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Abstract

Smoothed Particle Hydrodynamics (SPH) is a powerful technique for the animation of natural phenomena. While
early SPH approaches in Computer Graphics have mainly been concerned with liquids or gases, recent research
also focuses on the dynamics of deformable solids using SPH. In this paper, we present a novel corotational
SPH formulation for deformable solids. The rigid body modes are extracted from the deformation field which
allows to use a linear strain tensor. In contrast to previous rotationally invariant meshless approaches, we show
examples using coplanar and collinear particle data sets. The presented approach further allows for a unified
meshfree representation of deformable solids and fluids. This enables the animation of sophisticated phenomena,
such as phase transitions. The versatility and the efficiency of the presented SPH scheme for deformable solids is
illustrated in various experiments.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism: —Animation

1. Introduction

Meshless (particle-based) approaches are becoming more
and more popular in Computer Graphics nowadays, as they
bring along several interesting properties. In the computer-
based animation of natural phenomena, they can be used for
the unified modeling of different material types and their
interactions. Uniform object representations and simulation
techniques simplify the interface handling among different
materials like fluids and solids. They further enable the han-
dling of sophisticated phenomena, such as phase transitions.
Several approaches for unified handling based on particles
have been proposed in the past [SSP07, MKN∗04, BTT09].

Smoothed Particle Hydrodynamics (SPH) is a commonly
employed simulation technique. It has been successfully ap-
plied to the simulation of a large variety of phenomena such
as fire [SF95], deformable solids [DC96], liquids [MCG03,
BT07, APKG07, KAD∗06], fluid control [TKPR06] and
cloth [LAD08].

In the context of SPH, a very promising approach to the
uniform handling of different material types has been pre-
sented in [SSP07]. Liquids and deformable objects are uni-
formly represented and processed with SPH. Compared to
earlier approaches [Ton91, SoApC∗99, CMRBVHT02], So-
lenthaler et al. [SSP07] have presented a wide range of fluid-

solid interaction effects. Effects such as melting and solidi-
fication can be handled.

On the other hand, corotational formulations have proven
to be a powerful tool for mesh-based deformation mod-
els to handle deformable solids at high frame rates. We
adopt the corotational concept to the SPH-based deforma-
tion model presented in [SSP07]. This enables the use of a
linear strain tensor and addresses the erroneous rotation han-
dling in [SSP07].

1.1. Contribution

We propose a novel corotational formulation for meshless
deformable solids based on SPH. The proposed approach
allows to use a linear strain tensor. We therefore adopt the
original corotational idea for the Finite Element Method
(FEM) [MDM∗02,HS04] to SPH. The rotations in the defor-
mation field are computed using an SPH variant of the shape
matching method [MHTG05]. In contrast to meshless ap-
proaches based on MLS [MKN∗04], we can handle coplanar
and collinear particle configurations. Several experiments il-
lustrate the versatility and performance of our technique. We
additionally present some results for stable rotation extrac-
tion for 1D and 2D objects using Singular Value Decompo-
sition (SVD).
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2. Related Work

In Computer Graphics, deformable objects are simu-
lated with a large variety of approaches such as fi-
nite difference methods [TPBF87], mass-spring systems
(MSS) [BW98, THMG04], implicit surfaces [DC95], the
Boundary Element Method (BEM) [JP99], the Finite Ele-
ment Method (FEM) [DDCB01], the Finite Volume Method
(FVM) [TBHF03], and mesh-free particle systems [DC96,
Ton98, MKN∗04]. For an excellent survey, we refer the
reader to [NMK∗06].

In our work, we focus on the physically motivated simula-
tion of elasto-mechanical properties using a mesh-free par-
ticle system approach, namely SPH. In Computer Graphics,
early particle approaches have been presented for softening
and melting [TPF89, Ton91] or for viscous fluids [MP89].
In [PTB∗03], a particle-based fluid simulator is proposed
that employs the moving particle semi-implicit method
(MPS). In [CBP05], springs are adaptively incorporated in
a particle-based fluid simulation to model visco-elastic flu-
ids. An early SPH approach for the animation of viscous
fluids and plastically deformable objects has been proposed
by Desbrun and Cani [DC96], while in [PPLT06], melt-
ing is modeled with SPH by the transition of high-viscous
non-Newtonian fluids to low-viscous fluids. In [AOW∗08],
a meshless Finite Element method is used for deformable
shape modeling. In [WSG05], an approach to model thin
shells for point-sampled objects is presented.

A unified particle-based approach to model elastic, plas-
tic and melting behavior of objects has been proposed by
Müller et al. [MKN∗04]. In this approach, elastic forces are
computed using an isotropic, linear stress-strain relation and
the non-linear Green-Saint-Venant strain tensor. In order to
approximate the Jacobian of the deformation vector field, a
Moving Least Squares (MLS) approach is employed. The
approach guarantees that an undeformed object is strain-free
under rigid body motion. However, for the computation of
the Jacobian, an inversion of the moment matrix is required.
For coarsely sampled or coplanar particle sets, this moment
matrix is singular and cannot be inverted. The approach
of [MKN∗04] is enhanced in [KAG∗05]. In this approach,
the Navier Stokes equations are merged with the equations
for deformable solids to handle the physical animation of
solids, fluids and phase transitions.

In contrast to [MKN∗04, KAG∗05], Solenthaler et
al. [SSP07] use SPH to approximate the Jacobian of the de-
formation field. Coarsely sampled and coplanar particle con-
figurations can be handled with this approach. However, as
the approach cannot distinguish rotation from shear stress,
initial orientations of an object are erroneously preserved
and thereby rotations are prevented. We extend the approach
of [SSP07] by extracting the local orientations of the object
from the deformation field and calculating the elastic forces
in a rotated configuration. Rotations are therefore not misin-

terpreted as a deformation of the body and are handled cor-
rectly.

The employed idea of a corotational formulation has first
been addressed by Capell et al. [CGC∗02] to allow for a lin-
ear strain tensor. The approach divides an object into small
parts. Each part is rotated prior to the computation of the
linearly elastic forces. This procedure, however, results in
discontinuities at the boundary between adjacent parts. This
issue has been addressed in the stiffness warping method
by Müller et al. [MDM∗02], where individual rotations are
computed per vertex, yielding smaller discontinuities. Fur-
ther improvements have been presented in [MG04,HS04] to
avoid ghost forces. We adopt the corotational idea for our
meshless simulation by extracting a rotation for each parti-
cle based on its neighborhood.

Various methods have been proposed to estimate the rela-
tive orientation of two particle sets. An excellent survey can
be found in [LEF95]. Since the corresponding particle pairs
are a priori known in our approach, we propose an SPH vari-
ant of the shape matching method [MHTG05] to compute
the optimal rigid transformation between the deformed and
the undeformed particle set.

In the context of phase transitions, Losasso et
al. [LIGF06] presented an approach for the transition
between Lagrangian solids and Eulerian fluids. However,
different data structures need to be synchronized to allow
for mass transfer. Melting has been addressed in [REN∗04]
by using high-viscous fluid simulations. In [GBO04], elastic
stress has been added to the Navier-Stokes equations to
model visco-elastic fluids with an Eulerian fluid solver.
Although our approach does not focus on phase transitions,
we present experiments that illustrate the utility of the
approach in this context.

3. SPH

As we employ SPH, its basic idea is briefly described. In
SPH, a function f (xi) is approximated as a smoothed func-
tion 〈 f (xi)〉 using a finite set of sampling points x j with
mass m j , density ρ j, and a kernel function W (xi j,h) =
W (xi −x j,h) with influence radius h. According to Gingold
and Monaghan [GM77] and Lucy [Luc77], the original for-
mulation of the smoothed function is

〈 f (xi)〉 = ∑
j

m j

ρ j
f (x j)W (xi j,h). (1)

Using SPH, derivatives can be calculated by shifting the dif-
ferential operator to the kernel function [MCG03, BT07].
This can be used to solve the differential equations aris-
ing for deformable solids. In the following, we assume that
our objects are discretized into a finite set of particles. The
neighborhood of a particle i is precomputed. It is defined by
the particles j that are located within the influence radius of
i, i. e. W (xi j,h) > 0, in the initial configuration.
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4. Linear elasticity

In this section, we introduce the basic equations for linear
elasticity. For a detailed introduction see e. g. [Bat95].

The continuous displacement field of a deformable body
is described by u = [u,v,w]T . For each body position, the dis-
placement corresponds to the difference between the original
position x0 and the current position x. The Jacobian of the
mapping x0 7→ x0 +u is given by J =∇x0 +∇uT = I+∇uT

with I denoting the identity matrix. Now, the strain ε is com-
puted using either the non-linear Green-Saint-Venant strain
tensor

ε =
1
2
(JT

J− I) (2)

or the linear Cauchy-Green strain tensor

ε =
1
2
(J+J

T )− I (3)

For a linear elastic material, the stress σ linearly depends on
the strain ε with σ = Cε. For isotropic materials, the ma-
trix C ∈ R

6×6 is characterized by two independent coeffi-
cients, namely the Young modulus E and the Poisson ratio
ν [Bat95].

Various meshless approaches to calculate elastic forces
for a deformed elastic solid have been proposed so far. They
basically differ in how to calculate ∇u and thereby the Jaco-
bian J. [Hie07] uses a differential update for the deformation
gradient which allows to discard the initial particle configu-
ration. A periodic reinitialization is used to maintain consis-
tency. [SSP07] calculates the deformation gradient using an
SPH approximation. As discussed later, their formulation is,
however, not rotationally invariant due to a low consistency
order. [MKN∗04,KAG∗05] compute the deformation gradi-
ent using MLS. As they, however, need to invert a moment
matrix for each particle based on its neighborhood, they can-
not handle sparse, coplanar and collinear settings.

The presented approach is based on the SPH approxima-
tion of [SSP07], but resolves the rotation handling. The orig-
inal approach is briefly revisited here. In order to compute
the elastic force of a particle i, the strain energy Ui is consid-
ered as

Ui = υ̃i
1
2
(εiσi) (4)

with υ̃i being the initial volume of particle i. The volume υ̃i

does not change and can be precomputed as

υ̃i =
mi

∑ j m jW (x0
i j,h)

=
mi

ρi
. (5)

The gradient ∇ui of the displacement field is approximated
using SPH as

∇ui = ∑
j

υ̃ ju ji∇W (x0
i j,h)T

. (6)

The vector u ji denotes the differences between the displace-

ment vectors of neighboring particles j and i:

u ji = u j −ui = x j −xi − (x0
j −x

0
i ). (7)

Similar to [MKN∗04], we assume that the stress and the
strain are constant in the rest volume of each particle. The
elastic forces f ji exerted on particle j by particle i can then
be computed as

f ji = −∇u jUi = −υ̃i(I+∇u
T
i )σidi j (8)

with

di j = υ̃ j∇W (x0
i j,h). (9)

for the nonlinear Green-Saint-Venant strain tensor. For the
linear Cauchy-Green tensor, (8) simplifies to

f ji = −υ̃iσidi j (10)

As the approximation in (6) is only zero-order consis-
tent (i. e. only constant polynomials are reproduced exactly),
it is not rotationally invariant. Instead, rotations are misin-
terpreted as deformations, resulting in forces that prevent a
body from rotating [Sch05]. This is illustrated in Fig. 1 with
a simple example.

In their original formulation, both the MLS-based ap-
proach and the SPH-based approach use the rotationally in-
variant non-linear Green-Saint-Venant strain tensor. Moti-
vated by the corotational approaches for FEM, we propose a
corotational formulation for the SPH approximation in the
next section. This allows to use the linear Cauchy-Green
strain tensor, while at the same time handles the rotation
problem of the basic SPH algorithm.

(a) initial configura-
tion

(b) after rotation (c) displacement
vector

Figure 1: The erroneous approximation of the gradient
∇ui according to the original SPH approach is illustrated.
Therefore, a simple body consisting of two particles i and
j is rotated in i. Calculating the deformation gradient from
(6) leads to non-zero strain and thereby to non-zero elastic
forces.

5. Corotated SPH for deformable objects

For the mesh-based Finite Element Method, the corotational
approach has been successfully applied in the past [MG04,
HS04, KMBG08]. It is motivated by the fact that a defor-
mation gradient ∇u can always be decomposed into a rota-
tional part and a stretching part. To be able to use the linear
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Cauchy-Green strain tensor, which is not rotationally invari-
ant, the rotation is extracted from the deformation gradient
and calculated separately.

In this section, we propose a modification of the corota-
tional idea for meshless deformable solids. In our approach,
we extract the rotation for each particle directly from the
displacement field using a variant of the shape matching ap-
proach. The rotation matrix is calculated based on the neigh-
borhood of the particle. This is discussed in Sec. 5.1. The
strain and the elastic forces are then calculated on the back-
rotated solid, which is discussed in Sec. 5.2. The section is
closed with a short discussion in 5.3.

5.1. Calculating the nodal rotations

For our corotational formulation, we want to calculate a ro-
tation Ri for each particle based on its initial neighborhood.
In the shape matching procedure of [MHTG05], the rotation
for each object is extracted from the transformation matrix

A = (∑
i

mipiq
T
i )(∑

i
miqiq

T
i )−1 := ApqAqq. (11)

Here, qi = x0
i − x0

cm and pi = xi − xcm are relative particle
positions with respect to the center of mass of a body in the
initial and the current state, respectively. Since Aqq is sym-
metric, the orientation R can be extracted as the rotational
part of Apq. This is realized using a polar decomposition

Apq = RS with the symmetric part S =
√

AT
pqApq and the

rotational part R = ApqS−1. The resulting rotation R is op-
timal in the sense of a least square approximation.

Instead of a single rotation matrix R, we compute individ-
ual orientations for each particle. Therefore, we propose an
SPH formulation for the matrix Apq for a particle i:

Apqi
= ∑

j
m jW (x0

i j,h)
(

(x j −xi)(x
0
j −x

0
i )

T
)

. (12)

The matrix Apqi
is computed locally considering the ini-

tial neighborhood of a particle. The relative distances are
weighted by the kernel function to account for the decreasing
influence of neighbors with a larger distance, which is sim-
ilar to [WHP∗06]. This is in contrast to [MHTG05], where
all points of a cluster equally contribute to the computation.
Now, the individual rotation matrix Ri for a particle i can be
computed as

Ri = Apqi
S
−1
i . (13)

In case of a degenerated neighborhood, i. e. a coplanar
or collinear setting, we substitute the polar decomposition
to calculate Ri by a stable SVD proposed in [ST08] for the
rotation extraction of a deformation gradient. See Sec. 6.4
for some experiments with 1D and 2D objects.

In contrast to our approach, [WHP∗06] extracts the rota-
tion from the product of the weighted matrices Apq and Aqq

to estimate initial particle configurations from the deformed
state of a meshless deformation approach. As the calcula-
tion of the matrix Aqq needs the inversion of a matrix that
is similar to the moment matrix in MLS, it is also not suited
for coplanar and collinear settings. For 3D examples, both
rotation matrices do, however, differ only little in most sce-
narios.

5.2. Corotated force calculation

Using the rotation matrix calculated in Sec. 5.1, the approx-
imation for the deformation gradient in (6) is now replaced
by

∇ui = ∑
j

υ̃ jū ji∇W (x0
i j,h)T

, (14)

where ū ji is the locally rotated deformation given by

ū ji = R
−1
i (x j −xi)− (x0

j −x
0
i ). (15)

Finally, the elastic force fi at each particle is computed in
a symmetrized way as

fi = ∑
j

−Ri f̄ ji +R j f̄i j

2
. (16)

f̄ ji and f̄i j are the forces derived from (8) using the modified
deformation gradient in (14).

5.3. Discussion

While the approach of [SSP07] comprises a very versatile
model, it is limited in the proper handling of rotations. As the
employed deformation gradient is only of zero-order consis-
tency, the rigid body modes do not cancel out, even when us-
ing the rotationally invariant Green-Saint-Venant strain ten-
sor. Rotations introduce strain and as a consequence elas-
tic forces into the system. These forces prevent the objects
from rotating [Sch05]. Using the rotation handling proposed
in the previous sections, this issue is resolved. The modified
approach can be applied to the nonlinear as well as the linear
strain tensor.

Although we have a lower order of consistency than the
MLS-based approach of Mueller et al. [MKN∗04], we can
stably handle coplanar and even collinear particle data sets.

5.4. Implementation

Similar to [MKN∗04], we use spatial hashing [THM∗03]
to accelerate the search for neighbors and collisions be-
tween particles. For the collision detection, we use a non-
iterative version of the predictor-corrector scheme presented
in [GBF03]. For some scenarios, we geometrically couple a
high-resolution surface mesh to the particle data sets.
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6. Results

In this section, various experiments are outlined and dis-
cussed. We have performed experiments using the linear as
well as the non-linear strain tensor. Sec. 6.1 discusses per-
formance issues. Sec. 6.2 illustrates the influence of the sim-
ulation parameters and Sec. 6.3 compares the proposed ap-
proach with the original SPH approach with respect to ro-
tation handling. Sec. 6.4 illustrates coplanar and collinear
settings. Sec. 6.5 shows some complex scenarios and phase
transitions. Limitations and directions for further research
are discussed in Sec. 7. All experiments have been per-
formed on an Intel Core 2 PC with 2.13 GHz and 2.0 GB
of memory.

6.1. Performance

In this section, we compare the presented corotational for-
mulation with two other meshless approaches. We consider
a number of cuboids, each consisting of 1000 particles. The
particles in each cuboid are arranged on a lattice with a
particle distance of 0.1. The influence radius h of the ker-
nel function is 0.2 throughout the measurements. The pre-
sented approach is compared to the original SPH approach
and a corotational formulation of the original MLS approach
of [MKN∗04]. Fig. 2 shows the average timings for the cal-
culation of the elastic forces in a single timestep. The linear
strain tensor is used in all three approaches. The overall sim-
ulation time for a single timestep can be computed by multi-
plying the force calculation by a constant factor of 2.3 for the
original SPH approach, 1.4 for the corotated MLS approach
and 1.7 for the corotated SPH approach.

The overhead to the original SPH approach for calculating
the rotation matrix results in a factor of 2 for the elastic force
computation and of 1.4 for the total simulation step.

Figure 2: Performance comparison of [SSP07], a corotated
MLS formulation and the proposed corotated SPH approach.
The timings are given for the elastic force computations. All
three methods scale linearly in the number of particles.

6.2. Varying material properties

The following two experiments illustrate the capabilities of
the corotated SPH approach in the context of deformable
solids. Since the nodal rotation matrices are locally com-
puted, the approach can handle a wide range of elasto-
mechanical properties. In Fig. 3, two cuboids with identi-
cal geometry are attached to a wall. The cuboids consist of
400 particles and have the same mass. The Young moduli
are 1000 and 10000. Due to the large deformations, the non-
linear strain tensor is used.

Figure 3: Two cuboids with Young modulus 1000 and 10000.
The left-hand image shows the initial setting, while the right-
hand side illustrates the deformations due to gravity.

As a second example, Fig. 4 illustrates the handling of
large deformations such as bending and twisting. Again, the
local nature of the nodal orientations enables the wide range
of deformations. The non-linear strain tensor is used.

Figure 4: Large deformations due to user interaction indi-
cated by the red bar. The scenario illustrates that large de-
formations such as twisting and bending can be simulated
with the proposed corotated SPH approach.

6.3. Rotation handling

In this section, we compare the corotated approach with the
original SPH approach with respect to the handling of object
rotation. Therefore, we consider a falling cuboid consisting
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of 210 particles. For the original SPH approach, we use the
non-linear strain tensor. For the corotated approach, we use
the linear strain tensor. Using the original SPH approach, the
cuboid does not rotate properly throughout the simulation in
Fig. 5. In contrast, the cuboid properly rotates if handled by
the corotational approach. This is illustrated in Fig. 6.

Figure 5: Sequence of a falling cuboid using [SSP07]. The
cuboid deforms, but does not rotate in case of an impact.

Figure 6: Sequence of a falling cuboid using the proposed
corotational SPH formulation. In contrast to Fig. 5, rotations
are properly handled.

6.4. 1D and 2D objects

To illustrate the proper handling of 2D objects, we simulate
a deforming sombrero. The linear strain tensor is used for
the calculations. The data set consists of 1800 particles and
the average computation time is 25ms. As a second example,
we simulate some ducks falling on an elastic membrane. The
elastic membrane is represented by a single layer of particles
and simulated with a Young modulus E of 15000.

For 1D, we simulate a number of elastic rods falling on
two parallel elastic rods. Their stiffness varies from E = 5 ·
104 to E = 1 ·106. All 1D and 2D examples are illustrated in
Fig. 7.

6.5. Complex scenarios

To illustrate the handling of geometrically complex scenar-
ios, Fig. 8 shows the simulation of numerous interacting
ducks sliding down a slope. The total number of particles
in the scene is 66K. For visualization purposes, a triangu-
lated mesh is geometrically coupled to the particle represen-
tations. The average computation time is about 1.5s per sim-
ulation step. The proposed approach is also well-suited for

Figure 7: Upper left and lower left: Surface view and par-
ticle view of a deforming elastic sombrero. Top right: Some
ducks falling on an elastic membrane. Lower right: A num-
ber of elastic rods with varying stiffness falling on two par-
allel elastic rods.

phase transitions. Fig. 8 illustrates that we can easily switch
between elastic deformation and viscous fluids with our uni-
fied model. Surfaces of the fluid are visualized based on a
Marching Cubes reconstruction [LC87]. For the fluid simu-
lation, we use the weakly compressible SPH approach pro-
posed in [BT07].

Figure 8: Interacting deformable ducks sliding down a
slope. The ducks melt away on the right hand side.

Fig. 9 shows a phase transition for a high resolution ob-
ject. In this example, the cube consists of 100K particles.
Both, the elastic surface as well as the fluid surface are re-
constructed using Marching Cubes.

7. Conclusion

We have presented a corotational formulation for elastic
solids based on SPH. It allows to use the linear Cauchy-
Green tensor to calculate elastic forces for a wide range of
scenes. For the linear as well as the non-linear strain ten-
sor, it solves the missing rotational invariance of [SSP07].
Our method is capable to simulate large deformations in-
cluding twisting and bending. The rotation matrices are cal-
culated per particle using a weighted transformation matrix.
Our corotational formulation not only improves the realis-
tic behavior of the simulation, but also extends the range of
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Figure 9: An elastic cube (left) is transformed into a viscous
fluid (right).

elasto-mechanical properties that can be simulated. In con-
trast to MLS-based approaches [MKN∗04, KAG∗05], we
perform experiments with coplanar and collinear data sets.
Ongoing work focuses on the coupling of elastic solids with
particle-based fluid simulations.
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