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Abstract

Dynamic simulations can benefit a lot from an appropriate damping
approach. For example, the stability is improved and a larger time
step can be chosen. Furthermore, badly shaped meshes, e. g. con-
taining sharp angles or slivers, can be handled if a proper damping
approach is used. However, it must be ensured that the damping
forces do not change the global movement of the object, i. e. they
have to preserve linear and angular momentum. In this paper, we
present a novel damping approach that is based on iterative spring
damping to further improve the stability. We show that the result-
ing forces can be computed directly without actually performing
the iterations. The approach does not require any connectivity in-
formation about the object and therefore, it can be used for arbitrary
object representations. Further, it is independent of the integration
scheme and the deformation model. The approach provides a sim-
ple parameter setting and guarantees that the damping forces do not
overshoot. Finally, we illustrate that our approach allows for larger
time steps compared to existing damping methods.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object modeling—Physically based modeling; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation and Virtual Reality
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1 Introduction

Damping is a very relevant topic in many areas of computer ani-
mation. On the one hand, damping can significantly influence the
stability, i. e. the time step of a dynamic simulation and, thus, the
perceived performance of an animation. On the other hand, damp-
ing also influences the dynamic motion of structures. The result-
ing effects can be either desired, e. g. reduced oscillations of a de-
formable body, or disturbing, e. g. an unnatural slow-down of a
motion.

In general, a damping force term CẊ is introduced into the equation
of motion

MẌ+CẊ = F−KX (1)

with M denoting the mass matrix, X denoting the positions of all
points of the object with its first and second derivative Ẋ and Ẍ, K
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denoting the stiffness matrix that represents the force-displacement-
relation and F denoting the external forces. C is a user-defined
matrix that introduces a velocity-dependent damping force. To de-
couple the system of differential equations, mass lumping is com-
monly assumed to get a diagonal mass matrix. Similarly, either the
damping matrix has to be diagonal (see, for example, [Müller et al.
2002]), or the damping forces have to be computed in an additional
step. The first alternative leads to the following equation of motion
for a single mass point:

mẍ+ γ ẋ = f, (2)

where m is the mass of the point, x its position, f the force acting
on it, including the internal force resulting from KX in (1), and
γ is a user-defined parameter. The second alternative leads to the
equation

mẍ = f+ fd , (3)

where fd denotes a damping force that not only depends on one, but
on various mass points.

Eq. (2) is commonly known as point damping and only damps the
absolute velocities of the points. In contrast, (3) allows a variety of
possible computations of fd , including, for example, the damping of
relative velocities. Note that fd generally depends on the damping
parameter γ .

The objective of the damping configuration is to find a setting
that maximizes the stability, while undesired effects are avoided or
within an acceptable range. For example, the point damping force
γ ẋ from (2) results in an improved numerical stability, but at the
price of preventing the acceleration of a mass point. This behavior
is desired in the specific context of friction and might be appropri-
ate in some configurations, but in general, the effect is undesired in
an animation.

Therefore, damping terms commonly employ relative velocities for
the computation of fd in (3) to avoid the undesired influence on the
global movement. For example, the relative velocity of adjacent
mass points can be used. In this case, damping forces are computed
for pairs of points and are applied symmetrically to both points.
This method preserves the linear momentum of the point pair and,
thus, of the entire structure. For the conservation of angular mo-
mentum, a projection technique has to be applied. Then, this type
of damping only influences relative movements of points, i. e. inter-
nal oscillations, while the global movement of the structure is not
affected. However, estimating suitable damping parameters is still
a challenging task.

1.1 Contribution

In this paper, we present a new relative damping approach that is
based on iterative spring damping. While the iterative computation
of spring damping forces improves the stability of dynamic simu-
lations, it is less efficient compared to the original spring damping
(see e. g. [Nealen et al. 2006]). Therefore, we also present an ef-
ficient direct computation of the damping forces that result from
the iterative process. These forces automatically preserve the lin-
ear momentum. In order to preserve the angular momentum, we



introduce two projection schemes and one Linear Programming ap-
proach that eliminate the torque. In contrast to existing methods,
our approach does not need any connectivity information of the ob-
ject and therefore, it can be used for arbitrary object representations.
Further, our approach can be implemented within any constitu-
tional model, even meshless approaches, and is independent of the
employed integration scheme. It can be used as one-dimensional
damping on edges, two-dimensional on surfaces or cloth and also
for damping of volumetric elements. The damping constant γ is al-
ways within the range between 0 and 1 and thus, it simplifies the
parameter setting. Finally, larger time steps can be chosen using
our approach.

1.2 Previous work

Deformable modeling in Computer Graphics started with the pio-
neering work of Terzopoulos [1987]. Since then, a great variety
of models for simulating rigid bodies, deformable objects, fluids
and gases has been developed. Among these are various mass-
spring-approaches [Chen et al. 1998; Bourguignon and Cani 2000],
potential based approaches [Teschner et al. 2004], geometrically
motivated methods [Müller et al. 2005] and Finite Element simula-
tions [Hauth and Strasser 2004; Müller and Gross 2004]. In most
models, some kind of damping is included. We refer the reader to
the report by Nealen et al. [2006] for an overview about the current
state of the art.

Damping forces were already used by Terzopoulos [1988], who in-
troduced a velocity-dependent damping force γ ẋ as in (2). [Platt
and Barr 1988] proposed improved damping forces for Finite Ele-
ments which depend on the strain rate tensor. These were also used
by [Carignan et al. 1992] and [O’Brien and Hodgins 1999], for ex-
ample. Further, [Platt and Barr 1988] introduced damping forces for
constrained motions that depend on the time-derivative of a point-
to-nail constraint. [Baraff and Witkin 1998] generalized this kind
of damping for arbitrary constraints C(X) choosing damping forces
that depend on Ċ(X). A damping model which is independent of
the deformation model, but relies on the connectivity of the object
is described in [Nealen et al. 2006] and will be shown in Sec. 2.

In contrast to these approaches, our damping approach is based on
an iterative damping scheme in order to further improve the sta-
bility. It is independent from the deformation model [Platt and
Barr 1988; Baraff and Witkin 1998], the integration scheme and the
structure of the simulated object [Nealen et al. 2006]. By choosing
the damping parameter always smaller than 1, we can guarantee
that our damping forces do not overshoot.

2 Spring damping approach

Before introducing our damping approach in Sec. 3, we briefly re-
view the spring damping approach of, for example, [Nealen et al.
2006]. In this approach, a force is symmetrically applied to two
adjacent points in order to damp their relative velocity.

As mentioned in Sec. 1, damping relative velocities improves the
stability without changing the global movement. For the spring
damping approach, some kind of neighborhood information for the
points of an object is needed and damping forces are computed for
each pair of points that are considered to be adjacent. Neighbor-
hood can be defined, for example, by an edge in a tetrahedral mesh,
or by an influence radius of a particle.

We denote the position of a mass point with xi and its velocity with
vi. A point is always referenced by its position. fi denotes the

force that acts on point xi excluding damping, and fd
i denotes the

damping force at this point. Each pair of adjacent points in the
neighborhood information is referenced by the distance or relative
position xe = xi− x j of the incident points. The relative velocity
of two adjacent points is denoted as ve = vi− v j. Similar to the
damping forces at the points, the damping forces which are related
to relative velocities are given by fd

e .

The spring damping approach works as follows. For two points xi
and x j, the relative velocity ve = vi− v j is computed. A damping
force of fd

e = −γve, i. e. proportional to the relative velocity ve,
is computed and symmetrically applied to xi and x j. Since both
damping forces add to zero, the linear momentum is preserved.

However, the angular momentum is generally not preserved. This
issue can be addressed by projecting the forces onto the direction
xe using fd

e := (xe · fd
e ) xe
‖xe‖2

2
.

The result of the computed damping forces can be further improved,
if the future velocities v′i and v′j are predicted using an Euler inte-
gration step. In this case, the damping forces are computed with
respect to the predicted future relative velocity v′e.

3 Direct computation of iterative spring
damping forces

In this section, we explain our new damping approach. It is moti-
vated by the fact that an iterative computation of spring damping
forces within one simulation step can improve the reduction of os-
cillations. In the following, we show that the iterative damping pro-
cedure converges and that the limit can be computed directly. While
the linear momentum is inherently preserved, we show and compare
three different ways to guarantee that the angular momentum is pre-
served, too. Further, the parameter setting and the possibilities of
application are shown.

Our approach employs the center of mass xcm of an object and its
velocity vcm. With v′i = vi + h

mi
fi, we denote the predicted future

velocity of point xi, and similarly v′e denotes the predicted future
relative velocity of distance xe. With vd

i = vi + h
mi

(fi + fd
i ), we de-

note the damped velocity at point xi. The neighborhood information
can be stored in the connectivity matrix E ∈ Rm×n, where m is the
number of adjacent point pairs in the neighborhood information and
n is the number of points of the object. E is defined as follows: For
a distance xe with incident points xi and x j , where i < j, we define
Ee,i = 1 and Ee, j = −1. All other values of E are set to zero. For
later use, M denotes a diagonal matrix containing the masses.

With V := (vT
1 , . . . ,vT

n )T , we denote the set of current velocities,
similarly with V′ the predicted and with Vd the damped velocities.
F denotes the set of forces, similarly Fd the damping forces, and Fd

e
the set of the damping forces at the distances.

3.1 Iterative force computation

In this section, we illustrate how the spring damping forces can be
computed iteratively. It is shown that this iterative force compu-
tation converges to a limit that can be easily computed. For this



procedure, we start with the standard spring damping step.

v′i = vi +
h
mi

fi

v′j = v j +
h

m j
f j

v′e = v′i−v′j
fd
e =−γv′e

fd
i = fd

i + fd
e

fd
j = fd

j − fd
e

For the damped velocities vd
i and vd

j , we get

vd
i = vi +

h
mi

(fd
i + fi) = v′i +

h
mi

fd
i

vd
j = v j +

h
m j

(fd
j + f j) = v′j +

h
m j

fd
j .

In the following part, we express the damping step in matrix-vector-
notation using the connectivity matrix in order to show the conver-
gence of this procedure.

V′ = V+hM−1F

Fd
e =−γẼV′

Fd = ẼT Fd
e

=−γẼT ẼV′, (4)

with Ẽ ∈ R3n×3n arising from E by replacing each entry y of E

by a 3× 3-matrix
(

y 0 0
0 y 0
0 0 y

)
. Further, we can compute the damped

velocities as

Vd = V′+hM−1Fd

(4)
= V′− γhM−1ẼT ẼV′

⇒ Vd = (id− γhM−1ẼT Ẽ)V′

After k iterations we get

Vd,k = (id− γhM−1ẼT Ẽ)kV′

=: DkV′,
(5)

where Vd,k denotes the damped velocities after k iterations. For the
convergence of (5), we observe that ẼT Ẽ is symmetric, hence di-
agonalizable, and positive semidefinite, as xT ẼT Ẽx = ‖Ẽx‖2

2 ≥ 0.
Thus, its eigenvalues are greater than or equal to zero. The con-
vergence of (5) now can be shown by discussing the eigenvalues of
ẼT Ẽ and D. If we can show that the absolute values of the eigen-
values are smaller than one, then (5) converges for k→ ∞.

If v′i = v′cm for all points, we get ẼV′ = 0 and thus, DV′ = V′.
Hence, 0 is always a triple eigenvalue of ẼT Ẽ as v′cm has three pos-
sible directions, and 1 is always a triple eigenvalue of D. Let V′rel be
the future velocity of the points relative to the center of mass. Then,
we can partition V′ = V′cm +V′rel , which yields ẼT ẼV′ = ẼT ẼV′rel .
That means, the damping forces (4) are not influenced by the veloc-
ity of the center of mass. This implies that we can damp only V′rel
and add V′cm afterwards. Hence, we can replace V′ in (5) by V′rel ,
which results in

Vd,k
rel = (id− γhM−1ẼT Ẽ)kV′rel

= DkV′rel .
(6)

Thus, for the convergence of the damping forces it suffices to show
that (6) converges. Hence, we can ignore the eigenvalue 1 of D,
which has no influence on (6) and have to care for the eigenvalue
with the largest absolute value besides the eigenvalue 1, which we
call the key eigenvalue in the following.

In the following Lemma, we show that the parameter of the spring
damping approach can be chosen such that the absolute value of
the key eigenvalue is strictly smaller than one.

Lemma 1. The damping parameter γ in (6) can always be chosen
such that the absolute value of the key eigenvalue of D is strictly
smaller than one.

Proof. The matrix ẼT Ẽ is positive semidefinite and symmetric,
hence orthogonal diagonalizable. Further, its rank equals 3n− 3
as the rank of E is n− 1 for a connected object. Thus, we know
that exactly three eigenvalues are 0, which belong to the different
directions of V′cm, and that all remaining eigenvalues are strictly
greater than zero. Let Q be an orthogonal matrix with det(Q) = 1
such that Λ := QT ẼT ẼQ has diagonal form. The columns of Q
can be identified as the eigenvectors of ẼT Ẽ. Then QT DQ =
QT idQ− γhM−1QT ẼT ẼQ = id− γhM−1Λ has diagonal form,
too. Thus, the eigenvalues µi, i = 1, . . . ,n of D can be written as
1−λi, i = 1, . . . ,n, with λi being the eigenvalues of γhM−1ẼT Ẽ.

Obviously, we can choose γ dependent on M and h small enough
such that all eigenvalues of γhM−1ET E besides 0 lie in the interval
(0,2). This immediately yields µi ∈ (−1,1) for all eigenvalues of D
besides 1, and we see that the absolute value of the key eigenvalue
is strictly smaller than one.

Based on Lemma 1, we can prove the convergence of (6).

Theorem 1. If γ is chosen small enough in (6), then Vd,k
rel → 0 for

k→ ∞.

Proof. In Lemma 1, we showed that γ can be chosen such that the
absolute value of the key eigenvalue µ is strictly smaller than one.
Thus, it follows that ‖Vd,k

rel ‖ ≤ µ‖Vd,k−1
rel ‖ ≤ . . . ≤ µk‖V′rel‖. This

yields Vd,k
rel → 0 for k→ ∞.

3.2 Direct force computation

In Theorem 1, we showed that the iterative spring damping ap-
proach leads to Vd

rel = 0 for an appropriately chosen γ . Of course,
the convergence needs lots of iterations and therefore, it is much
less efficient than the simple spring damping approach. How-
ever, the limit of the damping forces can be computed directly
using Theorem 1. We simply have to ensure that the computed
damping forces yield Vd

rel = 0. For a single point, this reads
vd

i,rel = v′i,rel +
h
mi

fd
i = 0, and the damping forces can be computed

as

fd
i =−mi

h
v′i,rel . (7)

This computation is very simple and efficient, and it is justified by
the fact that it is the limit of an infinite number of iterations of the
standard spring damping approach.

It is easy to introduce a damping parameter γ in (7) to compute the
damping forces as

fd
i =−γv′i,rel , (8)



which obviously should not be greater than one. Hence, γ is always
within the range between 0 and 1.

Note that we did not use any specific information about the structure
of Ẽ in the proof of Theorem 1 except the fact that its rank is 3n−
3. But this is correct if the rank of E is n− 1, which is fulfilled
if the object is connected. Thus, the proof holds for any type of
connectivity structure that defines a connected object. Further, the
connectivity information canceled out in the limit for k→ ∞ in (6),
and as seen in (8), it is not needed any more.

3.3 Momentum conservation

As damping forces should not influence the global movement of an
object, they must guarantee the conservation of linear and angular
momentum. While it is easy to show that the sum of the damp-
ing forces in (8) is zero and the linear momentum is conserved,
the computation of damping forces commonly results in a nonzero
torque, i. e. the condition

n

∑
i=1

(ri× fd
i ) = 0, (9)

where ri = xi− xcm, is not fulfilled, which has to be handled in a
post-processing step.

First, we show the conservation of the linear momentum:

n

∑
i=1

fd
i =−

n

∑
i=1

mi

h
v′i,rel

=−1
h

n

∑
i=1

mi(v′i−v′cm)

=−1
h

(
n

∑
i=1

miv′i−v′cm

n

∑
i=1

mi

)
= 0.

Now, we present our ideas how the torque can be eliminated. In
the simple spring damping approach, damping forces are computed
per distance. To cancel out the torque, they can simply be projected
onto the distance, which results in zero torque.

The new damping approach in (8) computes forces per point instead
of forces per distance. Therefore, we tried out three new ideas to
reduce the torque which are presented in the following.

3.3.1 Force projection onto the distances

The first method is similar to the simple spring damping approach,
as we transform the forces per point into forces per distance and
project them. This is done the following way.

For a distance xe with incident points xi and x j , we set fd
e = fd

i −
fd

j and afterwards, we project this force onto xe using fd
e = (fd

e ·
xe) xe
‖xe‖2

2
like in Sec. 2.

After projecting the force, we distribute fd
e to the incident points

using a temporary variable fd
i and fd

j :

fd
i = fd

i + fd
e

fd
j = fd

j − fd
e .

This obviously results in zero torque. Having processed all dis-
tances xe, the magnitude of the force fd

i can be much higher than
the magnitude of fd

i . To overcome this problem, we have to renor-
malize the damping forces with a constant factor c which is given
by

c = min
i=1,...,n

‖fd
i ‖
‖fd

i ‖
(10)

and set fd
i = cfd

i .

3.3.2 Force projection onto other relative positions

If we have a particular point x in our connectivity structure, for
example the center of mass, it can be more suitable to project the
forces onto the relative position rx

i := xi−x. Obviously, the torque
with respect to x, i. e. ∑

n
i=1 rx

i × fd
i , is zero, as rx

i and fd
i are collinear

and thus, their cross product is zero. However, after this projection
the sum of the forces is not necessarily zero. This can be handled
the following way: Let x = ∑αixi with ∑αi = 1, and ∑ fd

i = f. If we
subtract αif from each fd

i , the sum of the forces will be zero again.
We claim that the torque remains zero, too. This is indeed true:

n

∑
i=1

rx
i × (αif) =

n

∑
i=1

(xi−x)× (αif)

=
n

∑
i=1

(αixi)× f−x× f
n

∑
i=1

αi

= x× f−x× f = 0,

and we end up with zero torque and zero force sum. Note that the
last force correction does not impose additional relative movement
onto the affected nodes and therefore, the damping is only affected
by the projection which justifies this procedure. The linear momen-
tum is not affected at all. We will discuss the application of this
projection approach in Sec. 4.

3.3.3 Torque elimination using Linear Programming

We also implemented a method of torque elimination using Lin-
ear Programming. Before we establish the Linear Program, we
remind that a cross product can be written as a matrix-vector-
multiplication: For a vector a = (ax,ay,az)T , we define a skew-
symmetric matrix

Ã :=

 0 −az ay
az 0 −ax
−ay ax 0

 .

Then, the cross product a×b can be written as Ãb. The zero torque
condition (9) then reads

n

∑
i=1

R̃ifd
i = 0.

As this sum is not zero in general, we have to compute correction
forces fc

i to cancel out the torque. Then the condition becomes

n

∑
i=1

R̃i(fd
i + fc

i ) = 0, (11)

which is one of the conditions for the Linear Program.



The sum of the correction forces ∑
n
i=1 fc

i has to be zero, because
∑

n
i=1 fd

i is zero. Further, we demand that the correction forces
should be as small as possible. Thus, the objective function has
to be:

min
n

∑
i=1
‖fc

i ‖1. (12)

For a Linear Programming Problem, we have to eliminate the ab-
solute value from the objective function. This can be done by par-
titioning fc

i = fc,+
i − fc,−

i into its positive and negative components
together with the constraint that fc,+

i and fc,−
i are greater than or

equal to zero:

min
n

∑
i=1
‖fc,+

i − fc,−
i ‖1

=min
n

∑
i=1

(‖fc,+
i ‖1 +‖fc,−

i ‖1).
(13)

Eq. (13) holds, as it is a minimization problem: If, for example, the
first component of fc,+

i and the first component of fc,−
i were both

nonzero, this would not be the optimal solution of the minimization
problem. Thus, for the optimal solution, always at least one of the
corresponding components of fc,+

i and fc,−
i must be zero, implying

the correctness of (13). Note that (13) does not contain absolute
values for the components of fc,+

i and fc,−
i , as we demanded that

fc,+
i and fc,−

i are greater than or equal zero.

In total, the Linear Program for torque reduction can be established
as follows:

min
n

∑
i=1

(fc,+
i + fc,−

i ) (14)

s.t. fc,+
i ≥ 0

fc,−
i ≥ 0

n

∑
i=1

R̃i(fd
i + fc,+

i − fc,−
i ) = 0

n

∑
i=1

(fc,+
i − fc,−

i ) = 0

This Linear Program is feasible, as fc,+
i − fc,−

i = −fd
i is a possible

solution, and the objective function is always greater than or equal
zero. Thus, it has an optimal solution which eliminates the torque.

3.4 Application

In this part, we describe two example settings that show how the
new damping approach can be applied to compute damping forces.
We refer to these methods as global and local damping, as we damp
the whole object in the first one and smaller structures locally in
the second one. The influence of the torque elimination method on
these settings will be discussed in Sec. 4.

3.4.1 Global damping

The global damping approach is the most evident idea following
(8). In this version, we damp the object as a whole, so we compute
the center of mass of the object, calculate the damping forces as
given in (8) and eliminate the torque with one of the above men-
tioned ideas.

3.4.2 Local damping

In this approach, we divide the object into clusters and damp the
movement of each cluster relative to its center of mass, but not rel-
ative to the center of mass of the whole object. For example, in a
tetrahedral mesh we could simply think of the tetrahedrons as clus-
ters. To get reasonable damping forces that do not overshoot, we
have to care for the number of clusters a point lies in. Therefore,
we divide the mass mi of point xi by the number of clusters Ni the
point belongs to and use mi/Ni as the mass of the xi within each
cluster (cf. [Rivers and James 2007]).

Of course, it is possible to first perform a global damping step which
stabilizes the object in the case of external forces and to perform a
local damping step afterwards to reduce oscillations.

4 Discussion

In this section, we analyze the properties of the damping approach
and the different schemes to eliminate the torque.

Obviously, the damping forces (7) are optimal in the sense that
they damp the whole relative movement. Therefore, they lead to
an unconditionally stable simulation. But as they lead to a nonzero
torque, it is necessary to handle this drawback. Eliminating the
torque obviously introduces some uncontrollable effects, which
should be minimized by the elimination technique.

The three different approaches that we proposed to eliminate the
torque differ in an essential fact. While the first projection tech-
nique, which uses the distances, cares for a local torque elimina-
tion, the second projection approach and the LP formulation elim-
inate the torque only globally. Also, they guarantee the conser-
vation of the global linear momentum, while projecting onto the
distances preserves global and local linear momentum. Our exper-
iments showed that the global conservation of linear and angular
momentum is not strong enough, as forces and torques at one part
of an object can be balanced by forces and torques at another part.
This results in undesired artifacts.

Another difference of the approaches is that the projecting meth-
ods do not look for a minimum solution, but instead they choose
a specific direction. As both methods show better results than the
LP formulation, it seems that it is much more important to have any
control about the directions of the projected forces than to minimize
the magnitude of the correction forces. This is further affirmed by
the results we got when we applied the LP formulation for each
tetrahedron locally.

Following this, for the global damping approach, projecting the
forces onto the distances currently is the best technique to elimi-
nate the torque, as it guarantees the local conservation of linear and
angular momentum. Concerning local damping, we propose to use
the second projection method, as the directions from the center of
mass to the points are more likely to match the directions of the
damping forces which are also relative to the center of mass. The
locality of momentum conservation is fulfilled self-evidently in the
local damping.

The projection methods can be applied to any set of forces that
should guarantee the preservation of linear and angular momentum.
For example, they could be applied to constraint forces in order to
preserve the global movement of an object. Even the point damping
forces would yield reasonable damping forces after applying the
torque elimination procedure.



For the local damping approach, it turned out that omitting the pro-
jection results in great improvement of stability for the drawback
that the global orientation is affected. However, there are scenar-
ios where this fact is accepted because of the great improvement of
stability.

5 Results

We implemented various scenes to show the benefits of damping
in dynamic simulations and to illustrate the abilities of our damp-
ing approach. First, we show the capabilities of the spring damp-
ing approach (Fig. 1), and afterwards, we show the improvements
achieved by our method (Fig. 2 and 3). All objects consist of tetra-
hedral meshes generated by [Spillmann et al. 2006].

In Fig. 1, we illustrate the differences between an undamped, a
point-damped and a spring-damped simulation. We applied ex-
ternal forces to the object using a spring dragger. While the un-
damped object suffers from local oscillations and the simulation
finally fails (Fig. 1 (a)), the point-damped one comes to a resting
state quickly, but it does not fall down as the global movement
is disturbed (Fig. 1 (b)). In contrast, the spring-damped sneaker
(Fig. 1 (c,d)) behaves perfectly and keeps stable even with a signif-
icantly enlarged time step.

In Fig. 2, we illustrate the ability of our damping approach to handle
scenes where the spring damping approach cannot keep the simu-
lation stable. Here, a global damping step is performed which is
followed by a local damping step. This combination yielded the
best results. Note that before we perform the local damping, the
global damping forces are already projected using the first projec-
tion method. The setting of the experiment is quit simple: We let a
sphere fall down onto a membrane. While the simulation fails using
the spring damping approach, it remains perfectly stable with our
approach. Collisions are detected using [Teschner et al. 2003], and
contacts are handled using [Heidelberger et al. 2004].

Fig. 3 illustrates another scenario where our approach allows for a
larger time step compared to existing solutions. Like in Fig. 2, we
applied both a global and a local damping step. The rope bridge
consists of many tetrahedral meshes that are connected with local
constraints [Gissler et al. 2006]. Due to the locality and magnitude
of the constraint forces, a fast force propagation is very important
to keep the object stable, which is implicitly done by our damping
approach. This also holds for any type of external forces.

6 Conclusion

In this paper, we introduced a new damping approach that is in-
spired by the idea that an iterative computation of damping forces
further improves the stability. We showed that the iterative spring
damping approach converges, if the damping parameter is chosen
appropriately, and that the limit can be computed directly without
actually performing iterations. The approach is independent of the
deformation model and the integration scheme and does not need
connectivity information. Thus, it can be applied for arbitrary ob-
ject representations, e. g. meshless approaches. While the linear
momentum is automatically conserved, we proposed different tech-
niques to eliminate the torque. These approaches can also be ap-
plied to any other set of forces that have to guarantee the conserva-
tion of angular momentum. We illustrated the possibilities of our
approach to be used as global damping to the object as a whole or as
local damping to separate clusters of the object. Further, we showed
that our approach simplifies the parameter setting, as the damping

(a)

(b)

(c)

(d)

Figure 1: (a) The undamped sneaker does not recover to a stable
resting state. (b) The point-damped sneaker remains stable and re-
covers to a resting state quickly. However, the global movement is
heavily influenced. (c,d) The spring-damped sneaker recovers to a
stable resting state. The global movement is not affected.

constant is always within the range between 0 and 1. In the result
section, we showed that our approach allows for larger time steps
in dynamic simulations. Ongoing work is concerned with improved
torque elimination techniques to further reduce the influence on the
damping and with the possible application of the force projection
techniques in different contexts.
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(a) (b)

(c) (d)

(e) (f)

Figure 2: This experiment illustrates the differences between the
spring damping approach (left column) and our approach (right col-
umn). The compared pictures are always chosen at the same sim-
ulation step. (a,b) Configuration of the experiment: A sphere falls
down onto the membrane. (c) Using the spring damping approach,
the membrane does not remain stable due to the response forces.
(d) The membrane shows no artifacts using our approach. (e) After
the collision contact, the membrane does not return to its resting
state using the spring damping. (f) The sphere bounces back using
our approach.
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ANETS, D., AND GROSS, M. 2003. Optimized spatial hashing
for collision detection of deformable objects. In Proc. Vision,
Modeling, Visualization VMV, 47–54.

TESCHNER, M., HEIDELBERGER, B., MÜLLER, M., AND
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