairs gives the separation distance.

and no bounding volume hierarchies are constructed. Instead, decomposition of
the surface meshes is only performed if it is required in the separation distance
computation. This makes the approach suitable for the simulation of deformable
objects.

4 System overview

In this section, we describe our framework for manipulation planning and the
embedding of the proximity query algorithm into this framework. First of all,
the manipulation problem is decomposed into a symbolic and a geometrical
part. The symbolic planner allows for task specifications and domain descrip-
tions to be given in high-level, human-like language, e. g. task specifications look
like on(box, table) and domain descriptions like pick-up(box) or put-down(box,
table), respectively. On the symbolic level, the applicability of actions can be
decided by evaluating the conditions of state variables. On the other hand, the
geometric planner is used for constraint checking and effect calculation, i. e. the
detection of collision free states and execution paths. Therefore, the geometric
planner has access to a full domain description that represents the kinematics
of the manipulator and a three-dimensional scene description. The decomposi-
tion serves to partition the complex manipulation problem into simpler planning
problems. The interaction between the two parts is realized by external modules
called semantic attachments [28]. They compute the valuations of state variables
in the symbolic part by answering question like ”Is there a collision-free way to
move from point a to point b?” using the geometric part at run-time. Using the
semantic attachments, the low-level geometric planner can provide information
to the high-level symbolic planner during the planning process. However, it is
only evoked when it seems relevant to the high-level planner. This is of particular
importance, since the low-level planner performs the most time-consuming tasks,
the proximity queries. The semantic attachments are implemented as probabilis-
tic roadmaps (PRM) [22]. The roadmaps are connectivity graphs that provide



6 M. Gissler and C. Dornhege and B. Nebel and M. Teschner

collision-free states and path segments in configuration space. The configuration
space is given by the kinematics of the manipulator and the configurations of
the objects.The verification of collision-free states and paths in workspace is per-
formed using the proximity query algorithm described in section 3. Depending on
the query, the exact distance is returned or a distance threshold is verified. Using
distance queries instead of collision queries may seem to be slower in comparison,
but only distance queries allow for a fast and safe path verification [2].

Incorporating the possibility to manipulate deformable objects extends the
collision-free configuration space in the case of transfer paths - the paths, where
the manipulator has grasped an object and moves it along. We require the ma-
nipulator to be collision-free. Only the grasped object may collide. If this collision
can be resolved by deformation, the current state is verified to be collision-free.
The deformation energy of an object is computed using a linear relation between
the forces and the displacement of the tetrahedrons in the volume representation.
If an object-specific threshold is passed, the state is not-collision-free. Besides
the ability for deformable manipulable objects, navigation amongst deformable
objects [30, 31] could also be realized with the tetrahedral data structure.

5 Experiments

We have staged a series of experiments to evaluate the distance computation
approach as well as its application in the manipulation planning framework. In
all experiments, the object representation is twofold. Surfaces are represented
by triangular meshes to provide the input for the proximity query algorithm,
whereas volumes are represented by tetrahedral meshes to provide the input for
the force-displacement relation. All run-times were computed as average run-
times on an Intel Core2Duo 6400 with 2 GB RAM using a single core. 1

Proximity queries. The set of test scenarios for the evaluation of the dis-
tance computation approach includes (1) a pair of cows, (2) a pair of horses, (3) a
stick and a dragon and (4) a pair of deforming teddies. The objects vary in shape
and complexity. Scene complexity and timings are given in table 1. We compare

Table 1. Results for the test scenarios. The timings resemble the average distance
computation time in milliseconds over 1000 consecutive frames.

Scenario # of triangles avg. [ms] our algorithm avg. [ms] SWIFT
(4) 4400 67 1518
(3) 6000 90 1250
(1) 12000 680 1681
(2) 19800 762 2904

the timings with the ones gathered with the software package SWIFT++ [8].

1 A video with five exemplary scenarios and plans can be found
at: http://tinyurl.com/p5z82t.



Deformable Proximity Queries in Mobile Manipulation Planning 7

SWIFT decomposes the surface of a non-convex object into convex pieces, which
are stored in a bounding volume hierarchy (BVH). The query is then executed
on the hierarchy of convex pieces. Using this data structures, distance queries
can be answered very quickly. However, if the scene is considered to be unknown
in each time step, surface decomposition and BVH generation has to be included
in the total computation time. In comparison, our approach decomposes the ob-
jects into a tree of sub-meshes whose convex hulls do not overlap. This is more
general when compared to a decomposition into convex pieces. However, it is also
more adaptive with respect to the current scene configuration. Therefore, our al-
gorithm achieves lower average computation times. Please note that SWIFT++
is optimized for the application in rigid body simulations. Therefore, the surface
decomposition and the construction of the BVH can be executed as preprocessing
steps. Thus, they are probably not optimized. Nevertheless, the timings indicate
that the decomposition is less suitable for online computations in the context
of deformable objects or for single-shot algorithms like the approach proposed
here.

Manipulation planning. We demonstrate our manipulation planning frame-
work on two synthetic test scenarios (see figures 3 and 4). The manipulator used
in both scenarios consists of 2400 triangles and 2500 tetrahedrons. The first sce-
nario consists of an additional three tables, with manipulable items placed on
top. Triangles and tetrahedrons sum up to 2500 and 2600, respectively. In the
second scenario, cubes are arranged to form a small narrow passage. The manipu-
lator platform and a teddy are placed left and right of the passage. Triangles and
tetrahedrons sum up to 3000 and 3500, respectively. The two scenarios demon-
strate two different problems. In the tables scene, problems are formulated that
place objects at the locations of other objects, forcing the planner to detect such
situations and plan for them accordingly. The results shown in table 2 indicate
that even multiple replacing of objects still results in reasonable runtimes.

Table 2. Results for the tables scene. The problem instances are separated in three
classes: Simple pick-and-place tasks (Class I), problems that require the replacing of
object to reach the goal configuration (Class II), and problems that require the replac-
ing of multiple objects (Class III). Various tasks have been posed per class. Runtimes
are given in seconds.

Class I Runtime (s)

01 3.48 ± 1.23
02 6.08 ± 3.49
03 1.47 ± 0.12
04 3.77 ± 0.97
05 4.75 ± 2.36
06 5.27 ± 2.71
07 63.83 ± 7.67
08 5.66 ± 7.50
09 12.48 ± 14.74

Class II Runtime (s)

01 24.32 ± 8.63
02 24.95 ± 9.25
03 91.87 ± 14.01
04 30.26 ± 9.74

Class III Runtime (s)

01 37.33 ± 6.85
02 15.50 ± 2.52
03 78.55 ± 45.61



8 M. Gissler and C. Dornhege and B. Nebel and M. Teschner

In the second scene, a problem is formulated that forces the geometric planner
to take the deformability of the manipulable object into account. The execution
path depicted in figure 4 required the deformation computation to be executed
for 600 configurations. This adds an additional planning time of 100 ms per
configuration on average.

6 Conclusion

We have presented an algorithm for deformable proximity queries. It employs
GJK to recursively find sub-mesh pairs whose convex hulls do not overlap. For
such pairs, the minimum distance can be efficiently computed using spatial hash-
ing. The overall minimum distance is governed by the minimum distance between
the sub-mesh pairs. We have illustrated the efficiency and suitability of the
algorithm with regard to deformable objects. Furthermore, we have described
and demonstrated the application of the algorithm in a manipulation planning
framework. Currently, we are investigating how to improve the runtimes of the
framework. An optimized recursive decomposition would speed up the proxim-
ity query algorithm. Integration of geometric heuristics in the symbolic planning
process could significantly reduce the amount of calls to the geometric planner.

7 Acknowledgments

This work has been supported by the German Research Foundation (DFG) un-
der contract number SFB/TR-8. We also thank the reviewers for their helpful
comments.

References

1. Lin, M., Gottschalk, S.: Collision detection between geometric models: a survey.
In: Proc. of IMA Conference on Mathematics of Surfaces. (1998) 37–56

2. Schwarzer, F., Saha, M., Latombe, J.: Adaptive dynamic collision checking for
single and multiple articulated robots in complex environments. IEEE Transactions
on Robotics and Automation 21(3) (2005) 338–353

3. Lin, M.C., Manocha, D.: 35. In: Handbook of Discrete and Computational Geom-
etry. CRC Press (2004) 787 – 806

4. Ericson, C.: Real-Time Collision Detection. Morgan Kaufmann (The Morgan
Kaufmann Series in Interactive 3-D Technology) (2004)

5. Teschner, M., Kimmerle, S., Heidelberger, B., Zachmann, G., Raghupathi, L.,
Fuhrmann, A., Cani, M.P., Faure, F., Magnenat-Thalmann, N., Strasser, W.,
Volino, P.: Collision detection for deformable objects. Computer Graphics Fo-
rum 24 (2005) 61 – 81

6. Gilbert, E., Johnson, D., Keerthi, S.: A fast procedure for computing the dis-
tance between complex objects in three-dimensional space. IEEE Transactions on
Robotics and Automation 4 (1988) 193–203

7. Lin, M., Canny, J.: A fast algorithm for incremental distance calculation. In: IEEE
Int. Conf. on Robotics and Automation. (1991) 1008–1014



Deformable Proximity Queries in Mobile Manipulation Planning 9

8. Ehmann, S., Lin, M.: Accurate and fast proximity queries between polyhedra using
surface decomposition. Computer Graphics Forum (Proc. of Eurographics’2001)
20 (2001) 500–510

9. Quinlan, S.: Efficient distance computation between non-convex objects. IEEE
Int. Conf. on Robotics and Automation 4 (1994) 3324–3329

10. Hubbard, P.: Approximating polyhedra with spheres for time-critical collision
detection. ACM Transactions on Graphics 15 (1996) 179–210

11. van den Bergen, G.: Efficient collision detection of complex deformable models
using AABB trees. J. Graphics Tools 2 (1997) 1–13

12. Klosowski, J., Held, M., Mitchell, J., Sowizral, H., Zikan, K.: Efficient collision
detection using bounding volume hierarchies of k-DOPs. IEEE Transactions on
Visualization and Computer Graphics 4 (1998) 21–36

13. Gottschalk, S., Lin, M., Manocha, D.: OBB-Tree: a hierarchical structure for rapid
interference detection. In: SIGGRAPH ’96: Proc. of the 23rd annual conference on
Computer graphics and interactive techniques, ACM Press (1996) 171–180

14. Larsson, T., Akenine-Moeller, T.: Collision detection for continuously deforming
bodies. In: Eurographics. (2001) 325 – 333

15. Teschner., M., Heidelberger, B., Mueller, M., Pomeranets, D., Gross, M.: Op-
timized spatial hashing for collision detection of deformable objects. In: Proc.
Vision, Modeling, Visualization VMV’03, Munich, Germany. (2003) 47 – 54

16. Gissler, M., Frese, U., Teschner, M.: Exact distance computation for deformable
objects. In: Proc. Computer Animation and Social Agents CASA’08. (2008) 47–54

17. Gissler, M., Teschner, M.: Adaptive surface decomposition for the distance com-
putation of arbitrarily shaped objects. In: Proc. Vision, Modeling, Visualization
VMV’08. (2008) 139–148

18. Knott, D., Pai, D.: CInDeR: Collision and interference detection in real-time using
graphics hardware. In: Proc. of Graphics Interface. (2003) 73–80

19. Govindaraju, N., Redon, S., Lin, M., Manocha, D.: CULLIDE: Interactive collision
detection between complex models in large environments using graphics hardware.
In: HWWS ’03: Proc. of the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware. (2003) 25–32

20. Sud, A., Govindaraju, N., Gayle, R., Kabul, I., Manocha, D.: Fast proximity
computation among deformable models using discrete Voronoi diagrams. ACM
Trans. Graph. 25 (2006) 1144–1153

21. Latombe, J.: Robot Motion Planning. Kluwer Academic Publishers (1991)
22. Kavraki, L., Svestka, P., Latombe, J.C., Overmars, M.: Probabilistic roadmaps

for path planning in high-dimensional configuration spaces. IEEE Transactions on
Robotics and Automation 12(4) (1996) 566–580

23. Zhang, L., Kim, Y.J., Manocha, D.: C-dist: efficient distance computation for rigid
and articulated models in configuration space. In: SPM ’07: Proceedings of the
2007 ACM symposium on Solid and physical modeling, ACM Press (2007) 159–169

24. Alami, R., Laumond, J.P., Siméon, T.: Two manipulation planning algorithms.
In: WAFR: Proceedings of the workshop on Algorithmic foundations of robotics,
A. K. Peters, Ltd. (1995) 109–125

25. Simeon, T., Cortes, J., Laumond, J., Sahbani, A.: Manipulation planning with
probabilistic roadmaps. The International Journal of Robotics Research 23 (2004)
729–746

26. Cambon, S., Gravot, F., Alami, R.: A robot task planner that merges symbolic
and geometric reasoning. In: Proc. of ECAI. (2004) 895–899

27. Fabien Gravot, S.C., Alami, R.: aSyMov: A planner that deals with intricate
symbolic and geometric problems. Springer Tracts in Advanced Robotics 15 (2005)



10 M. Gissler and C. Dornhege and B. Nebel and M. Teschner

28. Dornhege, C., Eyerich, P., Keller, T., Trüg, S., Brenner, M., Nebel, B.: Semantic
attachments for domain-independent planning systems. In: Proc. of ICAPS. (2009)
to appear.

29. LaValle, S.M.: Planning algorithms. Cambridge University Press (2006)
30. Rodriguez, S., Lien, J.M., Amato, N.: Planning motion in completely deformable

environments. In: Proc. IEEE Int. Conf. on Robotics and Automation (ICRA).
(2006) 2466–2471

31. Frank, B., Stachniss, C., Schmedding, R., Burgard, W., Teschner, M.: Real-world
robot navigation amongst deformable obstacles. In: Proc. IEEE Int. Conf. on
Robotics and Automation (ICRA). (2009) 1649–1654

Fig. 3. An advanced pick-and-place task. The manipulator is required to pick up the
red box and place it to where the green box is located. Therefore, it first has to pick
up the green box and place it somewhere else (upper row) and then pick up and move
the red box to the final position (lower row).

Fig. 4. A pick-and-place task applied to a deformable movable object. The teddy is
picked up from behind the wall and moved trough the small narrow passage (left)
to its final position above the table (right). An execution path can only be found, if
deformability of the teddy is considered by the geometric planner.


