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Abstract—In this paper, we consider the problem of de-
termining the elasticity properties of deformable objects with
a mobile manipulator equipped with a force sensorb We
learn the parameters by establishing a relation between the
applied forces and the corresponding surface deformations.
To determine the parameters, we minimize the difference
between the observed surface of an object that is deformed
by a real manipulator and the deformed surface obtained
with a deformation simulator based on finite element methods.
To establish the correspondences between the surfaces, our
approach applies a 3D registration technique based on point- Fig 1. peformation of an object in reality (left) and the 3Drqeption of
clouds which is used as the basis for comparing the results the robot (right).
of the simulation system with the observations of the real
deformations. As we demonstrate in real-world experiments,

our system is able to estimate appropriate parameters that can . . .
be used to predict future deformations. This information can Generating realistic models of deformable objects not only

directly be incorporated into motion planning approaches that  involves observing and reconstructing the three-dimerasio

are designed for robots operating with deformable objects. surface of an object. Physical interaction with the object
under consideration is required to learn about its behavior
|. INTRODUCTION when exposed to external forces. Therefore, we equipped our

robot with a force sensor at the end of the manipulator. This

A lot of effort has been invested into the simulationallows the robot to interact with objects and to measure the
of deformations and the generation of realistic deformablyrces exerted on them. The robot can additionally perceive
models. There exists a variety of relevant applications ithe objects with a range camera. To reduce the effect of
computer graphics, robotics [21], virtual reality, gamesgcclusions during the deformation, our robot uses a rigid
movies, and medical simulation [16, 7, 19]. As we demonstick to deform the object (see Figure 1).
strated in the past [10, 11], robots that are able to deal Based on the observed deformations and forces, our ap-
with deformable objects in their environment can greatlyroach seeks to estimate the elasticity parameters of the
improve their navigation skills in the real world, espelgiah  object. This is done by simulating the object and the applied
domestic settings. Planning techniques as well as most othgrces. In our approach, we consider homogeneous and
applications considering deformations require an apjEtr isotropic materials and use a linear finite element model to
model including reasonable elasticity parameters of dbjeccompute deformations. An error minimization approach is
in the scene. In practice, the parameters are typicallyséeliu applied to iteratively update the deformation parameters s
manually. Thereby, the parameters are usually modified unthat the difference between the real object under defoomati
the simulation looks visually plausible. This might be appl and the simulation is minimized. As we will demonstrate
cable for computer games or movies, but does not necessaliitythe experimental section of this paper, our approach is
lead to a physically realistic computation of the involvedable to find the elasticity parameters that enable our rabot t
forces. These forces, however, need to be known accuratelycurately predict the deformation of real-world objects.
for navigation or manipulation in the presence of deforreabl  This paper is organized as follows. After discussing relate
objects. For example, whenever robots interact with realyork in the following section, we present in Section Ill an
world objects, only limited forces should be applied to themoverview of our system for data acquisition and parameter
This is of utmost importance in medical applications bugstimation. In Section IV, we present the deformation sim-
also in domestic settings, for example when robots have tflation before we describe how to acquire data of deformed
manipulate plants or clothes. Especially in these domaingbjects with a real robot in Section V. Section VI then
robots need exact knowledge about the parameters of tbgntains our approach to parameter estimation. Finally, in

deformation process. Section VII, we present experimental results.
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used. They are easy to implement and can be simulated I1l. SUMMARY OF OUR APPROACH

efficiently [24, 8]. While such models are able to handle

large deformations, their major drawback is the tedious Our approach to determining physical deformation models
modeling as there is no intuitive relation between springonsists of two main steps:

constants and physical material properties in general. [18] , gata acquisition with a manipulator (Section V), and

Finite element methods (FEMs) reflect physical properties , parameter estimation via simulation and error minimiza-
of the objects in a more natural way [1]. This allows for  tjon (Section V).

more intuitive modeling since they require only a small he d L bot i ith
number of parameters. The disadvantage of FEMs lies in tljl'é t E, ata gcqwsmon prrc])cefss, our 1o ot mterarl]cts E‘{'t

computational resources required to calculate deformatio 27 OPject and measures the forces it exerts on the object.
A computationally more efficient approach, which we als(5A\dd|t|onally, it observes the surface of the undeformed and
use in our current system, is the co-rotational finite elemef{€f0rmed object with a depth camera. This allows us to
approach [12, 17] that avoids nonlinear computations. estimate a relationship between the displacement of the

There exist some approaches to determine the physi(%frface points, the applied forces and the physical elgstic

parameters of models. Biancht al. [4] learn the stiffness parameters.
constants of mass-spring models by using a genetic algorith
and comparing it to a FEM reference model. The identifica- IV. DEFORMATION SIMULATION
tion of mass-spring parameters is also discussed in the work
of Lloyd et al.[15]. They derive an analytical formulation for ~ The key idea of our elasticity parameter estimation ap-
the spring parameters from the linear finite element model f@roach is to modify the parameters of a realistic simulation
different mesh topologies. Another approach that estisnatéystem until the deformations obtained in simulation agpro
the stiffness properties of mass-spring models was praposignate the ones measured on the real object. Thereby the force
by Burion et al. [6]. They use a particle filter to obtain exerted on the simulated object is approximately identical
a posterior distribution over the stiffness parameters ariie one applied in the real world. Additionally, the points
evaluate the particles by comparing simulated and observednere the forces are applied correspond to each other. In
deformations. In contrast to our work, they do not comparthis section, we describe our simulation environment that i
the deformed surfaces but the measured forces in the singi@sed on finite element methods and is used to deform the
nodes of the object. Furthermore, we do not only work ofirtual object.
simulated data. Beckest al. [2] presented an approach for
the estimat_ion of elastipity parametgrs for the finite eleme A Modeling Objects using Tetrahedral Meshes
method using Quadratic Programming. However, they also
work on simulated data only. To simulate the deformations of the object, our system
One approach that deals with real objects was presenttgfjuires a volumetric model of the object. Such models can
by Lang et al. [14]. They describe a deformable model age obtained in advance by registering multiple 3D point
a discrete boundary value problem and estimate Greerglouds obtained with a range scanner (see Section V-B).
functions from measured forces and displacements. Thé&yom these point clouds, we then generate a triangular sur-
formulate the estimation of the deformation matrix as #ace mesh which in turn is used to determine the volumetric
linear estimation problem. Fong [9] presents a system te@trahedral mesh needed to calculate the internal forcesdba
measure deformations of elastic objects using a structureen force-displacement-relations. To establish this betgaal
light camera and a force-sensor. They extract force-fiedds fmesh, we employ the meshing approach by Spillmabn
different contact points and displacements on the objectl. [23]. This approach is particularly suited for real-world
For haptic rendering of unseen contact points the force#ata, as it can handle unorientable, non-manifold, and even
are interpolated using radial basis functions. In a simildncomplete data. In this approach, one first computes adigne
way, Bickelet al. [5] present a data-driven representation oflistance field where voxels having a negative sign represent
heterogeneous and non-linear material by fitting radiaisbasthe volume of the object. In a second step, one divides the
functions to different measured force-displacement sampl spatial domain by a uniform axis-aligned grid. We discard
They, however, use an underlying linear finite element modedll cells of this grid that do not contain any voxel with
similar to our approach, to model the different homogeneoutegative sign. The remaining cells are an approximation
parts of objects. of the object’s volume, whose quality is given by the grid
In contrast to most of the previous approaches our methdésolution. We divide these cells into five tetrahedronsieac
has been realized on a real mobile manipulation robot arll a post-processing step, we smooth the tetrahedrongyto ali
deals with real data. In our setup, the mobile manipulatiowith the given surface mesh.
robot furthermore carries its sensors on-board and thus isIn our simulator, we perform all deformation computations
the basis for fully autonomous exploration. Furthermorehased on the tetrahedral mesh. The coupling of the surface
the resulting models can directly be used for simulationsnesh to the tetrahedral mesh guarantees that the surfabe mes
which have been shown to be relevant to robot navigation is also deformed. This allows us to compare it to the scanned
environments containing deformable objects [10, 11]. surface mesh of the real-world object.



B. Elasticity Parameters an object, the dimension & is 3n x 3n. The global force-

In our approach, we assume a linear and isotropic argdsplacement relation then becomes
homogeneous deformation model. The physical elasticity f = Kq, 3)

properties of such isotropic and homogeneous materialsh f e R is the | If induced by the displ
can mainly be described by two parameters, the Youn eret € 3 Is the mterna orce induced by the displace-
entq € R*" of the vertices of the tetrahedral mesh.

modulus and the Poisson ratio. One can visualize the You ; . .
modulus as a measure for the force that is needed to enlar; eThe stn‘fne_ss matrix allows us to_compute the mtern_al
respectively compress an object by some fixed amount. T%;:gs resulting from a deformation. To be able to establish
Poisson ratio can be seen as a measure for the changet inverse relation _
the thickness of the object's material perpendicular to the q=K"f, “)
direction of the enlargement respectively the compressionwe have to consider some essential propertiesKof as

If a force F is applied to a bar of cross-section arda K is not invertible in general. However, it can be shown
and lengthL, the bar enlarges by an amoufAf which is that K is invertible for a subspace, and that this subspace

proportional toF, L and 4. This can be written as of deformations and forces contains exactly those forces
| LF and displacements which are interesting for the estimation
Al = R (1) process. First, it can be easily shown tiatis symmetric

and, hence, it is diagonalizable. Moreover, it can be shown
where the constant of proportionalify is called the Young that exactly six eigenvalues are equal to zero, and further,
modulus. Its unit is force per area and it is frequentlythat these eigenvalues correspond exactly to the eigergect
specified inmlan. that represent the three possible directions of translatiul

In contrast to the Young modulus, the Poisson ratio ithree dimensions of infinitesimal rotations. That meanat th
related to the contraction perpendicular to the directibn exactly the forces that cause translations and infinitdsima
the force. In our example, the forde causes a contraction rotations do not lie in the image space Kf. Hence, all
Ad perpendicular to the direction of the force. Liébe the remaining forces have an inverse imageavith Kq = f. If
thickness of the bat,Ad‘i the relative change of its thickness,we additionally claim thag is orthogonal to the eigenvectors

and 4! the relative change of its length. Then, the ratio opf translation and rotation, the inverse image is unique.

the relative changes given by Thus, restricting ourselves to forces that do neither cause
translations nor rotations, we are able to write the inverse
P LAd (2) relationshipq = K~'f.
dAl Restricting to those forces having an inverse image is
is called the Poisson ratie, which is dimensionless. exactly what we do in the real world experiments: In order

While there is no theoretical upper bound for the Youndo ensure that the robot deforms an object and the force it
modulus, one can show that for real objects, the Poissam ratheasures corresponds to the deformation, we fix the object
lies within the range of) and 0.5. A Poisson ratio of0).5 under consideration. Furthermore, by applying a regismat
would imply perfect volume conservation, while a Poisso®f the surfaces, we eliminate the effects of small trarsteti

ratio of 0 would imply no volume conservation at all. and rotations in the measured displacement.
Although we do not need the inverse for the computation,
C. Deformation Model but only as a theoretical argument, we show H§w' could

Although our parameter estimation approach is indepe _eKcorpputhed. F|r§t, we ct:ﬁmputel thetQ|ag_F)rr]1aI mdnt'%k: th
dent of the underlying deformation model, we briefly in-, Q" whereQ is an orthogonal matrix. Then, we take the

troduce the basics of finite element methods used in oll¢">€ of all non-zero eigenvalues and do not change the

. - 71 .
simulator. To simulate the dynamic behavior of an 0bje&g:;(t)ofslg'in:ﬁlu?ns]awgIzh;f;ur:;s']r? a{nr?ﬁtgf;id.;]oa tzos"l?hen
and the reaction to external forces, we have to compu : Image sp ving inv image. '

the internal forces that act inside the object depending oﬁe inverseK ! 'S g|ven.asQTD.K1Q, also restricted to

the current deformation. These forces are computed usingtpgjSe vectors having an inverse image.

force-displacement-relation that is derived from the ulyde V. DATA ACQUISITION

ing deformation model. In this section, we present our robotic system that is used
The basic idea of finite elements is to divide an object int@yr the acquisition of deformable models.

smaller elements and to establish the force-displacement- . )

relations on these small elements. In our case, these elemefy Technical Details

are the tetrahedrons mentioned above. This allows us toOur system for acquiring real data consists of a mobile

assume constant stress over an element, which results iplatform with a 7-DoF manipulator that is equipped with a

linear force-displacement-relation. Putting all thedatiens force-torque sensor and a depth camera (see Figure 2 (a)).

together, one can establish the so-called stiffness matibhis setup allows us to observe objects from different view

K = K(FE,v) that depends on the Young modul@isand points, to deform them and to measure the corresponding

the Poisson ratio. For n being the number of vertices of deformation forces in a flexible way.



an object obviously occludes the deformed object part and
that the manipulator always is part of the observation. To
limit the occlusions introduced by the manipulator deforgni

the object, we use a thin wooden stick attached to the
end-effector. This yields observations of the surface with
minimal occlusions. We use the model of the robot’s body to
(b) (©) (d) label parts of the image as invalid where the measurements
Fig. 2. Object reconstruction: The robot observing a deftilnaeddy ~ cOrrespond to the robot, and not to the object. Furthermore,
bear (a), a point cloud obtained with the time-of-flight cam@@a surface  in order to ensure, that the object is deformed and not moved
mesh constructed from four different point clouds (c), anel tistrahedral by the robot, we assume that it is lying on a table or fixed
mesh computed from the surface mesh (d). by a wall.

In our current implementation, the robot approaches the

The manipulator consists of five Schunk Powercube mod@piect, and step by step, increases the force, until a mamimu
ules and a 2-DoF hand. These modules have a high rep&@ice of SON is applied or the end-effector moved for
accuracy of 0.02 and therefore allow for an accurate esmore than 10cm. In this way, we obtain a set of force
timation of the robot's position. We measure the deformaheasurements; € R* in combination with corresponding
tion forces with a Schunk-FTCL-050 force-torque sensofurface meshes; € R*" for every point in timet.
integrated into the hand. This sensor is able to measure Vi
forces up to 300N and torques up to 7Nm in all three ] . ] )
degrees of freedom. To perceive the object, we employ either!n this section, we explain our approach to estimate the
a Bumblebee stereo camera or a PMD-[vision]-O3 timeYoung modulusE a_nd the Poisson ratio for real_objects
of-flight camera, which is attached to the gripper of thdased on observations of our robot. The key idea of our
manipulator. Both cameras can be easily exchanged, aff@Proach is to apply a gradient-descent based error mini-
we experimented with different depth sensors that both hagization approach to minimize the difference between the
different drawbacks and advantages: the stereo camera k@@l deformation and the simulated one given the elasticity
a higher resolution, a bigger field of view, and gives goo@arameters.
res_,ults with textured obj_ects. quever, for uniformly qtazld A Error Eunction
objects, the depth data is unsatisfactory. For such objeets ) )
used a time-of-flight camera. This type of camera has a rather 10 @PPly gradient descent, we need to define an appro-

limited field of view, and the measurements are affected iate error function, which in our case should reflect the
different sources of noise, for instance the illuminatitive ifference between the measured and the simulated surface,

. PARAMETER ESTIMATION

color of objects, and the distance to the object. since the surface can be observed by the robot. To compute
this difference, we first align the deformed surfaces with
B. Geometrical Models for Simulation a registration procedure and then measure the remaining

For the simulation of deformations, a volumetric model iglifference.
required (see Section IV-A). Such a model can be computed The task of registration algorithms is to align multiple
from a surface mesh of the object. overlapping scans of the same object, i.e., to compute a

We can obtain such a surface mesh by exploring the spag@nslation and a rotation that align the surfaces cowect
and by scanning the object from different view points a$" our approach, we apply the ICP-algorithm by Besl and
described in a prior work [25]. These point clouds are theMcKay [3], with some extensions similar to the ideas given
registered into a consistent model (see Figure 2). A moty Pulli [20] and Rusinkiewicz [22]. For known correspon-
efficient way is to first take an observation of an undeformeglences, the transformation can be computed directly [13].
object and complete it heuristically by assuming a planapince the correspondences are not known in general, the ICP
surface on the backside, which can be extracted for instanaigorithm determines some correspondences, e. g. by using a
from the table or the wall that limit the maximum extent ofnearest-neighbor data association, computes a trangforma
the object. This allows us to immediately start maniputgtinthat aligns the scans for these correspondences, and then
the object and estimating its deformation parameters. Ogetermines new correspondences to compute a new relative
experiments show that a complete model is not needed R®sition. Typically, this procedure converges to a minimum
estimate the deformation parameters — a partial model &4d yields an accurate alignment if a proper initial configu-

sufficient. ration is chosen.
. ) In our system, we can easily derive a good initial align-
C. Deformation of Objects ment from the position of the manipulator to which the

To actually interact with the object, the robot uses it€amera is attached. The quality of the initial alignment
manipulator to apply a force to the object. Whenever a foromainly depends on the quality of the encoders in the ma-
is applied, we measure the surface points of the deformedbulator. These encoders are typically accurate and for ou
object to relate the forces to deformations. One practicabbot, the error is around 0.02 degrees per joint and thus
problem occurring at this point is that a robot that deformsufficient to allow the ICP algorithm to converge to an



accurate alignment. After applying ICP, we can define th
error function between a modé&f and the measured surface
2% as

- B

Err(E,v) = distsimulatdE,v, M,z p), =), (5) '(a) (b)

Fig. 3. Registration results for simulated data: the errarekses if the

with estimated parameters converge to the correct paramgters1000 m]fn =
. v = 0.3. The estimated parameters are (8)= 3000—5, v = 0.3,
dist(Myer, 2°) = min ||s — j||? 6 _ N _ _ N
t(Maer, 2°) z:sjeMdef” Jll% (6) (b) E = 20002, v = 0.3, (c) E = 1300-2;, v = 0.3 and (d)
i€z E=1000-"25, v =0.3.
wherei andj refer to the points from the observed and the
simulated surface, respectively. RMSE (mm)
B. Gradient Descent for Parameter Estimation i
After defining the error function above, we can apply 0
gradient descent to seek for a Young modutuand Poisson 0.
ratio v that minimize the error. Algorithm 1 summarizes the 5 1200
main routine. The variabl&/ refers to the undeformed object Poisson ratio v 1009

0. 800 Young modulus E

model which is generated from a first observation taken
before the deformation starts. This model is the basis fafig. 4. Convexity of the error function. The “correct” vatiare given
all simulations. Line 3 of the algorithm requires to comput&y £ = 1000 I andv = 0.3. Varying values forE andv result in a
the partial derivative of the error function. Since the erro:/?,]fy”f"’r‘g%ntﬁgocro"rvrr;'ccthoazt:‘ bigger the farther the estxiqtarameters are
function involves the simulation approach explained above
the derivatives cannot be computed easily. Thus, we ap-
proximate this term numerically: A sequence of deformatioBy inverting K, andK,., we obtain
simulations is carried out by applying the measured force
and by varying thef and v locally. @ = K_'F )
In the remainder of this section, we show that the gradient a = K'F. (10)
descent-based error minimization is well suited for thi
problem given a good initial guess.
First', we show thqt parameters cloge to the correct ones lar — qel®> = H(Kr_l _ Ke—l)FH2 (11)
result in a smaller difference in the displacement obtained
in simulation and in reality than parameters far from thés F is fixed in Eq. (11), we see that smaller deviations in
solution. Therefore, we relate the deviation between th@easured and simulated displacements directly correspond

correct and the estimated parameters to the deviation batwd0 smaller deviations between the estimated and the real
the displacement in realityy, and the displacement in stiffness matrix. This makes it reasonable to compare simu-

simulation q. using the force-displacement-relation of thelated and measured displacements in order to estimate these

srhen, the quadratic deviation can be written as

finite element method: parameters.
K.qo = F @) VIl. EXPERIMENTAL EVALUATION
K,q, = F (8) The approach above has been implemented and evaluated

in several experiments using real and simulated data.

Algorithm 1 Iterative parameter estimation A. Simulation Experiment

The first experiment carried out in simulation is designed

Require: Object model M, observationsz;, z#, contact
a ) S A to show that our approach works under comparably well-

oint p;, . - . : -
1 Ipnitiali];te (Eo, ), i=1 defined conditions and is able to find the correct elasticity
2: loop 070 parameters. In this experiment, we used a cow as a complex
) geometric object with a Young modulus ©$00 mffnz and a

. CONT (R, AT _ o
3 ()" = (B, viea)” = AVErr(Bioy, vio) Poisson ratio of).3.

4 My = simulate@;, v;, M, 2! . . .
. erjei dist(M. fﬁ)’ vir Mz, po) We executed our gradient descent-based estimation pro-
6: if e;r P tr?éf n, t cedure after we deformed the cow with a given constant
7: return (E;, 1) force. Our method changes the elasticity parameters in sim-
8: end if . ulation and performs a registration step to match the model
9: it with unknown parameters against the model with known
' ones. Figure 3 illustrates the results in terms of the model
10: end loop

matchings for different parameter estimates. The red amd th
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Fig. 5.  Experiment with a foam cube: force-distance curveivadr

from the manipulator movement (a), the error function for onaneple  Fig. 8.  Learning the deformation parameters of the inflatatalibobn.
estimation experiment (b), and the estimated young modulusifiereht  shown are results for different force-deformation samples.
force-deformation samples (c).

order to investigate, whether it contains local minima.sThi
is illustrated in Figure 5 (b). The error function is very hig
if the simulated object is too deformable and the Young
o modulus is too small, respectively, and slowly converges to
4 the error of the undeformed mesh, as the object becomes
stiffer with increasing young modulus. Furthermore, we
Fig. 6. Registration result of the deformed cube. Scan of ¢z cube note, that the Young modulus has a substantially larger
(left), simulation result (middle), and matching between thansed and jhfluence on the error function than the Poisson ratio. The
the simulated model under deformation (right). . . .
plot in Figure 5 (c) illustrates the learned Young modulus
for the different force-deformation samples. It shows,t tha

yellow areas correspond to the different models. In the leff'® variance of our learning method is rather low among
image, a clear mismatch between the objects can be obseryBg different runs. Figure 6 shows a comparison between
since a correct alignment is impossible due to the differeff€ scanned and the simulated deformation for one of the
object deformations. As the Young modulus approaches tff&Periments in Figure 5 (c).

correct value 000025 (from left to right), the two models 2) Inflatable balloon:In a second experiment, we evalu-
become more similar until the optimal parameter set is foun@ted our gradient-descent based parameter estimation with
(right image). Figure 4 illustrates the error surface fds th the inflatable balloon that is shown in Figure 1. In this
experiment. experiment, we used the Bumblebee stereo camera. First, a

model of the undeformed object is constructed on the fly for
the simulation system, as shown in Figure 7. Second, the ICP
We tested our parameter estimation approach on differealgorithm is used to obtain the alignment of the deformed
real-world objects, namely a foam cube, an inflatable balloomodel with the observation of the deformed object. Then,
and a plush teddy bear. given the alignment, the error function can be computed. Fur
1) Foam cube:In the first experiment, we determinedthermore, we repeated the experiment by applying different
the elasticity parameters of a foam cube with an edg®rces to the object to evaluate the robustness of the parame
length of 15cm. The robot deforms the object in the centeter estimation. We deformed the ball with seven substadytial
The force-vs-distance curve of this experiment is shown idifferent forces and obtained seven different surface scan
Figure 5 (a). In this experiment, we used the PMD timeThe resulting estimate for the young modulus is shown in
of-flight camera. The robot moved for 9cm and collectedrigure 8. We can see that the estimation converges to similar
a force measurement and a surface scan every 1cm. ¥aues for the young modulus, indicating a homogeneous
can be seen in that curve, the deformation behavior of thdeformation behavior of the object. The simulations were
cube is approximately linear, except in the beginning, whercarried out on a model that consists of 815 tetrahedrons. The
slippage of the probe tip occurred. This shows that ousverage run-time for computing the optimal parameters per
material assumptions are reasonable. We evaluated the etfiarce-displacement sample was 192.5 seconds, on average 7
function for a uniform sampling of elasticity parameters iriterations of deformation simulations with different pewe:

B. Real World Experiments
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Fig. 10. Comparison of the real deformation and the deformed mode
[10]

ters were needed before the parameter estimation converged
3) Plush teddy: In order to evaluate the robustness ofi11]
our parameter estimation, we furthermore deformed the
plush teddy bear from Figure 2 at different body partsyy
e. g. the head, the belly, and the back, and analyzed the
results of our parameter estimation approach. The resudts atsl
summarized in Figure 9. In each experiment, the parametgig;
were determined as the average over seven different force-
displacement samples. Additionally, the mean over the SH5]
different experiments is shown. The variance among the
different experiments is higher than the variance amon%
different force-deformation samples for the same locatiorh
which suggests, that the assumption of homogeneous mate-
rial is not valid in this case. Finally, Figure 10 illustratan
a comparison of the real and the simulated deformation thtt)
the estimated parameters still lead to plausible defoomati [1g

6]

VIIl. CONCLUSIONS
[19]

In this paper, we presented an approach for estimating the
elasticity parameters of homogeneous isotropic deforenabb
objects. These parameters are relevant for robots that nee
to estimate deformations of objects in their environmerigll
depending on the forces applied to them. Our approach uses
a mobile robot that is equipped with a manipulator, a force2]
sensor, and a depth camera. It applies a deformation force
to an object and records the resulting force-displaceme&g]
relation with the force sensor and the depth camera. Based
on a gradient descent-based error minimization approafzr}l]
carried out within a realistic finite element-based sinialat
system, the robot can determine the elasticity paramdiats t
best explain the real deformations. As we showed in ou#°l
experiments, we are able to estimate the parameters of real
objects in a robust manner.
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