Integrating Symbolic and Geometric Planning for
Mobile Manipulation

Christian Dornhege and Marc Gissler and Matthias Teschner and Bernhard Nebel
Department of Computer Science
Georges-Kohler-Allee 52
Freiburg, Germany
{dornhege,gisslerm,teschner,nebel } @ informatik.uni-freiburg.de

Abstract — Mobile manipulation requires to solve multiple sub-
problems. One is planning in high-dimensional configuration spaces,
that we approach in this work. We decompose the manipulation
problem into a symbolic and a geometric part. The symbolic part
is implemented as a classical symbolic planner that tightly integrates
a geometric planner enabling us to efficiently generate correct plans.
A probabilistic roadmap planner constitutes the geometric part.
During the computation of the roadmap we utilize proximity queries
to determine non-colliding configurations and to verify collision-
free paths between configurations accurately and efficiently. We
demonstrate experiments in two scenarios, one of these being the
manipulator dexterity test scenario that was used in NIST’s response
robot evaluation in Disaster City.

Keywords: mobile manipulation, symbolic planning, manip-
ulation planning

I. INTRODUCTION

Mobile manipulation requires to solve multiple subprob-
lems: accurate three dimensional world perception in un-
known environments, geometric planning in high-dimensional
configuration spaces and - in the case of tele-operation -
human-robot-interfacing. In this paper, we are concerned with
the planning problem and therewith also provide a helpful
solution for operator assistance. Manipulation problems arise
in autonomous robot operation as well as for tele-operated
robots, where often the manipulator has to operate in confined
scenarios and usually the tele-operator’s comprehension of a
scene is restricted by the camera perspective. Moreover, a ma-
nipulator’s kinematics are not trivial to control. The best case
in applied robotic systems is “tool center point control” that
enables an operator or algorithm to control the manipulator’s
tool in cartesian coordinates. Alternate solutions are master-
slave controllers or direct control of individual joints. All
of those methods cannot easily prevent unintended collisions
with the environment, especially in the usual camera-in-hand
setting.

One such difficult scenario is the manipulator dexterity test
proposed by NIST [1] and used in the response robot evalua-
tion in Disaster City [2] (see figure 1). Our experiments show,
among other problems, successful collision free planning in a
reconstruction of this scenario.

We approach the manipulation problem by decomposing it
into a symbolic and a geometric part. The symbolic view uses

Fig. 1. The manipulator dexterity test. Left: Original setup as used in
Disaster City. Note the horizontal bars that can be used to mount vertical
boards extremely restricting the robot’s workspace. Right: The reconstruction
we use in our experiments.

solution steps as pick-up(box) or put-down(box, table). Thus,
it presents a natural representation that can easily be solved
by classical symbolic planners. The geometric view consists
of the full problem description representing the manipulator’s
kinematics and a three dimensional scene description that is
solved using a trajectory planner that computes collision free
trajectories for the symbolic counterparts.

The usual approach to decomposition is to hierarchically
combine symbolic and geometric planners in a top-down
or bottom-up manner. Following the first strategy, a plan is
generated first that is then executed assuming the symbolic
abstraction was correct. Following the second strategy, all
geometric information is precomputed and then provided to
the symbolic planner. Obviously, both strategies are not ideal.
Therefore, we integrate the planners tightly, as we proposed in
our previous work [3]. Thus, the low-level geometric planner
can provide information to the high-level symbolic planner
during the planning process. However, it is only evoked
when it seems relevant to the high-level planner. Contrary to
the hierarchical decomposition and combination, a particular
choice on the symbolic level can lead the low-level planner to
detecting failure and requesting to backtrack immediately.

To integrate information about special-purpose reasoning
into symbolic planning we use semantic attachments in a
planning domain description. Predicate symbols of the domain
description used in grasp and put-down actions have such a
semantic attachment, which means that these are not uninter-
preted predicate symbols but that the truth values for atomic
ground formulas are specified by an external mechanism: the

(Semantic Attachment]
LDeclarative Part | Procedural PanJ
Domain Description

Problem Description
Planning Task

Symbolic Planner

Planning System

Fig. 2. Extending planning tasks by modules to planning tasks with semantic
attachments.

trajectory planner.

We decompose the manipulation planning problem by using
the common solution of viewing a manipulation path as a
combination of transit and transfer paths [4]. Transit paths
model pick-up actions that move the manipulator towards a
possible grasp position, resulting in the object being grasped.
Transfer paths move an object from one place to another
and correspond to put-down actions on the symbolic level
resulting in the manipulator releasing the object. To evaluate
the applicability of these actions by semantic attachments, we
run a probabilistic roadmap planner (PRM) [5]. During the
computation of the roadmap we utilize proximity queries to
determine non-colliding configurations and to verify collision-
free paths between configurations accurately and efficiently
similar to the approach by Schwarzer et al. [6]. Additionally
we can give distance bounds to account for inaccurate world
modeling and imprecise execution leading to safer plans.

II. SYMBOLIC PLANNING WITH SEMANTIC ATTACHMENTS

A symbolic planner decides the applicability of actions
by evaluating conditions over state variables. Semantic at-
tachments are external procedural reasoning modules (in the
following just called modules) that compute the valuations of
state variables at planner run-time. The symbolic planner itself
is mostly unaffected by this extension. Under the hood of the
module, though, complex computations can be performed that
transcend the capabilities of the planner.

In order to integrate semantic attachments into a planner we
propose the architecture shown in Figure 2. Semantic attach-
ments consist of a declarative part that describes their use in
the planning domain, i.e., their symbolic use in preconditions
and effects of planning operators. Additionally, they have a
procedural part which is the actual algorithm for computing
the value of a state variable and which is directly included
into and called by the planner as a shared library and which
themselves may access the planning state through callback
functions provided by the symbolic planner.

We use two kinds of semantic attachments that can be part
of operators: Condition checker modules that can test whether
some complex operator precondition is satisfied, and effect
applicator modules which may compute changes to (several)
numeric state variables.

To actually use semantic attachments in classical planning,
it is necessary to extend the description language for planning
tasks. In our previous work, we extended the planning domain

description language (PDDL) to support semantic attachments
leading to PDDL/M [3]. A PDDL/M domain may contain an
additional section that declares the modules similar to the way
predicates are declared in PDDL. Declarations start with a
unique identifier to reference the module including a possibly
empty list of parameters, similar to a function or predicate
entry in their respective sections in PDDL. Only for effect-
applicator modules we then list any number of numerical
fluents that are set by the module. Both types of modules
then declare the type and finally the function and library name
where the module can be found by the planning system.

A condition-checker module used in the manipulation do-
main is declared as follows:

(:modules
(checkTransit ?target - movable
?place - static ?grasp - grasp

conditionchecker checkTransit@libTraj.so))

This module is called checkTransit. It decides whether it
is possible for the manipulator to grasp the movable object
Ttarget, located at ?place using grasp 7grasp, and can be
found in the shared library 1ibTraj.so by calling the
function checkTransit.

The syntax of effect-applicator modules is similar, as can
be seen in the following excerpt:

(:modules
(applyTransit ?target - movable

?place - static ?grasp - grasp
(gq0) (gl) (g2) (g3) (g4) (a5) (96)
(p0 ?target) (pl ?target) (p2 ?target)
(p3 ?target) (p4 ?target) (p5 ?target)
(p6 ?target) (p7 ?target) (p8 ?target)
(p9 ?target) (plO0 ?target) (pll ?target)

effect applyTransit@libTraj.so))

This module sets the resulting seven DOF manipulator
configuration (¢0) - (¢6) and the target’s new transformation
matrix (p0 ?target) - (pll ?target) resulting from grasping
Ttarget using ?grasp.

To use a module in an operator, it has to be specified in the
same way as predicates or functions. The only new syntax we
introduce is that a module is given by enclosing its identifier
and parameters in square brackets. All other identifiers used in
the following pick-up operator follow standard PDDL syntax.

(:durative-action pick-up

:parameters (?x - movable
?y — static ?g - grasp)

:duration (= ?duration 1)

:condition (and
(at start (not
(at start (on ?x ?y))
(at start (handempty))

(

(arm_moving)))

(at start [checkTransit ?x 2?2y ?2g9])))

ceffect
(and

(at start (arm_moving))

(at end (not (arm_moving)))

(at end (not (on ?x ?vy)))

(at end (not (handempty)))

(at end (holding ?x ?g))

(at end ([lapplyTransit ?x 2y 2g9l))))

The implementation of PDDL/M in forward-chaining plan-
ners is described in detail in our previous work [3].

III. SEMANTIC ATTACHMENTS FOR PLANNING TRANSFER
AND TRANSIT PATHS

Semantic attachments for the robot manipulation domain are
implemented as probabilistic roadmap planners (PRM). Upon
a call to a condition checker module, the procedure is provided
with the operator’s parameters: a target object, a place to grasp
an object at for transit paths or to put the object to for transfer
paths and a grasp to use. The first step is to invoke the provided
callbacks to the symbolic planner and thus retrieve the current
robot configuration and the object’s locations. Based on this
information a geometric initial state for the PRM planner is
built. To form the goal state, the previously computed initial
state is now updated placing the manipulator (and for transfer
paths the object) in their desired target positions.

Next, the trajectory planner is called with those computed
initial and goal states. The planner computes a roadmap: a
graph representing the manipulator’s collision free configu-
ration space (Cree). The roadmap’s nodes are computed by
randomly sampling configurations in the robot’s configuration
space and only retaining collision free samples (i.e. those with
a distance bound greater zero). Edges represent collision free
paths between nodes in the roadmap. The robot movement
that an edge represents is a straight line in C'f,.c.. To connect
two nodes and thus form an edge that is guaranteed to be
without collision during the robot’s movement performing only
collision tests is not sufficient. Therefore, we use proximity
queries similar to the method by Schwarzer et al. [6]. Once a
roadmap has been built, the initial and goal state are inserted
into the roadmap and we try to connect those nodes to the
roadmap in the same way as sampled nodes are connected. A
simple breadth first search now gives us a path through the
roadmap from the initial to the goal state or results in failure
if the init and goal nodes are not in the same components
of the graph. Successful planning using the trajectory planner
will result in a true evaluation of a semantic attachment.

An effect applicator module needs to supply the symbolic
planner with the robot configuration and object location re-
sulting from an action. We could again run a probabilistic
roadmap planner to generate the geometric plan, but this
plan should already have been generated during the call to
the condition checker module in the same operator. So, for
efficiency reasons, we cache results during condition checker
computation and just return those. Another reason for caching
results is that due to the random sampling in the roadmap
planner, results are not necessarily reproducible.

IV. PROXIMITY QUERIES

Validation of collision free edges in the roadmap requires
fast computation of distances. Proximity queries return the
minimum separation distance between a pair of arbitrarily
shaped non-convex objects in work space. The objects are
given as closed non-convex triangulated surface meshes in

three-dimensional space. The surface meshes consist of points,
edges and triangles.

The algorithm proceeds recursively and can be divided
into three stages. The first stage employs a variation of the
Gilbert-Johnson-Keerthi algorithm (GJK) [7]. It determines the
separation distance between the convex hulls of a pair of non-
convex objects. Thus, the result is a lower distance bound
for the exact separation distance. An upper distance bound
is also derived from the data gathered with GJK. If the lower
distance bound is greater than zero, i.e. the convex hulls of the
two objects do not overlap, the algorithm proceeds with stage
two. The second stage employs spatial hashing [8]. The cell
size of the hash grid is determined using the distance bounds
found in the first stage. Thus, only primitives within the same
cell can still contribute to the exact minimum distance. All
other primitive pairs are efficiently culled away by the intrinsic
properties of the subdivision scheme.

If the convex hulls of the mesh pair overlap, the algorithm
proceeds with stage three. In this stage, information computed
by GJK is utilized to adaptively decompose the meshes into
sub-meshes and pair-wise repeat the process in stage one
recursively. The overall minimum distance between the object
pair is the minimum of the set of distances computed for all the
sub-mesh pairs. Figure 3 depicts the results of the proximity
queries posed for all possible pairs of objects in a environment
as green lines.

Fig. 3. Proximity queries are posed for all pairs of objects in this test
environment. The separation distances are depicted as green lines. The wall
and ceiling of the left and right structure are rendered transparent for a better
illustration. A vertical board is mounted covering the upper part of the rear
compartment.

The algorithm quickly converges to the correct solution. In
contrast to other approaches, no offline pre-computations are
performed and no acceleration data structures have to be built.
A decomposition of surface meshes is only performed, if it is
required in the computation of the exact solution. For an in-
depth description of the approach, we refer the reader to our
previous work [9], [10].

TABLE I
RESULTS FOR THE TABLES SCENE. WE SEPARATED THE PROBLEM
INSTANCES IN THREE CLASSES: SIMPLE PICK-AND-PLACE TASKS (CLASS
1), PROBLEMS THAT REQUIRE REPLACING ANOTHER OBJECT TO REACH
THE GOAL CONFIGURATION (CLASS II), AND PROBLEMS THAT REQUIRE
REPLACING MULTIPLE OBJECTS (CLASS III).

[Class T [Runtime [s] |

01 348 £ 1.23

02 6.08 + 3.49 [Class I | Runtime [s] |
03 344 + 161 01 2432 £ 8.63
04 1.47 £ 0.12 02 24.95 + 9.25
05 3.77 + 097 03 91.87 + 14.01
82 Z-gg i ;-gé 04 30.26 + 9.74
08 5:27 T 2:71 [Class I [Runtime [s]]
09 63.83 + 7.67 01 37.33 £ 6.85
10 5.66 + 7.50 02 15.50 £+ 2.52
11 1248 + 14.74 03 78.55 4 45.61
12 3.30 + 0.96

13 5.80 + 2.40

V. EXPERIMENTS

We evaluate our manipulation planning system by conduct-
ing several experiments of increasing difficulty in two envi-
ronments (see figures 1 and 4). The first environment consists
of the robot surrounded by three tables. Various manipulable
items are placed on the tables such as bottles or cereal boxes.
The second scenario is a reconstruction of a test environment
used during the response robot evaluation in Disaster City [2].
Cubes of 60 cm in size and a hole of 15 cm in diameter per
side are arranged around the robot. Manipulable cubes of about
8 cm in size are stacked on top. The object representation in
these environments is twofold. First, the objects’ surfaces are
represented as triangular meshes. They provide the input for
the proximity query algorithm described in section IV. Sec-
ond, tetrahedral meshes are used to approximate the objects’
volumes and to simulate the physical behavior of movable
objects in the world. The robot representation consists of 2400
triangles and 2500 tetrahedrons, respectively. Triangles and
tetrahedrons sum up to 2500 and 2600 in the first, and 8000
and 6000 in the second environment, respectively.

The limiting factor is runtime (memory consumption for
the hardest problems was below 100 MB), which is dominated
by the geometric planner’s computations. All runtimes were
computed as average runtimes on a Intel Core2Duo E6400
with 2 GB RAM in 32-bit Linux. Although the roadmap
creation phase could be parallelized, we only used one core.
A video of two exemplary plans can be found at: http://
www.informatik.uni-freiburg.de/~dornhege/
media/symbolicManipulationPlanning.avi.

The two scenarios we used present two different problems.
In the tables scene, we formulate problems that place objects
at other objects’ locations forcing the planner to detect such
situations and plan for them accordingly. Results shown in
table I indicate that even multiple replacing of objects still
results in reasonable runtimes. The manipulation dexterity test
scenario usually only contains simple pick-and-place oper-

TABLE I
RUNTIMES IN SECONDS FOR THE MANIPULATION DEXTERITY SCENARIO.
ALL PROBLEM INSTANCES HAVE BEEN EVALUATED WITH AND WITHOUT
THE VERTICAL BOARD PRESENT.

[Problem [[without board [s] [with board [s] |

01 0.06 £ 0.01 0.06 £ 0.01
02 0.06 + 0.00 0.06 £ 0.00
03 0.17 £ 0.01 59.46 £ 41.92
04 0.17 £ 0.00 67.96 + 46.87
05 11.22 + 9.50 207.66 + 143.61
06 0.12 £ 0.01 0.12 £+ 0.00
07 0.39 £+ 0.01 0.12 £ 0.00
08 0.23 £ 0.00 0.24 £ 0.01
09 0.23 £ 0.01 0.24 4+ 0.00
10 1.51 + 0.01 162.00 £ 52.99
11 54.79 £+ 21.00 978.35 + 1105.81

ations grasping the cubes and placing them over the target
holes. Its difficulty lies in the fact that a vertical board can be
mounted (see figure 3) to highly limit access to the objects. To
give comparative results, we evaluated all problem instances
with and without the board present. Results in table II show
that especially the problem instances requiring to grasp the rear
cubes (3 - 5, 10, 11) can be solved quite fast when there is no
board obstructing the way (see figure 1 for the cube locations).
The most difficult problem is instance 11 that places the two
rear cubes in holes at the left and right compartment, so that
the manipulator has to be moved from front to back of the
vertical board and vice versa four times.

VI. RELATED WORK

A. Symbolic planning

Domain-dependent planning systems such as SHOP2 [11],
TLPlan [12], or TALplanner [13] are related to our approach as
they allow specifying control rules based on domain knowl-
edge. However, the mentioned systems put their effort into
allowing the user to specify means how to solve a given
symbolic planning problem. In other words, they stay in their
symbolic domain, but try to optimize search.

We, however, try to decompose the planning problem into
different sub-problems that can be solved independently, but
still have non-trivial interactions. In so far, it is similar to the
work by Fox and Long [14], who tried to isolate optimization
problems from planning problems. Furthermore, the work
by Srivastava and Kambhampati on decomposing a general
planning problem into a resource and a planning problem [15]
is relevant here. However, they investigate how resource and
planning problems are related to each other, while we use a
general framework for combining different kinds of planning.

The mechanism we use is similar to an undocumented
feature of TLPlan [12]. This planner also permits semantic
attachments to predicate symbols [16]. The main differences to
our approach are that TLPlan is a domain-dependent planner,
that one cannot inspect the state the planner is in using call-
back functions, and that it is not possible to specify externally
computed effects.

Fig. 4.

Execution of a manipulation plan in test environment 1. The manipulator (red) executes the task of placing the red box to where the blue box is

located (lower right). Therefore, it first has to remove the blue box from that position (upper left) and place it somewhere else (upper right and lower left).
This problem is solved by the symbolic planner and included in the final execution plan.

B. Manipulation planning

Solving the robotic planning problems in high-dimensional
configuration spaces is often addressed using probabilistic
roadmap planners (PRM) [17], [5], [18]. We also follow this
approach when implementing our semantic attachments. The
integration of proximity queries in the PRM framework was
proposed by Schwarzer et al. [6] allowing to compute proven
collision-free trajectories.

Manipulation planning is addressed by building the “ma-
nipulation graph” that consists of nodes representing viable
grasps and placements. Nodes are connected by transit or
transfer paths moving either the manipulator alone or together
with a grasped object. Those paths are solved using PRM
planners [4], [19].

The work that comes closest to our intentions in the area of
robotic planning is the work by Cambon et al. [20], [21]. They
also work on the integration of manipulation and symbolic
planning. However, in contrast to our work, they did not try
to identify a general interface between symbolic planning and
domain planning, but presented a specialized combination of
a symbolic and a manipulation planner.

C. Proximity queries

Proximity query algorithms can be classified into three cat-
egories: collision detection, separation distance computation

and penetration depth computation. Generally, the first two
categories are of interest in the context of motion planning.
Over the last decades, a large variety of proximity query
algorithms has been proposed. Many algorithms exploit the
properties of convex sets to be able to formulate a linear
programming problem. Queries for separation distance [7],
[22], collision [23] or penetration depth queries [24] can, thus,
be answered efficiently. In dynamic environments, geometric
and time coherence can be exploited to track the closest
points [22], [24]. These algorithms can be employed on non-
convex sets, if the sets are either considered as compositions
of several convex subsets [7], [22], or non-convex sets are
decomposed into convex subsets [25]. The algorithms are then
applied to the convex subsets, respectively. To accelerate the
pairwise proximity query, the sets can be stored in bounding
volume hierarchies. Different types of bounding volumes have
been investigated [26], [27], [28], [29]. In terms of collision
detection, spatial subdivision schemes are employed to rule
out pairs of sets that are not spatially coherent [8]. Graphics
hardware can be used to accelerate various geometric com-
putations such as collision detection [30], [31], or distance
field computation [32], [33]. Possible drawbacks of GPU-
based approaches are their accuracy due to frame buffer
resolution or the read-back time of frame buffers to the CPU
memory. A hybrid approach that combines the efficiency of

a distance computation approach for convex objects and the
benefits of a spatial subdivision scheme is proposed in [9]
and extended in [10]. For a more detailed discussion about
proximity queries, excellent surveys can be found in [34]
and [35].

VII. CONCLUSION

We presented a solution to the robotic manipulation plan-
ning problem. By tightly integrating symbolic and geometric
planning we gained a well performing system that furthermore
allows to formulate goals in an intuitive symbolic manner
as “put the box on the table” resulting in collision free
trajectories even in complex scenarios. The runtimes of this
initial implementation are already viable for most scenarios,
although we believe that the most complex problems still need
improvement. This is one of the tasks that we will address in
the future. We plan on integrating geometric heuristics in the
symbolic planning process to significantly reduce calculation
times. We will also work on accurate world modelling using
laser range finders that are mounted on our robot.

ACKNOWLEDGMENT

This research was supported by DFG as part of the collabo-
rative research center SFB/TR-8 Spatial Cognition Project R7.

REFERENCES

[11 A. Jacoff and E. Messina, “Urban search and rescue robot performance
standards: Progress update,” in SPIE Defense and Security Conference,
2007.

[2] T. Engineering Extension Service, “TEEX Disaster
http://www.teex.com/teex.cfm?templateid=1117, June 2009.

[3] C. Dornhege, P. Eyerich, T. Keller, S. Triig, M. Brenner, and B. Nebel,
“Semantic attachments for domain-independent planning systems,” in
Proceedings of ICAPS, 2009, to appear.

[4] R. Alami, J. P. Laumond, and T. Siméon, “Two manipulation planning
algorithms,” in WAFR: Proceedings of the workshop on Algorithmic
foundations of robotics. Natick, MA, USA: A. K. Peters, Ltd., 1995,
pp. 109-125.

[5] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12(4), pp. 566—
580, 1996.

[6] F. Schwarzer, M. Saha, and J. Latombe, “Adaptive dynamic collision
checking for single and multiple articulated robots in complex environ-
ments,” IEEE Transactions on Robotics and Automation, vol. 21(3), pp.
338-353, 2005.

[7]1 E. Gilbert, D. Johnson, and S. Keerthi, “A fast procedure for computing
the distance between complex objects in three-dimensional space,” [EEE
Transactions on Robotics and Automation, vol. 4, no. 2, pp. 193-203,
1988.

[8] M. Teschner.,, B. Heidelberger, M. Mueller, D. Pomeranets, and
M. Gross, “Optimized spatial hashing for collision detection of de-
formable objects,” in Vision, Modeling, Visualization VMV’03, Munich,
Germany, 2003, pp. 47 — 54.

[9] M. Gissler, U. Frese, and M. Teschner, “Exact distance computation for

deformable objects,” in Proc. Computer Animation and Social Agents

CASA’08, 2008, pp. 47-54.

M. Gissler and M. Teschner, “Adaptive surface decomposition for the

distance computation of arbitrarily shaped objects,” in Proc. Vision,

Modeling, Visualization VMV’08, 2008, pp. 139-148.

D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wau,

and F. Yaman, “Shop2: An HTN planning system,” JAIR, vol. 20, pp.

379-404, 2003.

F. Bacchus and F. Kabanza, “Using temporal logics to express search

control knowledge for planning,” Artif. Intell., vol. 116, no. 1-2, pp.

123-191, 2000.

City,”

[10]

(11]

(12]

[13]

[14]
[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

(34]

[35]

J. Kvarnstrom and P. Doherty, “TALplanner: A temporal logic based
forward chaining planner,” Ann. Math. Artif. Intell., vol. 30, no. 1-4, pp.
119-169, 2000.

M. Fox and D. Long, “Identifying and managing combinatorial optimi-
sation subproblems in planning,” in Proc. 1JCAI, 2001, pp. 445-452.
B. Srivastava and S. Kambhampati, “Scaling up planning by teasing out
resource scheduling,” in Proc. ECP, 1999, pp. 172-186.

A. Botea, M. Miiller, and J. Schaeffer, “Using abstraction for planning
in sokoban,” in Proc. Computers and Games, Edmonton, Canada, 2003,
pp. 360-375.

J. Latombe, Robot Motion Planning.
1991.

G. Sanchez and J. Latombe, “A single-query bi-directional probabilistic
roadmap planner with lazy collision checking,” Springer Tracts in
Advanced Robotics, vol. 6, pp. 403—417, 2003, published in: Robotics
Research: The Tenth Int. Symp.

T. Simeon, J. Cortes, J. Laumond, and A. Sahbani, “Manipulation
planning with probabilistic roadmaps,” The International Journal of
Robotics Research, vol. 23, no. 7-8, pp. 729-746, 2004.

S. Cambon, F. Gravot, and R. Alami, “A robot task planer that merges
symbolic and geometric reasoning,” in Proc. ECAI. 10S Press, 2004,
pp. 895-899.

S. C. Fabien Gravot and R. Alami, “asymov:a planner that deals
with intricate symbolic and geometric problems,” Springer Tracts in
Advanced Robotics, vol. 15, pp. 100-110, 2005.

M. Lin and J. Canny, “A fast algorithm for incremental distance calcu-
lation,” in IEEE International Conference on Robotics and Automation,
1991, pp. 1008-1014.

G. van den Bergen, “A fast and robust GJK implementation for collision
detection of convex objects,” J. Graphics Tools, vol. 4, no. 2, pp. 7-25,
1999. [Online]. Available: http://portal.acm.org/citation.cfm?id=334711
S. Cameron, “Enhancing GJK: Computing minimum and penetration
distances between convex polyhedra,” IEEE International Conference
on Robotics and Automation, vol. 4, pp. 3112-3117, 1997.

S. Ehmann and M. Lin, “Accurate and fast proximity queries between
polyhedra using surface decomposition,” Computer Graphics Forum
(Proc. of Eurographics’2001), vol. 20, no. 3, pp. 500-510, 2001.

S. Quinlan, “Efficient distance computation between non-convex ob-
jects,” IEEE International Conference on Robotics and Automation,
vol. 4, pp. 3324-3329, 1994.

P. Hubbard, “Approximating polyhedra with spheres for time-critical
collision detection,” ACM Transactions on Graphics, vol. 15, no. 3, pp.
179-210, 1996.

J. Klosowski, M. Held, J. Mitchell, H. Sowizral, and K. Zikan, “Efficient
collision detection using bounding volume hierarchies of k-DOPs,” [EEE
Tran. on Visualization and Computer Graphics, vol. 4, no. 1, pp. 21-36,
1998.

S. Gottschalk, M. Lin, and D. Manocha, “OBB-Tree: a hierarchical
structure for rapid interference detection,” in SIGGRAPH ’96: Proc.
of the 23rd annual conference on Computer graphics and interactive
techniques. New York, NY, USA: ACM Press, 1996, pp. 171-180.
[Online]. Available: http://portal.acm.org/citation.cfm?id=237244

D. Knott and D. Pai, “CInDeR: Collision and interference detection in
real-time using graphics hardware,” in Proc. of Graphics Interface, 2003,
pp. 73-80.

N. Govindaraju, S. Redon, M. Lin, and D. Manocha, “CULLIDE:
Interactive collision detection between complex models in large envi-
ronments using graphics hardware,” in HWWS ’03: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware.
Aire-la-Ville, Switzerland: Eurographics Association, 2003, pp. 25-32.
K. Hoff, J. Keyser, M. Lin, and T. Manocha, D. andCulver, “Fast
computation of generalized voronoi diagrams using graphics hardware,”
in SIGGRAPH ’99: Proc. of the 26th annual conference on Computer
graphics and interactive techniques. New York, NY, USA: ACM Press,
1999, pp. 277-286.

A. Sud, N. Govindaraju, R. Gayle, I. Kabul, and D. Manocha, “Fast prox-
imity computation among deformable models using discrete Voronoi
diagrams,” ACM Trans. Graph., vol. 25, no. 3, pp. 1144-1153, 2006.
M. C. Lin and D. Manocha, Handbook of Discrete and Computational
Geometry. CRC Press, 2004, ch. 35, pp. 787 — 806.

M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghu-
pathi, A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnenat-Thalmann,
W. Strasser, and P. Volino, “Collision detection for deformable objects.”
Computer Graphics Forum, vol. 24, no. 1, pp. 61 — 81, 2005.

Kluwer Academic Publishers,

