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Abstract— Cosserat nets are networks of elastic rods that are
linked by elastic joints. They allow to represent a large variety
of objects such as elastic rings, coarse nets, or truss structures.
In this paper, we propose a novel approach to model and
dynamically simulate such Cosserat nets. We first derive the
static equilibrium of the elastic rod model that supports both
bending and twisting deformation modes. We further propose a
dynamic model that allows for the efficient simulation of elastic
rods. We then focus on the simulation of the Cosserat nets by
extending the elastic rod deformation model to branched and
looped topologies.

To round out the discussion, we evaluate our deformation
model. By comparing our deformation model to a reference
model, we illustrate both the physical plausibility and the
conceptual advantages of the proposed approach.

Index Terms— Physically-based modeling, Elastic rods,
Cosserat theory, Quaternions

I. INTRODUCTION

The modeling and simulation of one-dimensional flexible struc-
tures is an important problem in mechanics and computer graph-
ics. One-dimensional structures can be used to e. g. model threads,
ropes, cables or hair strands. In the following, we denote such
objects as elastic rods, independent of their material properties
such as scales or elasticities. Elastic rods are characterized in
having large global deformations under external load, even if the
local strains are small.

In the past, several approaches have been proposed to model
elastic rods. They differ in the way the curve is represented, and
in the way the material torsion is handled. The easiest way is
to model the rod using control points linked by springs. The N
control points ri ∈ R3 define the configuration of the centerline.
Bending springs restore a straight resting configuration [1].

Other approaches employ geometric curves such as splines to
model the elastic rod [2], [3], having the advantage that geometric
torsion can be taken into consideration. The geometric torsion
measures the deviation of the curve to a planar configuration,
and can be computed from the N control points alone.

However, the consideration of the material torsion complicates
the problem. This comes from the observation that the 3N
degrees-of-freedom (DOFs) provided by the N control points
do not suffice to describe the configuration of the rod. Instead,
additional DOFs are necessary to express the orientation of the
centerline of the rod. An elastic rod with an oriented centerline
is termed ”Cosserat rod”. Consequently, Cosserat rods can model
both bending and twisting deformation. The difficult interplay
between these deformation modii, and the resulting restitution
equations have first been described by the Cosserat brothers in
the 19th century. Since then, many works in both mechanics and
computer graphics have been proposed that model and animate
Cosserat rods [4]–[6].

However, there exists a large class of objects that cannot be
modeled with linear elastic rods alone. Instead, they are composed
of elastic rods that are linked by elastic joints. Think e. g. of a
tree: While the branches can be thought as elastic rods, we do
not yet have a tool to model the joints that link the branches

and thereby forming the tree. Further, in many cases, we would
like to link an elastic rod to itself, thereby forming a ring. These
rings could be further combined to large networks with complex
topologies, as illustrated in Fig. 1.

In this paper, we propose the Cosserat nets, a novel deformation
model for the simulation of networks of elastic rods. The struts
in the networks are simulated as elastic rods. We then propose a
methodology to model the elastic joints. These joints have a given
resting configuration. If the adjacent struts are rotated relatively
to each other, then bending and twisting moments restore the
reference shape. Our representation comes without additional
constraint equations, and allows for an efficient local solution.

In order to derive the necessary set of equations, we first discuss
the deformation model CORDE for the elastic rods that form the
struts. The deformation model is based on [7]. In contrast to [7],
an improved way to time-integrate the quaternions is proposed.
This time-integration allows to neglect the inertia tensor since
the time-integration is carried out in the local frame of each
quaternion. Further, the benefits and limitations of the deformation
model are thoroughly discussed.

Moreover, we provide an extensive analysis of the trade-offs
that have been accepted by the CORDE model. To accomplish
this, we present a constraint-free, fully dynamic reference defor-
mation model. By comparing the static and dynamic behavior of
CORDE to this reference model, we quantify the approximation
errors of CORDE. Based on this investigation, we illustrate that
CORDE reproduces the non-linear mechanical effects that charac-
terize elastic rods. Further, we show how to parameterize CORDE
such that the correct dynamics are plausibly approximated.

Organization: After discussing the related work in Sec. II, we
give a short introduction of the Cosserat representation of elastic
rods in Sec. III. This should help the reader to get familiar with the
terms and notation used in the paper. In Sec. IV, we describe the
static simulation of elastic rods with CORDE, which includes a
discussion of the representation of the orientations. The extension
to the dynamic case is detailed in Sec. V. Both sections include a
comparison to the approach of [8]. The concept of Cosserat nets
is introduced in Sec. VI. We evaluate our deformation model in
Sec. VII.

II. RELATED WORK

The Cosserat theory considers an oriented curve in space. The
definition of a position and an orientation of the start and end
point of the curve results in a boundary value problem (BVP).
The analysis and numerical solution of the corresponding system
of ordinary differential equations is discussed in, e. g., [9]. The
analysis of the dynamics of inextensible rods is considered in,
e. g., [10]. A comprehensive discussion of the topic is given in
the book of Antman [11].

In computer graphics, we distinguish two different classes
of approaches to simulate and animate elastic rods, namely
approaches that consider the rod as a system of masses linked
by springs, and approaches that consider the rod as a continuous
curve in space. E. g. Chang et al. [12] proposed an approach
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Fig. 1. Cosserat nets are graph-like structures that consist of elastic joints linked by elastic rods. In this paper, we propose to employ CORDE to model
such objects. Cosserat nets have a broad spectrum of applications in the field of animation. a) An animation of a chain modeled from linked elastic rings. b)
Close-up of the chain. c) Animation of two heavy objects falling on two trusses. d) CORDE is suited for simulating coarse nets.

that is focused on hair interactions, where the hair strand is
modeled from clusters linked by bending springs. Brown et al. [1]
published an approach to simulate knotting of ropes, including
a robust collision handling scheme. They model the rope from
a chain of masses and springs. However, in contrast to our
deformation model, neither of these models is able to handle
torsional torques.

A deformable model that handles torsional torques has been
presented by Wang et al. [13]. Similar to [1], they model a thread
from a chain of springs. In addition, they link the segments
by torsional springs. In contrast to their work, we employ an
energy-based approach to compute the restoration forces. Choe
et al. [14] proposed to model hair strands from rigid bodies
linked by springs, where the torques are computed from the
relative orientations of the rigid bodies. A similar model for the
simulation of cables in virtual environments has been proposed
in [15]. Recently, Hadap [16] describes a methodology based
on differential algebraic equations to simulate chains of rigid
bodies that includes torsional stiffness dynamics. In turn, this
approach is computationally expensive and thus less suitable for
interactive applications. The large stretching stiffness of elas-
tic rods usually limits the efficiency. This problem is partially
alleviated by Kubiak et al. [17] who combine the position-
based cloth-simulation approach of Mueller et al. [18] with a
simple mass-spring approach to represent the rod. Similar in
spirit is the approach of Selle et al. [19] that employs a concept
they call ”altitude springs” to handle twisting deformation in
the simulation of hair. For both approaches, material torsion is
supported. However, since the twisting and bending moments are
not coupled, many torsional effects cannot be reproduced.

Terzopoulos [2] has been the first who considered a continuous
energy formulation of the curve in space subject to geomet-
ric deformation. Later, Qin and Terzopoulos [20] proposed a
physically-based deformation model of a NURBS curve. They
derive continuous kinetic and deformation energies, and evolve
the curve by employing Lagrangian mechanics. A finite element
analysis enables the simulation of the curve at interactive rates.
Similar in spirit is the approach of Remion et al. [21]. They
employ successions of spline segments to model knitted cloth. In
contrast to [20], they consider the control points as the degrees
of freedom of the continuous object. The use of splines was also
suggested by Lenoir et al. [3] and by Phillips et al. [22] in order
to model threads. These approaches can also handle complex
collision configurations, as recently shown by Kaldor et al. [23]
in the context of the simulation of knitted cloth. Here, the authors
model the yarn with one single spline, which is in contrast to [21].
These approaches have in common that material torsion can not

be represented. In contrast, our deformable model handles both
bending and torsion of rods in contact.

The Cosserat theory for elastic rods has first been introduced
to the community by Pai in 2002 [6]. He models the statics
of thin deformable structures such as catheters or sutures. He
assumes the rod to be unshearable and inextensible. The con-
figuration of the rod is obtained by solving the resulting BVP.
This approach provides an efficient and physically correct way
to animate continuous elastic rods. However, the model does
not handle dynamics. Furthermore, self-contact and interactions
require numerically sensitive shooting techniques to solve the
differential equations.

Recently, Bertails et al. [24] proposed an important extension
of Pai’s work. They simulate hair strands as chains of helical
segments. The Darboux vectors constitute the DOFs of the strand.
To evolve the hair strands, they employ Lagrangian dynamics.
The configuration of the hair strand is reconstructed from the
generalized coordinates that conform to twist and curvature of
the segments. Still, as their approach has complexity O(N2)
with N the number of segments, the approach is less suitable
for handling contacts that require a large number of DOFs. In
contrast, our scheme is linear in the number of elements, and
designed to handle complex contact configurations such as knots.
Further, we replace the viscous dissipation energy of [24] by a
term that additionally considers internal friction without affecting
the rigid body motion of the rod.

Similar in spirit is the approach earlier proposed by Wakamatsu
et al. [25] in the field of robotics. In contrast to Bertails et al., they
employ the three Eulerian angles together with a stretch parameter
as DOFs of the rod. The geometric configuration of the rod is then
reconstructed by integrating the orientation field. However, it is
unclear how the singularities of the Eulerian angles at the poles
are handled. Moreover, the proposed model is limited to static
equilibria.

It is obvious to combine spline-based methods with the
Cosserat approach. Theetten et al. proposed a geometrically
exact, dynamic spline model which supports both geometric and
material torsion [8], [26]. In contrast to Bertails and similar to
us, they employ the spline control points as DOFs of the rod.
Material torsion is modeled by a single roll parameter. This
model is accurate, efficient, constraint-free and does not exhibit
the ’ghost inertia’ problem of CORDE (see Sec. V). However,
a concept of material orientation cannot be easily handled with
this formulation, as laid out in Sec. III. Moreover, their dynamic
formulation is as well an approximation of the exact dynamics,
as detailed in Sec. V.

The research on elastic rods cumulates with a recent publication
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of Bergou et al. which has considered the dynamic evolution of
discrete elastic rods with torsion [27]. To represent the material
torsion, they observe that the velocity of the twist waves is much
larger than the velocity of the bending waves. Consequently, they
do not carry the material torsion for each centerline segment.
Instead, they represent the material torsion only at the boundary
segments. To compute the variation in the material frames, they
consider the discrete holonomy.

The approaches that are most closely related to ours are the
works of Grégoire et al. [28] and Loock et al. [29]. They
proposed to model a cable from joined elements where each
element has a position and an orientation, the latter expressed
in terms of quaternions. Then they derive constraint energies and
associated forces. The goal is to find static equilibria states of
cables in virtual assembly simulation. We augment their work
by considering the dynamics of rods, which provides unique
challenges. Further, we employ finite element methods to derive
discrete energies while they simulate the rod as a simple mass-
spring system.

III. COSSERAT THEORY OF ELASTIC RODS

In this section, we give a brief introduction of the Cosserat
theory of elastic rods. The goal is that the reader becomes
acquainted with the concepts and the notation of the configuration
of elastic rods. For more information, we refer to the book of
Antman [11].

A. Notation

Throughout this paper, scalar values are written in italic face
(e. g. s), and vector values in bold face (e. g. s). If s(σ, t) is a
function depending on the line parameter σ as well as the time
t, then s′(σ, t) denotes the spatial derivative ∂s(σ,t)

∂σ , and ṡ(σ, t)

denotes the temporal derivative ∂s(σ,t)
∂t .

B. Representation

An elastic rod can be thought as a long and thin deformable
body. Since the volume of the rod is negligible compared to its
length, we represent the centerline of the rod by a function r =
r(σ) : [0, 1] → R3 that maps a line parameter σ to a position in
the space. If we consider r to be a C3-differentiable function, we
can derive expressions for the bending and geometric torsion by
employing differential geometry. The geometric torsion measures
the deviance of r from lying in a plane. E. g. a circle in space
has zero torsion and constant curvature.

However, with r alone, we cannot represent the material
torsion, i. e. the ”roll” of the cross section around the centerline.
Thus we have to introduce the concept of oriented curves: In each
σ, we think of an orthonormal basis dk, k = 1, 2, 3 where the dk

are called directors. We say that the directors are adapted to the
curve, that means that the third director d3(σ) is always parallel
to the tangent r′(σ) of the curve (see Fig. 2). The first and second
directors d1 and d2 then indicate the orientation of the centerline.
We thus denote the basis dk as the material frame of the rod.
The directors dk(σ) constitute the columns of a rotation matrix
R(σ) ∈ R3×3, i. e. R = (d1 d2 d3). The parametrization of the
rotation matrix (i. e. how to obtain the directors) is discussed in
Sec. 4.

To establish the stress-strain relation, we have to introduce a
quantity that measures the rate of change in the position and
orientation when traveling along the rod centerline. The rate

d3(σ1)
d3(σ2)

d1(σ1)

d1(σ2)

d2(σ2)

d2(σ1)

r(σ1)

r(σ2)

Fig. 2. The configuration of the rod is defined by its centerline r(σ). Further,
the orientation of each mass point of the rod is represented by an orthonormal
basis, called the directors. d3(σ) is constrained to be parallel to r′(σ)

of change in the position of the centerline is a strain vector
v = (v1 v2 v3)

T . As common in the treatment of elastic rods,
shearing is neglected, thus v1 = v2 = 0. v3 is the stretch along
the centerline, and it is measured as

v3 = ‖r′‖ (1)

Without loss of generality, we assume the length of the un-
stretched rod to be 1. Consequently, v3 = 1 for the unstretched
rod.

Obtaining the orientational rate of change is slightly more
involved. In differential geometry, this quantity is called the
Darboux vector. It is a vector u0 ∈ R3, and it is assembled from
the areas that are swept by the directors when proceeding from
σ to σ + ∆σ:

u0(σ) =

3∑

k=1

lim
∆σ→0

dk(σ)× dk(σ + ∆σ)

2∆σ
(2)

=
1

2

3∑

k=1

dk(σ)× d′k(σ) (3)

The Darboux vector measures the change of orientation in the
reference frame. To relate the Darboux vector to bending and
twist, we have to rotate it into the local frame (see Fig. 3),

u = RT u0 (4)

or, written in terms of the directors dk,

uk = dk · u0, k = 1, 2, 3 (5)

with u = (u1 u2 u3)
T . When dealing with the dynamic case,

d1

d2

d3

u0

i

j

k

d3

d2

d1

u

u1

u2

u3

RT

Fig. 3. To obtain the quantities uk, k = 1, 2, 3 related to bending and
torsional strain, we rotate the Darboux vector u0 into the local frame, which
is accomplished by multiplying u0 with RT .

quantities like velocity and angular velocity will come into play.
The temporal derivative ṙ(σ) of the centerline at σ denotes the
translational velocity of the centerline. The angular velocity ωk

of the directors around the k-th axis is obtained likewise as

ωk = dk · ω0 (6)
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with

ω0 =
1

2

3∑

k=1

dk × ḋk (7)

C. Constitutive relations

To study the static equilibria of elastic rods, we have to find a
stress-strain relationship. To accomplish this, we define a scalar-
valued, convex energy function V (v3−1,u− û) with a minimum
at (0,0). Here, û = (û1 û2 û3)

T corresponds to the intrinsic
bending and torsion of the rod and allows to model e. g. spirals,
as illustrated in Fig. 4. The stresses (i. e. the restitution forces)
are then obtained by differentiating the energy with respect to the
coordinates.

Fig. 4. An elastic spiral is subject to continued torsional load. This load
makes the spiral twisting around itself in order to balance the twisting and
bending strains. The spiral is an elastic rod with an intrinsic curvature û > 0.

V = Vs + Vb is the sum of a (translational) stretch energy Vs

and a bending energy Vb. We define the stretch energy Vs to be
a quadratic form in the stretch v3

Vs =
1

2

∫ 1

0
Ks(v3 − 1)2dσ (8)

Ks is the stretching stiffness constant that is computed from a
stretching Young’s modulus Es and the radius r with Ks =
Esπr2. Likewise, the bending energy Vb is a quadratic form in
the strain rate vector u,

Vb =
1

2

∫ 1

0
(u− û) ·K(u− û)dσ (9)

The matrix K = (Kkk) ∈ R3×3 is the stiffness tensor.
If we assume that the rod is a solid body with the radius r

small compared to its length, then (9) can be rewritten as

Vb =
1

2

∫ 1

0

3∑

k=1

Kk(uk − ûk)2dσ (10)

with

K1 = K2 = E
πr2

4
, K3 = G

πr2

2
(11)

with E denoting the Young’s modulus governing the bending
resistance, G denoting the shear modulus governing the torsional
resistance, and r denoting the radius of the rod’s cross section.
Details are found in [9].

At this point, it is worth making a note on the balance of
the strain rates. By minimizing V , the strain rates uk and v3

are balanced. Thus if an elastic rod suffers from torsional strain,
then this strain will balance, resulting in a bending deformation.
This coupling between the strain rates is responsible for the
looping phenomenon of elastic rods under torsional strain (see
Fig. 4). Now consider a perfectly straight rod that is subject to
torsional load (Fig. 5, top). In which direction does it start to

bend? The answer is that it will stay in the straight configuration:
it is in an unstable equilibrium. As soon as the centerline is
slightly disturbed, it will immediately pop out, striving towards
a stable equilibrium between the torsion, bending and stretching
strains (Fig. 5, bottom). This experiment provides a simple way to
evaluate the plausibility of an (extensible) elastic rod deformation
model. In Sec. VII, we show that the CORDE model exhibits this
behavior. In contrast, approaches that do not treat bending and
torsion in a unified manner such as [17] cannot reproduce this
behavior.

Fig. 5. A perfectly straight rod that is subject to a torsional load is in an
unstable equilibrium (top). As soon as the centerline is slightly disturbed, the
rod starts to bend until an equilibrium between torsion, bending and stretching
strain is reached (bottom). Approaches that do not treat bending and torsion
in a unified manner cannot reproduce this behavior. This experiment provides
a simple way to verify the physical plausibility of an elastic rod deformation
model.

IV. THE CORDE MODEL

In the previous section, we have stated the continuous deforma-
tion energies that are functions of the strain rates. In this section,
we propose a discretization of the rod into control points. This
part comes with a discussion on the representation of the rotation.
We then derive the formulations for the deformation energies per
element by employing finite element methods.

A. Discretization

We discretize the centerline of the rod into N spatial control
points ri ∈ R3, i ∈ [1, N ]. Thus we have N − 1 centerline seg-
ments. To represent the orientations of these centerline segments,
we additionally employ N − 1 material frames Rj ∈ R3×3, j ∈
[1, N − 1], as illustrated in Fig. 6. In the subsequent subsection,
we show how to parameterize the rotation matrices. By dk(Rj),
we denote the k-th director of the j-th material frame, which is
obtained as the k-th column of the rotation matrix Rj .

ri

ri+1

ri+2

ri+3

Rj

Rj+1 Rj+2

Fig. 6. The centerline of the rod is discretized into nodes ri. We additionally
consider N − 1 material frames Rj to express the orientation of the center
segments.
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The spatial derivative r′i of the centerline is related to the stretch
of the centerline. Thus to compute r′i, we employ a simple spring-
based formulation, namely

r′i =
1

li
(ri+1 − ri) (12)

where li = ‖r0
i+1 − r0

i ‖ is the resting length. Thus, in the
unstretched case, v3 = ‖r′i‖ = 1 as demanded.

B. Parametrization of the rotation matrix

In this subsection, we discuss the representation of the material
frames Rj . From the material frames, we can in turn compute
the Darboux vectors that are related to the bending and twisting
strains.

From a theoretic point of view, it is possible to reconstruct Rj

from the centerline segment (ri, ri+1) and a single roll parameter
ϕi ∈ R. However, this cannot be done without considering
the temporal coherence. A simple setup (Fig. 7) illustrates this
problem: Consider an elastic rod whose left end point stays fixed.
The first director d1 initially points towards the positive y-axis. If
this rod is rotated around the z-axis, then we would intuitively end
up in the first director d1 pointing towards the negative y-axis.
If, in contrast, this rod is rotated around the y-axis, then the first
director should intuitively keep pointing upwards. Still, in both
cases, the rod has not been subject to any roll torques, thus ϕ will
not have changed its value. As a consequence, the material frames
cannot be computed unambiguously. Even worse, considering that
the segment orientations in a deformed rod might cover the whole
space SO(3), a globally coherent material direction cannot be
computed.

z

y

d1
d1

z

y

x

Fig. 7. It is not possible to compute an unambiguous material direction
without considering the temporal course of the simulation. In both scenarios,
the rod has not been subject to any rolling during the rotation, still, the material
directions of the target states differ.

There do not exist straight-forward solutions to circumvent this
problem. An approach that considers infinitesimal transformations
has been proposed by Boyer et al [30]. Up to now, the approach
in [8] is the only one in the field of computer graphics that
employs the control points along with a roll angle as DOFs.
Their approach has the advantage that the computation of the
strain rates does not rely on globally coherent directors. Instead,
they compute the strain rates as the sum of the geometric torsion
and the spatial change of material torsion. However, in order to
visualize the rods, they need to update the material frames. They
propose to update the first frame of the rod by employing temporal
coherence, and then to propagate the material frames along the
rod.

In contrast, we propose a different approach that avoids the
problem of explicitly updating the material frames in a natural
way: Instead of reconstructing the frames from a roll angle, we
express the material frames by quaternions qj , j ∈ [1, N − 1]. In

contrast to other SO(3) representations such as Euler angles, they
provide a singularity-free parametrization of Rj . The conceptual
advantage of this approach is that since the material frames of the
rod are now fully determined by the quaternions, we can com-
pute the bending and twisting moments without considering the
control points ri. The resulting torques accelerate the quaternions
towards an energy-minimizing configuration. As a consequence,
the material direction (which is given by the quaternions) is
always globally coherent. In turn, this enables a straight-forward
derivation of internal friction forces.

C. On quaternions

We consider a quaternion q to be a vector q =
(q1, q2, q3, q4)

T ∈ R4 with qk = ak sin(θ/2), k = 1, 2, 3, and
q4 = cos(θ/2). Here, (a1 a2 a3)

T is the rotation axis, and θ
is the rotation angle. Since only unit quaternions represent pure
rotations, the four parameters qk are coupled by the constraint
q2
1 + q2

2 + q2
3 + q2

4 = 1. The rotation matrix R is parameterized by

R =


q2
1 − q2

2 − q2
3 + q2

4 2(q1q2 − q3q4) 2(q1q3 + q2q4)
2(q1q2 + q3q4) −q2

1 + q2
2 − q2

3 + q2
4 2(q2q3 − q1q4)

2(q1q3 − q2q4) 2(q2q3 + q1q4) −q2
1 − q2

2 + q2
3 + q2

4




We approximate the spatial derivative q′j as

q′j =
1

lj
(qj+1 − qj) (13)

By considering that the quaternions ’sit’ on the midpoints of the
centerline segments, we approximate the step length lj of the
quaternion forward difference as lj = 1

2 (‖r0
i+2−r0

i+1‖+‖r0
i+1−

r0
i ‖). Computing the spatial derivative d′k(qj) is more involved

(see Appendix I).
The strain rates uk governing the constitutive relations can be

computed as

uk = 2Bkq · q′, k = 1, 2, 3 (14)

where the Bk ∈ R4×4 are constant skew-symmetric matrices. The
derivation of (14) is given in the Appendix.

Up to now, we have treated the centerline ri and the orientations
qj as separated entities. However, in contrast to the rigid body
simulation, the positions and the orientations cannot be simulated
independently. Instead, the material frames parameterized by qj

and the control points ri are coupled by the constraint that the
third director d3(qj) is parallel to the tangent r′i, i. e.

r′i
‖r′i‖

− d3(qj) = 0 (15)

In the past, several approaches have been proposed to handle
constrained mechanical systems, e. g. by employing Lagrangian
multipliers or reduced coordinates. For the sake of efficiency and
simplicity, we employ the penalty method which has the further
advantage that the constraints can be handled locally. We thus
model the holonomic constraint (15) by a convex energy function

Ep[i] =
1

2

∫ li

0
κ
( r′i
‖r′i‖

− d3(qi)
)
·
( r′i
‖r′i‖

− d3(qi)
)
dξ (16)

=
li
2

κ
( ri+1 − ri

‖ri+1 − ri‖ − d3(qi)
)
·
( ri+1 − ri

‖ri+1 − ri‖ − d3(qi)
)

By differentiating this penalty energy with respect to the coor-
dinates ri and qj , we obtain penalty forces that maintain the
constraints. κ is a spring constant that should be in the same
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order as Ks. We treat the penalty energy as an additional potential
energy term. If the method of Lagrange multipliers is employed,
the introduced stiffness could (at least partially) be removed.
However, we would end up in solving a banded linear system,
whose inversion is in turn less efficient. Moreover, it does not
solve the ’ghost inertia’ problem related to the dynamic case that
is discussed in the subsequent section.

To enforce the quaternion unit constraint ‖qj‖ = 1, we employ
the simple method of coordinate projection, i. e. we normalize
the quaternions in each simulation step. Although this procedure
does not conserve the energy, experiments indicate that it is a
good compromise between efficiency and accuracy.

D. Finite element model

In the previous sections, we have discretized the rod into
disjoint centerline elements i = (ri, ri+1) and disjoint orientation
elements j = (qj ,qj+1). The DOFs of the rod are constituted by
the 3N +4(N−1) DOFs of these control points and quaternions.

A finite element (FE) method usually solves the weak form of
the static stress analysis for kinematically admissible coordinates
ri and qj ,

V (v3 − 1,u− û)−
N∑

i=1

ri · fe
i dσ = 0 (17)

that satisfy the given boundary conditions. fe
i are the external

forces acting on the points, external torques are neglected. Having
in mind that we finally want to solve the dynamic equilibrium of
the rod, we do not discuss the static solution further. Instead, we
employ the FE method to compute the restitution forces ∂V [i]

∂ri
and

torques ∂V [j]
∂qj

per element. These forces and torques accelerate
the elastic rod towards the static equilibrium. The goal now is to
derive the potential energy V [i] and V [j] per centerline element
i and orientation element j, respectively. By differentiating these
energies with respect to the local coordinates, we obtain the forces
and torques acting on the control points and material frames.

To compute the per-element potential energy, we have to
interpolate the unknown displacement field within the elements.
For simplicity, we employ piecewise linear shape functions that
interpolate the coordinates ri and qj linearly and result in con-
stant stretch- and strain rates within the elements. They result in
particularly simple expressions when integrated over the element
length. Experiments indicated that higher-order shape functions
do barely increase the accuracy of the model. We further employ
constant shape functions to interpolate the spatial derivatives r′i
and q′j , i. e. they are assumed to be constant within the elements.

The stretch energy Vs[i] per centerline element i is obtained by
integrating the stretch over the element length li

Vs[i] =
1

2

∫ li

0
Ks(‖r′i‖ − 1)2dξ

=
1

2
liKs(

1

li

√
(ri+1 − ri) · (ri+1 − ri)− 1)2 (18)

Likewise, the bending energy per orientation element j is obtained
by integrating over the element length lj

Vb[j] =
1

2

∫ lj

0

3∑

k=1

Kk(2Bk
–qj · q′j − ûk)2dξ (19)

=
lj
2

3∑

k=1

Kk(Bk(qj + qj+1) · 1

lj
(qj+1 − qj)− ûk)2

By employing FE methods to compute the restitution forces,
we ensure that the static equilibria are independent from the
underlying discretization (at least as long as the DOFs of the rod
suffice to reproduce the deformation). This property is particularly
interesting in the context of adaptive simulations, as pointed out
in [31].

Summarizing, we have now computed the potential energy per
element. By symbolically differentiating the sum V [i] = Vs[i] +
Ep[i] with respect to ri and ri+1, and by differentiating the sum
V [j] = Vb[j] + Ep[j] with respect to qj and qj+1, we obtain the
restitution forces and torques acting on ri, ri+1,qj and qj+1. In
the next section, we describe how we compute the trajectories
of the control points and quaternions that are governed by the
restitution forces.

V. THE DYNAMIC EVOLUTION

In this section, we discuss the effects that come into play when
the dynamic evolution of the rod is considered. We first show how
to obtain the simplified rod dynamics that avoid the solution of a
system of equations. We then propose a way to compute internal
friction forces that plausibly damp relative motion within the rod.
Last, we discuss the artifacts that are caused by the approximative
dynamic CORDE model, and show how to reduce those artifacts.

A. Numerical time-integration
The dynamic equilibrium of a mechanical system is usually ob-

tained by feeding the Lagrange equation of motion, a variational
formulation of the equations of motion. This results in a system
of the form Ma− f = fe. When considering rotating mechanical
systems, the mass-matrix M will be block-diagonal sparse or
dense. In any case, inverting the mass-matrix requires the iterative
solution of a system of equations which can be expensive.

However, we can obtain an intrinsically simpler way to com-
pute the dynamics by looking at the solution that we have
presented in the previous section. We consider the rod as a chain
of control points ri, and a chain of quaternions qj conforming to
the material frames. These chains are loosely coupled by penalty
forces that accelerate them towards a valid configuration. Still,
the dynamic evolution of the mass points is decoupled from the
dynamic evolution of the quaternions. As a consequence, we can
time-integrate the control points as if they were mass-points in
a mass-spring system, and the quaternions as if they represented
the orientation of rigid bodies.

We assume that the masses mi = 1
2ρπr2(li−1 + li) are lumped

in the control points ri. Here, ρ is the density of the rod, and r is
its the radius. Then the numerical evolution of the mass points is
governed by the equation of motion mir̈i − fi = fe, where fi is
the sum of the internal forces on ri. To evolve the mass points,
we employ a semi-implicit Euler scheme.

For the evolution of the quaternions, we can stick to the wealth
of literature on rigid body simulation. It is most common to
express the angular velocities ωj ∈ R3 along with the quaternions
qj as state variables [32]. We then obtain the state equations for
the quaternions qj as

ω̇j = I−1(τ̃j − ωj × Iωj)

q̇j = 1
2Qj

(
ωj

0

) (20)

Here, Qj is the quaternion matrix that allows to write the
quaternion multiplication consistently as a matrix-vector multi-
plication. Further, τ̃j ∈ R3 are the internal torques that govern
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the restitution. We have to consider that the torques τj ∈ R4

that result from evaluating ∂Vb[j]
∂qj

are dual to the quaternions.
The translation into the spatial torques τ̃j is accomplished by a
multiplication with the transposed quaternion matrix QT

j ,
(

τ̃j

0

)
=

1

2
QT

j τj (21)

Details can be found in [32]. I ∈ R3×3 is the inertia tensor of the
rod segment. For rods, we assume it to be a diagonal matrix I =
(Ikk), k = 1, 2, 3 with I11 = I22 = 1

4ρπr2 and I33 = I11 + I22.
For diagonal matrices, the coriolis force term ωj×Iωj = 0. Thus
we obtain the simple quaternion state equations

(
ω̇j

0

)
= 1

2 I−1QT
j τj

q̇j = 1
2Qj

(
ωj

0

) (22)

that are numerically integrated with a semi-implicit Euler scheme.

B. Modeling internal friction

In order to plausibly model elastic rods, the internal friction has
to be considered. Internal friction forces damp relative motion in
the rod. As Baraff et al. [33] pointed out, friction forces that
reduce stretch oscillations should confine itself solely to relative
stretch motions, and not to any other relative motions. The same
criterion applies for angular friction forces.

We thus define a translational dissipation energy per element i

Dt[i] =
1

2

∫ li

0
γtv

(rel)
i · v(rel)

i dξ =
li
2

γtv
(rel)
i · v(rel)

i (23)

where γt is the translational friction coefficient. Moreover, v(rel)

is the relative velocity of the two control points constituting the
centerline element, projected on the tangent r′ of the centerline,

v
(rel)
i =

1

‖r′i‖2︸ ︷︷ ︸
≈1

r′i(ṙ
′
i · r′i)

=
1

li
3
(ri+1 − ri)

(
(ṙi+1 − ṙi) · (ri+1 − ri)

)
(24)

where we made the simplifying assumption that ‖r′i‖ ≈ 1, which
is valid for rods with a large stretching stiffness. The angular
dissipation energy derives from the spatial derivative ω′r of the
angular velocity ωr . Here, ωr = (ωr

1 ωr
2 ωr

3)T is the angular
velocity of the material frames expressed in the reference frame
that is computed as

ωr
k(q̇,q) = 2B0

kq · q̇ (25)

It is important to consider the angular velocities in the reference
frame since quantities cannot be compared in different local
frames. We then obtain the angular dissipation energy per ori-
entation element j as

Dr[j] =
1

2

∫ lj

0
γrω′r(q̇j ,qj) · ω′r(q̇j ,qj) (26)

=
1

2

∫ lj

0
γr

3∑

k=1

(
1

lj
2B0

kqj+1q̇j+1 − 1

lj
2B0

kqj q̇j)
2dξ

=
2

lj
γr

3∑

k=1

(B0
kqj+1q̇j+1 −B0

kqj q̇j)
2 (27)

A similar dissipation energy formulation is proposed in [25]. The
damping forces are now derived by symbolically differentiating
the dissipation energies with respect to the coordinates. We
employ Maple v9.51 to carry out the calculations.

This relatively straight-forward derivation of internal friction
is enabled since the quaternions allow us to symbolically express
the material direction and the angular velocity of the material in a
globally coherent manner. This is in contrast to the approach of [8]
that does not symbolically derive a globally coherent material
direction. Thus the computation of angular friction is intrinsically
more difficult. Consequently, they do not model internal friction
but employ the viscous friction that is a side-effect of their
implicit solver.

C. Benefits, limitations and future work
The proposed approach computes the dynamic evolution of

the rod as a loosely coupled motion of a chain of masses and
a chain of quaternions. The explicit simulation of the quaternions
enables a convenient computation of the material direction, which
allows a direct solve of the equations of motion, resulting in
a comparably small implementation effort. Further, a consistent
explicit representation of the material direction simplifies the
computation of internal friction and also eases a texture-mapped
visualization of the rod.

However, the proposed approach comes with an artifact we de-
note as ’ghost inertia’. Consider a simple pendulum that conforms
to an elastic rod whose one end is fixed, and whose other end
is being elongated. By swinging around the vertical equilibrium
position, the rod is subject to a rigid body rotation. Still, the
material frames need to evolve continuously in order to adapt
to the continuously changing orientation of the rod centerline.
This evolution is solely governed by the parallel-constraint (16).
The noticeable behavior is that the rod movement is subject to a
rotational drag, i. e. a ghost inertia. This rotational drag increases
with increasing weight of the material frames. The ghost drag is
only noticeable if the rod is subject to rigid body rotation modes.

To overcome this problem, we reconsider our primary goal,
namely that the bending inertia of the rod is exclusively governed
by the centerline while the torsion inertia is governed by the
quaternions. This conforms to an inertia tensor I with I11 = I22 =
0. Obviously this inertia tensor is singular. However, by scaling
I11 and I22 with a factor α < 1, we get a DOF that controls the
amount of ghost inertia we are willing to accept: By choosing
a small α < 10−2, the ghost inertia is hardly noticeable, but
the numerical integration requires a smaller time step due to the
increased stiffness, which can in turn remedied with time sub-
stepping for the quaternion integration. The time step hq for the
quaternion integration depends on the simulation setting. In many
cases, α = 10−2 provides a fair compromise between ghost inertia
and efficiency.

We finish this section with a short summary on the rod
dynamics in previous approaches, and an outlook to future work.
Most previous approaches compute a static or a quasi-static
equilibrium configuration [6], [25] and thus do not consider
dynamic effects. Bergou et al. propose to consider the centerline
as dynamic while treating the material torsion as quasi-static,
which is a fair approximation if small rod radii are consid-
ered [27]. The dynamic approaches of Bertails et al. [24] and
Chang et al. [12] have in common that the DOFs of the model
are provided by the strain rates uk and v3. They then reconstruct

1www.maplesoft.com
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the centerline, given the position of the first node of the rod. Both
approaches propose to derive the dynamics with the Lagrangian
formalism, and both approaches give the kinetic energy governing
the dynamic evolution as T =

∫ L
0 ρAṙ2dσ. However, thereby,

both approaches neglect the angular momentum of the rod cross-
section. Theetten et al [8] approximates the kinetic energy as
T =

∫ L
0 (ρAṙ2 + I33θ̇2)dσ, where θ is the roll of the material

cross-section. Thus this formulation considers the inertia of the
torsion. Still, they neglect the bending and twisting moments of
the angular cross-section. In contrast, the correct kinetic energy is
e. g. given by Antman [11] as T =

∫ L
0 (ρAṙ2 + ω · Iω)dσ, where

the second term conforms to the rotational kinetic energy of the
rod cross-section.

It is not easy to quantify the error in the discrete case that is
introduced by neglecting the rotational kinetic energy. To seek
for an analogy, computing the kinetic energy of a discretized
rigid body by summing the translational energies of the nodes
provides but an approximation of the rotational energy. In order
to quantify the approximation of our model, we have implemented
a Cosserat rod element model recently proposed by Cao et al [5]
that considers the exact kinetic energy (see Appendix II). We give
the results of this comparison in Sec. VII. However, we underline
that there is still room for improvement in terms of simulating
the dynamics of elastic rods in an accurate and efficient way.

VI. COSSERAT NETS

In this section, we describe a novel extension of the previ-
ously described approach to branched and looped structures. The
motivation comes from the observation that the CORDE model
basically computes per-element forces on control points and
orientations. The resulting restitution forces on the control points
and material frames result from the contributions of the adjacent
elements. Thus it is obvious that the last and the first control
point of a rod could be merged, thereby forming a closed loop.
Moreover, instead of restricting a control point to be adjacent to
two centerline elements, we could allow T-junctions, i. e. that the
rod branches in a control point.

A. Theoretical background

We define a Cosserat net to be a set of elastic joints, linked
by elastic rods. The joints are elastic in the sense that the linked
elastic rods are allowed to bend and twist relative to each other.
The constitutive restitution is governed by given elasticity moduli.
Intuitively, we demand that the static equilibrium of e. g. a T-
junction with one 180◦ and two 90◦ angles should conform to
the static equilibria of rods with intrinsic curvatures of 180◦ and
90◦, respectively.

Branched elastic rods have rarely been considered in the liter-
ature. In [34], Nadler and Rubin have proposed to model three-
dimensional frames from elastic beams joined by Cosserat points.
A Cosserat point can be understood as a deformable cuboid,
where the deformation modii are decoupled into homogenous and
into inhomogenous deformations. More information on the theory
of Cosserat points can be found in [35].

In computer graphics, branched elastic structures such as trees
have mainly been considered in the context of articulated rigid
bodies, see e. g. Hadap [16] or Weinstein et al. [36]. Other works
have focused on the modal analysis of the dynamics of tree-
like objects [37]. However, these formulations do not consider
torsional deformation of the joints, which is in contrast to our
approach.

B. Our approach

We propose an intuitive approach to model these networks of
elastic rods and elastic joints. In contrast to [34], the focus is on
the plausible and efficient animation of such networks.

We first demand that joints always coincide with control points
of the discretized rods. This can be start points, end points, or
arbitrary control points within the rod. Notice that this does not
limit the generality of the approach because control points can
be adaptively inserted without making the global deformation
behavior change, as illustrated in our previous work [31]. We
then assemble the Cosserat net from single elastic rods that share
one or more control points.

The stretch forces and the penalty forces for the parallel-
constraint are computed by integration over the centerline ele-
ments. Consequently, we can compute these forces in all center-
line elements of the network. The restitution forces on the control
points are obtained by summing the contributions of all adjacent
elements. It is easy to verify that the proposed discretization of
the domain of the Cosserat net is disjoint, thus the computation of
the stretch and penalty forces is physically plausible (see Fig. 8
left).

Things become more difficult if we consider the bending
forces, because these forces are computed by integration over the
orientation elements that link two centerline elements (see Fig. 8
right). However, we cannot discretize a T-junction into disjoint
orientation elements, as depicted in Fig. 8. We could, of course,
omit the orientation elements in the T-junctions, but this would
result in a joint that does not restore its resting configuration after
deformation, which is not what we want.

Instead, we propose a concept that is a straight-forward exten-
sion of the case of one-dimensional rods. In a joint, we consider
all pairs of adjacent centerline segments, and treat these pairs
as orientation elements. E. g. for a T-junction, we end up in
having three orientation elements (Fig. 8 right), and for a star
with n adjacent segments, we obtain (

n
2 ) orientation elements.

Further, these orientation elements have a discontinuous, intrinsic
curvature that conforms to the resting angle between the adjacent
segments. To compute the restitution torques in a joint, we
now integrate over all orientation elements and sum the torques
per orientation node. While this concept lacks some physical
accuracy, it meets the requirements in animation: an easy and fast
solution that reproduces the behavior that we intuitively expect.
Still, future work includes a more accurate handling of these
joints.

qj

qj+1 qj+2

qj+3

ri

ri+1 ri+2 ri+3

ri+4

Fig. 8. Left: A T-junction always conforms to a control point of the
discretized rods. A Cosserat net is then assembled from the single elastic rods
that share control points. Right: We consider all pairs of adjacent segments
as orientation elements, depicted as dashed lines. Thus, for a T-junction,
we end up with the three orientation elements (qj ,qj+1), (qj ,qj+3) and
(qj+1,qj+3) modeling the joint.
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VII. EVALUATION AND APPLICATION

In this section, we give an extensive and careful evaluation
of the proposed deformation model CORDE. We focus on two
aspects: First, we evaluate the CORDE model with respect to both
the static and the dynamic equilibrium. To accomplish this, we
have implemented a reference deformation model that bases on
previous work in the field of mechanics [5]. The reference model
bases on the FE method, is constraint-free and computes the
correct dynamics in the sense of Antman [11]. Details are found in
the Appendix II. The expensive assembly of the mass matrix and
the numerical instabilities around the poles make the reference
model of little practical interest in computer graphics. However,
by comparing CORDE to the reference model, we can show how
to parameterize CORDE such that the artifacts introduced by
the approximations are minimized. In a second part, we present
examples that illustrate the wide applicability of Cosserat nets.

In the experiments, the collision handling has been carried out
with the approach presented in [31]. All experiments have been
performed on an Intel Xeon PC with 3.8GHz.

A. Evaluation of the static behavior

We have proposed to model the elastic rod from control points
that define the configuration of the centerline, and from quater-
nions that define the material frames. The twisting and bending
moments are computed by minimizing the respective energies. In
turn, the twisting and bending energy results from the squared
Darboux vector. Thus, by minimizing the Darboux vector, we
automatically couple the twisting and bending moments. Thereby,
we win physical plausibility and can reproduce the interesting
buckling and looping phenomena subject to elastic rods.

To illustrate this property of the CORDE model, we perform
the experiment that we have already sketched in Sec. III. We
consider two elastic rods, one is simulated with CORDE, the
other with the reference model. Both rods have a Young modulus
E = 1MPa, a shearing modulus G = 4MPa, a stretching modulus
Es = 1GPa, a radius r = 0.01m, a density ρ = 1300kg m−3

and length 10m. Since internal friction has not been implemented
for the reference model, we are employing viscous friction in
this experiment. Further, the penalty constant for the CORDE
rod is κ = 106kg m s−2, and time step of the simulation is
10−4s. We span the two perfectly straight elastic rods between
two anchors and twist the material frames around the centerlines
such that the end-to-end rotation angle is 3

2π. The rods are now in
an unstable equilibrium. As long as the centerlines stay straight,
the unstable equilibria are held. As soon as the centerlines are
slightly disturbed, the rods start to buckle until stretch, bending
and torsional strain are balanced.

In Fig. 9, we see the comparison of the two deformation models
in the unstable equilibrium (left) and after having reached a stable
equilibrium that balances between the stretch and strain rates
(right). The resting state of the CORDE model is less curved
than the resting state of the reference model. The reason for this
asymmetry is the constraint energy that absorbs some of the total
potential energy.

The temporal course of the simulation is illustrated in Fig. 10.
We plot the strain energy of the four deformation modes (first
bending, second bending, torsion and stretch) plus the sum of
those energies. The goal of this experiment is to illustrate the qual-
itative buckling behavior of CORDE. In the beginning, both rods
are in the unstable equilibrium and the total energies conforms
to the torsion energies. If there were no external forces acting on

Fig. 9. Two elastic rods under torsional load are in an unstable equilibrium
(left). If the centerline is disturbed, then the rods buckle in order to balance
bending, torsion and stretch strains. The upper rod is simulated with CORDE,
the lower rod with the reference model. The penalty method of CORDE
absorbs energy, thus its resting state is less curved than the resting state of
the reference model.

the centerlines, they would keep the unstable equilibrium. Thus,
in order to induce the buckling, we exert a small gravitational
force on the centerlines. The rods immediately pop out, striving
towards stable equilibria states that balance between the four
deformation modes. This is indicated in the total energies that
have decreased after the rods found their equilibria. In contrast,
the bending and stretching energies have increased, indicating
that the centerlines are no longer straight. While the reference
model accurately balances between stretch and bending modes,
the CORDE deformation model has a much lower stretch energy.
This comes from the penalty method that absorbs some energy.
Moreover, the two sets of curves differ in terms of the decay of
the oscillations, which is due to the fact that our implementation
of the reference model does not support internal friction but only
viscous damping. Still, we conclude that CORDE reproduces the
buckling behavior which illustrates the physical plausibility of the
proposed deformation model.
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Fig. 10. Temporal course of the torsion experiment. The goal of this
experiment is to illustrate that by minimizing the Darboux vector, CORDE
reproduces the buckling behavior, which underlines the physical plausibility
of the deformation model. In fact, both deformation models reproduce the
buckling behavior that exhibits in the sudden increase of the bending and
stretch energy. The total deformation energy, however, has decreased after
the buckling, indicating that the rods have reached a stable equilibrium. The
reference model balances accurately between bending and stretch.

B. Evaluation of the dynamic behavior

As illustrated in Sec. V, the CORDE model simulates the elastic
rod as a chain of mass points and a chain of quaternions. The
coupling is realized with the penalty method. If now a rod is
subject to a rigid body rotation, then we account twice for the
moment of inertia, once by accelerating the centerline, and once
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by accelerating the quaternions. This results in a visible drag
or ’ghost inertia’. We proposed to overcome this limitation by
scaling the first two diagonal entries of the inertia tensor (that
conform to the bending moments of the quaternions) by a factor
α < 1. The smaller the α-parameter, the better we approximate the
optimal solution, which conforms to quaternions that have only a
moment of inertia when rotated around the third axis (conforming
to torsion).

To illustrate this problem, we perform an experiment of a
simple elastic pendulum: We attach the upper end of two vertically
hanging elastic rods, and elongate the lower ends (the elastic rods
have the same physical properties as in the experiment described
above, except for internal damping which is γt = γr = 0).
One rod is simulated with CORDE, the other with the reference
deformation model. The time step of the simulation is 10−4s.
Upon releasing the lower ends, the elastic rods swing about their
vertical equilibria. In this setting, the rods are subject to rigid
body rotations, thus the CORDE rod reveals the ’ghost inertia’
phenomenon. We simulate the CORDE rod with α = 1, α =
10−1, α = 10−2 and α = 10−3. In Fig. 11, we plot the elongation
of the elastic rods over time. As the graphs illustrate, the smaller
the α-values (i. e. the ’lighter’ the quaternions), the better is
the approximation of the dynamics of the CORDE rod. The
reference model does not reveal this artifact since its dynamics
are exclusively governed by its 4N DOFs (see Appendix). Notice
that smaller α-values require more accurate numerical integration
schemes, thus choosing an α-value is always a trade-off between
efficiency and accuracy. To account for smaller α-values, we time-
integrate the quaternions at a smaller time-step hq . This technique
is sometimes referred to time sub-stepping.
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Fig. 11. Temporal courses of the pendulum experiment. The visual drag
influences the frequency of the pendulum. The smaller the α values, the better
is the approximation of the correct dynamics of the reference model. In turn,
small α-values require a smaller step for the numerical time-integration, which
is remedied with time sub-stepping.

It is not easy to establish an analytical relationship between the
scalar α and the maximum sub-step hq for the numerical time-
integration of the quaternions that results in a stable simulation.
That is because the stability of the simulation of a CORDE rod
depends on many parameters such as the internal and viscous
damping and the magnitude of external forces arising in the
simulation. Moreover, the amount of ghost inertia that is accepted
during the simulation cannot be expressed in numbers but depends
on the simulation and the observer.

However, to give an idea about the stability and performance
of the dynamic simulation with respect to α, we perform an
experiment of a ribbon falling onto the ground, thereby colliding
with itself and undergoing massive deformation. The experiment

α Sub-step hq #sub-steps = h
hq

Time [ms]

1 10−3 1 0.21
10−1 10−3 1 0.21
10−2 5 · 10−4 2 0.39
10−3 6.6 · 10−5 15 2.86
10−4 6.75 · 10−6 148 28.23

Fig. 12. This table summarizes the maximum possible sub-step hq for
different α-values, given a constant time step h. The last column shows the
time that is needed to perform the time-integration of the whole net, including
the computation of the elastic forces, the time-integration of the mass-points
and the time sub-stepping of the quaternions. The time measurements indicate
that the effort grows linearly with the number h

hq
of sub-stepping iterations.

is illustrated in Fig. 15 a). The ribbon is simulated as a Cosserat
net, consisting of two elastic rods linked by struts, and it is
discretized in 86 points and 127 quaternions. The mass points
are integrated with a constant time step h = 10−3s.

We simulate the net with different α values ranging between
α = 1 and α = 10−4. For each α, we experimentally determine
the maximum sub-step hq of the quaternion time-integration such
that the simulation sequence can be simulated without crashing.
The values for α and hq , and the time to perform the time-
integration of the whole net are summarized in Fig. 12. This time
measurement includes the computation of the elastic forces, the
integration of the mass points and the sub-stepping for the time-
integration of the quaternions. Since smaller sub-steps hq require
more sub-stepping iterations – notably h

hq
, and since in each

sub-stepping iteration, the bending and constraint forces must be
re-computed, the time needed for the integration increase with
decreasing sub-steps hq .

C. Cosserat nets

The Cosserat nets are an important extension of the CORDE
deformation model to graph-like structures. The resulting net-
works of elastic rods linked by elastic joints allow to model
a large variety of solids. To illustrate the wide applicability of
the proposed deformation model, we have performed a series of
experiments. We underline that the focus is more on the animation
than on the mechanical simulation of the modeled objects. For all
experiments, α = 0.02 and hq = h.

In contrast to previous approaches [16], [36], our representation
allows to compute both forces and torques on joined elements,
based on the bending and torsional shearing between adjacent
segments. To illustrate that the treatment of torsional deformation
results in a different behavior that cannot be reproduced by
handling bending deformation alone, we have staged an exper-
iment where two elastic trusses are attached on the left side, but
allowed to freely moving elsewhere. The trusses deform under the
influence of gravity, as illustrated in Fig. 14. Both trusses have a
Young modulus E = 200MPa, a stretching modulus Es = 2GPa,
a radius r = 0.01m, and a density ρ = 1300kg m−3. Their planar
extends are 11 × 2 meters. Since we are interested in studying
the static resting states, we do not model internal friction but
employ external (viscous) damping. The blue truss in the back
has a shearing modulus G = 200MPa, while the green truss in
front has no resistance to torsional shearing.

As Fig. 14 a) illustrates, the static resting configuration of
the two trusses differs significantly. While the blue truss hangs
stable with only mild deformation, the green truss is flexed. This
apparently different behavior comes in fact from the reduced
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Fig. 13. We vary the end-to-end rotation of a spheroidal object that consists of four elastic rods. This experiment illustrates the rich deformations that are
achieved by employing CORDE to model such networks of joints and elastic handles.

stability of the green truss that is induced by the non-existing
torsional shearing resistance.

To show that the difference comes exclusively from the tor-
sional shearing resistance, the same experiment is performed, but
the trusses are rotated about their main axes. Now, the deformation
in the gravity field does not induce a shearing deformation.
Consequently, no torsional torques are exerted, and the resulting
resting configurations of the two trusses do not differ (Fig. 14 b).

a) b)

Fig. 14. To illustrate that torsional shearing resistance has a major influence
on the simulation of Cosserat nets, we simulate two trusses in a gravity field.
In contrast to the truss on the back, the front truss has no shearing resistance.
Therefore, its stability is reduced, resulting in a flexed resting configuration a).
To illustrate that this behavior is exclusively induced by the differing shearing
resistances, the same experiment is performed with the two trusses rotated by
90 degrees. In this setting, the trusses are not subject to torsional deformation,
and consequently the resulting resting configurations do not differ b).

To give another example of the dependency of the simulation on
the torsional shearing, we repeat the ribbon experiment (Fig. 15)
with ribbons of differing shearing resistances. Both ribbons have a
Young modulus E = 0.2MPa, a stretching modulus Es = 5MPa,
a radius r = 0.01m and a density ρ = 1300kg m−3. The internal
friction is γt = 20kg m3 s−1 and γr = 0.5kg m3 s−1. The sizes
of the ribbons are 24 × 1m. While the blue ribbon in Fig. 15 a)
has a torsional shearing resistance G = 0.2MPa, the green ribbon
in Fig. 15 b) has no shearing resistance. The blue ribbon coils up
regularly, which is enabled by handling the torsional deformation.
This behavior cannot be reproduced by the green ribbon, it results
in chaotic loops on the ground.

Since CORDE handles both bending and twisting deformation
modes, the Cosserat nets provide a high physical plausibility. To
illustrate this, we perform an experiment where we vary the end-
to-end rotation of a spheroidal object depicted in Fig. 13. The
four rods linking the two ends successively deform until an eight-
shaped state is reached.

A net can be understood as a bundle of single threads, forming
a planar two-dimensional structure. In contrast to knitted garment,
the single threads are tied together in each crossing. Thus, we can
model a net by employing CORDE, where we consider a joint

a) b)

Fig. 15. Simulation of an elastic ribbon falling onto the ground. While the
blue ribbon a) has a resistance to torsional shearing, shearing deformation is
not handled for the green ribbon b). Consequently, the blue ribbon coils up
while the green ribbon falls in chaotic loops.

in each crossing of the net. By simulating such Cosserat nets,
we obtain the expected cloth-like behavior of the objects. While
dense nets could also be modeled and (more efficiently) simulated
by employing triangle topologies and thin shell methods, the
simulation of coarse nets is enabled by employing CORDE, as
depicted in Fig. 16. The computational effort to simulate bigger
nets is remarkable, especially since the complexity of the collision
detection grows quadratically with the number of segments. The
coarse net in Fig. 16 a) and b) is modeled from 0.8K points, 0.9K
centerline elements and 1.1K orientation elements. Computing
the deformation and integration takes 6.6ms, collision detection
takes 62.3ms in average, and collision response is cheap with
0.3ms. The dense net in Fig. 16 c) and d) is modeled from 1.2K
points, 1.5K centerline elements, and 3K orientation elements.
Computing the deformation and integration takes 14.5ms, colli-
sion detection takes 224ms, and collision response takes 10.6ms.

VIII. CONCLUSION AND OUTLOOK

We have introduced the Cosserat nets, a useful extension of the
CORDE deformation model to networks of elastic rods. We have
started with a detailed derivation of the statics and dynamics of
the CORDE deformation model. This derivation differs from the
previous work in [7] and allows for a better understanding of the
theory. We have further discussed the benefits and limitations of
the dynamics of CORDE, which should encourage researchers to
keep on investigating into dynamic elastic rod models. The dis-
cussion is accompanied with a careful validation of the CORDE
model by comparing it to a physically accurate FE deformation
model recently presented in the field of mechanics [5]. Thereby,
we have illustrated that CORDE reproduces the important effects
subject to elastic rods, such as unstable equilibrium and balance
of strain rates.

By linking elastic rods at control points and inserting orien-
tation elements with intrinsic curvature at the joints, we have
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a) b) c) d)

Fig. 16. We model a net from a bundle of threads that are joined in each crossing. The deformation of the resulting objects share some similarities with
cloth. However, coarse nets cannot be simulated with thin shell methods.

obtained the Cosserat nets. These structures are novel and allow
to model and simulate a variety of elastic objects such as rings,
nets, woven fabrics or trusses.

Still, we are aware of the fact that CORDE is just a little step
towards a dynamic, physically accurate yet efficient and elegant
deformation model for elastic rods. Our future investigations
include to avoid the ’ghost inertia’ problem of CORDE, to
avoid the penalty method for adapting the material frame, and
to enforce inextensibility of the centerline. We further work on
an improvement of the reference model in order to remove the
singularities at the poles, believing that this approach has great
potential.
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APPENDIX I
DERIVATION OF STRAIN RATES IN TERMS OF QUATERNIONS

In this section, we derive the expression (14) that relates the strain
rates uk to the quaternions q. The derivation of the relation between
the angular velocity ω and the quaternions q is similar.

We know that there exists the Darboux vector u that is related to
the directors dk by

d′k = u× dk, k = 1, 2, 3 (28)

where the components uk of u are directly proportional to the strain
rates. Since the dk define an orthonormal basis, we write u = u1d1+
u2d2 + u3d3. For d′3, we then obtain for example

d′3 = (u1d1 + u2d2 + u3d3)× d3

= u1d1 × d3 + u2d2 × d3 + u3d3 × d3

= −u1d2 + u2d1 (29)

where we used the identities d3 = d1 × d2 and dk × dk = 0, k =
1, 2, 3. Multiplying (29) by −d2 yields

−d2 · d′3 = u1d2 · d2 − u2d1 · d2 = u1 (30)

For u2 and u3, we similarly obtain u2 = −d3 ·d′1 and u3 = −d1 ·d′2.
The relation between the directors dk and the quaternion q is given

in (13). To compute d′k, we note that d′k is a function of q and q is
a function of the curve parameter σ:

d′k = d′k(q(σ)) =
∂dk(q(σ))

∂σ
=

∂dk

∂q

∂q

∂σ
= Jkq

′ (31)

where we employed the chain rule of partial differentiation. Jk is the
Jacobi matrix Jk = ∂dk

∂q
that is obtained by symbolic differentiation.

For u1, we now write

u1 = −d2 · J3q
′ = −JT

3 d2 · q′ (32)

which results from applying basic linear algebra identities. Similar
expressions are obtained for u2 and u3. To bring (32) to the desired
form (14), we symbolically evaluate the product JT

3 d2 to obtain

JT
3 d2 =

2

‖q‖2 ( q4 q3 −q2 −q1 )
T

=
2

‖q‖2 B1q (33)

with the skew-symmetric matrix B1

B1 =




0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0




The strain rate u1 can then be obtained by combining (32) and (33).
The matrices B2 and B3 are obtained in a similar manner as

B2 =




0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0


 , B3 =




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0




The skew-symmetric matrices Bk and the resulting vectors Bkq have
several important properties that are discussed in [10]. A similar
analysis [10] can be done to obtain the angular velocities ω0

k with
respect to the reference frame, resulting in matrices B0

k:

B0
1 =




0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0


 , B0

2 =




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0




and

B0
3 =




0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0




APPENDIX II
REFERENCE MODEL

In order to validate the statics and dynamics of the CORDE
deformation model, we have implemented a physically-based finite
element deformation model for elastic rods. The deformation model
is inspired by a recent publication of Cao et al. [5]. In contrast to
CORDE, this deformation model employs the minimum number of
DOFs to describe the configuration of an elastic rod, notably 3N
DOFs for the centerline plus N − 1 DOFs to describe the material
torsion. This results in a constraints-free representation of the rod
where the material frame is always adapted to the centerline.

While this deformation model reproduces both the statics and the
dynamics accurately, it has three striking drawbacks which make
it of minor practical interest in animation: First, since the material
frame is not iteratively updated during the course of the simulation,
it suffers from the problem sketched in Sec. IV. As a consequence,
a globally coherent material direction cannot be computed, which in
turn disables intrinsic curvatures and coarse discretizations. Second, it
suffers from a singularity around the poles, which results in numerical
instability if the orientation of the rod segments approaches these
poles. Third, the computation of both the restitution forces and the
entries of the (configuration-dependent) mass matrix is extremely
expensive, which in turn forbids interactive applications. Despite of
these limitations, it models elastic rods accurately and allows us
to compare and evaluate CORDE with respect to the statics and
dynamics.

In this appendix section, we shortly describe the reference defor-
mation model. For an extensive discussion, we refer to [5].

We proceed as follows: We discretize the centerline of the rod into
nodes ri. The ’roll’ of the centerline segment (ri, ri+1) is expressed
by a scalar DOF ϕi. Given the nodes ri and the roll angles ϕi, we can
derive the material frame dk, k = 1, 2, 3. By plugging the resulting
expressions into the Lagrangian equation of motion, we obtain the
force expressions and the mass matrix.

A. Parametrization of the rotation matrix
The most difficult thing is to obtain the directors. Let

(ν1, ν2, ν3)
T = ((ri+1−ri) ·(ri+1−ri))

− 1
2 (ri+1−ri) = d3 (34)

be the components of d3. Following [5], we first rotate the directors
e1 and e2 about e3 with the roll angle ϕ to obtain the directors
d̃1, d̃2 and e3 (Fig. 17 b)). Let the corresponding rotation matrix be
Ra(ϕ). Now we construct a rotation vector Φ that rotates e3 to d3,

e1

e2

e3 e3

d̃2

d̃1ϕ

d1

d2

d3

Φ

ν1

ν2 ν3

a) b) c)

Fig. 17. To obtain the directors dk from a line segment (ν1, ν2, ν3)T

and a roll angle ϕ, we first rotate the directors ek about e3 by an angle ϕ.
Afterwards, we rotate the resulting frame about the rotation axis Φ by an
angle |Φ|, resulting in the material frame dk .

i. e. Φ is a vector whose direction corresponds to the axis of rotation,
and whose length corresponds to the rotation angle. Consequently, Φ
is perpendicular to the plane spanned by e3 and d3 (Fig. 17 c)) and
therefore parallel to the vector −ν2e1 + ν1e2. Further, the rotation
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angle is |Φ| = arcsin
√

ν2
1 + ν2

2 , as can easily be verified in Fig. 17
c). Together,

Φ =
arcsin

√
ν2
1 + ν2

2√
ν2
1 + ν2

2

(−ν2e1 + ν1e2) (35)

The corresponding rotation matrix Rb(ν1, ν2, ν3) is now obtained by
employing Rodrigues’ formula [38] and some algebraic transforma-
tions,

Rb =




ν2
1ν3+ν2

2
ν2
1+ν2

2

ν1ν2(ν3−1)

ν2
1+ν2

2
ν1

ν1ν2(ν3−1)

ν2
1+ν2

2

ν2
2ν3+ν2

1
ν2
1+ν2

2
ν2

−ν1 −ν2 ν3


 (36)

The material frame R = (d1,d2,d3) is then obtained by composing
the two rotations,

R(ν1, ν2, ν3, ϕ) = Rb(ν1, ν2, ν3)Ra(ϕ) (37)

Consequently, the i-th directors dk,i depend on the 7 DOFs of the
two control points ri, ri+1 and the roll angle ϕi.

The singularity around the vertical poles reveals in the divisor
ν2
1 +ν2

2 in (36). Still, notice that we can rotate the whole rod in order
to avoid the vertical poles. This allowed us to simulate the vertical
pendulum in Sec. VII. Unfortunately, an element-wise rotation in
the spirit of co-rotational finite elements is not possible due to the
orientation-dependent material frames.

B. Finite element model
In order to discretize the rod into disjoint finite elements, we have

to consider that the bending and torsion strain rates ui depend on
the nodes ri, ri+1 and ri+2. Consequently, we propose to let the
orientation element j start at 1

2
(ri+ri+1) and end at 1

2
(ri+1+ri+2).

The centerline elements i = (ri, ri+1) are employed to compute the
stretch strains and the mass matrices.

To derive the equations of motion for the reference model, we
employ the Lagrangian formalism. The Lagrangian formalism is a
variational formulation of the dynamic equilibrium of the rod that is
governed by the differential equation

d

dt

∂T

∂ġi︸ ︷︷ ︸
→M,b

+
∂V

∂gi︸︷︷︸
→f

= fe (38)

T =
∑N−1

i=1 T [i] is the total kinetic energy of the rod and V =∑N−1
i=1 Vs[i] +

∑N−2
j=1 Vb[j] is its total potential energy. Further the

gi ∈ (rT
1 , ϕ1, · · · , ϕN−1, r

T
N ) are the DOFs of the rod that are

collected in a vector g = (g1 · · · g4N−1)
T . The time-differentiated

contribution of the kinetic energy yields the mass matrix M and the
coriolis force vector b. The differentiation of the potential energy
with respect to the coordinates yields the restitution force vector f .

The stretching energy Vs[i] follows from (8). The bending energy
follows from integrating the bending and twisting strain densities over
the orientation element length lj ,

Vb[j] =

∫ lj

0

uj ·Kujdσ (39)

where the strains uj are obtained from (5). In contrast to [5], we do
not employ a first-order approximation of the directors but plug in
the exact formulations (37).

Following Antman [11], the kinetic energy density of a rod element
sums from the translational kinetic energy density of the centerline
and from the rotational kinetic energy density of the centerline’s
cross-section. The kinetic energy is then obtained by integrating the
kinetic energy densities over the element length li,

T [i] =
1

2

∫ li

0

(ρAṙi · ṙi + ωi · Iωi)dσ (40)

where the angular velocities ωi are obtained from plugging (7) in
(6). To compute the temporal derivatives ḋk, one must consider that

the directors dk are functions of the time-dependent control points
r(t) and roll angels ϕ(t).

By assembling the mass matrix from the mass matrices of each
element, and collecting the force contributions per nodes ri and roll
angles ϕi, we arrive at a matrix-vector equation

M(g)g̈ = f(g, ġ) + b(g, ġ) (41)

M is a symmetric banded (but not positive definite) matrix of size
4N − 1 with a bandwidth of 13, f(g, ġ) are the restitution forces,
and b(g, ġ) are the coriolis terms. Since the mass matrix depends
on the control points and roll angles, it must be re-computed in
each simulation step. We employ the WildMagic library2 to solve
for the accelerations g̈. We then integrate the equations of motion by
employing a semi-implicit Euler scheme.

C. Implementation notes
To assemble the mass matrices and the force terms, the directors

and the derived quantities have to be symbolically differentiated with
respect to the coordinates. Since the directors are rather complicated
terms (consider that already the νk have a square root divisor),
a computer algebra software must be employed to carry out the
symbolic differentiation. E. g. the resulting coriolis force term for the
first component of ri consists of 204K multiplications, 26K divisions
and 22K calls to trigonometric functions. By employing Maple’s
codegen package with the tryhard option, we can simplify the
term to 355 multiplications, 5 divisions, 3 calls to trigonometric
functions and 289 temporary variables. However, it is needless to
say that the simulation of an elastic rod discretized into more than
about 50 mass points can hardly be realized at interactive rates.
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