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Abstract

In this paper, we introduce a novel approach for global registra-
tion of partially overlapping point clouds. The approach identifies
feature points of matching objects based on surface-approximating
polynomials and finds an initial transformation depending on these
polynomials. We compute an extended set of rotationally-invariant
features for polynomials. In contrast to purely feature-based ap-
proaches, we do not only compute transformations based on the
invariant properties of polynomials, but actually transform the poly-
nomials into a common coordinate system and compare the trans-
formed coefficients. This results in an improved correspondence
analysis of local surfaces. Hence, using transformed polynomials,
we gain more discriminating information about different structures.
Therefore, the approach can handle partial scans of different ob-
jects simultaneously. Each partial scan is assigned to one of the
objects and registered accordingly. Moreover, the approach is ro-
bust against noise and can process real data.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems

Keywords: registration, correspondence, shape analysis, match-
ing

1 Introduction

Registration, correspondence and matching algorithms are of high
importance in the area of Computer Graphics. They are applied
in various research fields such as object reconstruction, shape re-
trieval, and symmetry detection. The general task is to find match-
ing parts of different objects with unknown relative orientations.
These could be several scans of an object that should be aligned
in a common coordinate system [Rusinkiewicz et al. 2002; Gelfand
et al. 2005; Aiger et al. 2008], or a partial scan of an object which is
used to identify a corresponding model in a given library [Kazhdan
et al. 2004; Pauly et al. 2005; Gal and Cohen-Or 2006; Shalon et al.
2008]. Symmetry detection approaches look for similar sub-parts
of objects [Mitra et al. 2006; Mitra et al. 2007; Pauly et al. 2008;
Raviv et al. 2010]. A recent survey can be found in [van Kaick et al.
2010].

All these tasks can be tackled in a similar manner by looking for
a transformation between pairs of objects to align them properly.
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Figure 1: This example illustrates the application of our approach
in simultaneous multi-scan registration. Three faces are registered
simultaneously. Although, e. g., the left parts are very similar to
each other and have large overlapping regions, the approach assigns
them correctly to the corresponding front scan. (a) We start with
nine arbitrarily oriented scans of different faces. The scans are not
presorted in any way. (b) The algorithm computes a proper initial
transformation. The result is obtained without local optimization.

Given at least three correspondent points on each object, such a
transformation could be easily computed [Horn 1987]. Therefore,
the task to establish an appropriate transformation is equivalent to
finding appropriate correspondences between the query objects and
computing a transformation based on these correspondences. In this
paper, we focus on the registration problem, i. e. we want to align
several partially overlapping scans of an object.

1.1 Rigid Registration

The Iterative Closest Points algorithm (ICP) [Besl and McKay
1992; Chen and Medioni 1991] is a well-known method for align-
ing overlapping point clouds. As outlined above, it looks for corre-
sponding points on different objects, for example based on shortest
distances, and computes a transformation using these correspon-
dences. Much work has been done to improve the convergence rate
and the results of the original algorithm, for example using better
metrics and sophisticated criteria for corresponding points [Pulli
1999; Rusinkiewicz and Levoy 2001; Mitra et al. 2004]. However,



the ICP algorithm only optimizes locally and depends on a good ini-
tial guess of the relative orientations. This leads to the well-known
problem of global registration, where a coarse initial alignment is
computed.

In general, objects overlap only partially. Therefore, approaches
using global quantities like principal component analysis are not
applicable. A straightforward approach to get an initial alignment
is to enumerate all three-point-pairs in different objects, compute
the corresponding transformation and choose the one that leads to
the smallest error with respect to some error metric. For a given
triplet in one object, this leads to O(n3) possibly matching triplets.
In case of outliers and noise, the RANSAC algorithm [Fischler and
Bolles 1981] can be applied, and [Chen et al. 1998; Chen et al.
1999] build up on RANSAC to get an improved global registra-
tion algorithm. [Aiger et al. 2008] also build up on RANSAC, but
choose coplanar four-point sets instead of triplets to establish an ini-
tial transformation. For a given four-point base, this method only
requires to examine all pairs of points instead of all triplets by using
affine invariant ratios, which reduces the complexity to O(n2).

Similarly, voting methods like the Hough transform also employ the
fact that three correspondent points are sufficient to compute an ini-
tial alignment. The six-dimensional space of possible transforma-
tions is subdivided into cells and a transformation for each triplet of
points on the different objects is computed. Each computed trans-
formation results in a vote for the corresponding cell, and finally,
the transformation represented by the cell with the largest number
of votes is chosen as an initial alignment which could be refined
using ICP.

Using surface properties like geometry or color can improve the
voting and RANSAC-based methods as well as the correspondence
search in the ICP algorithm. While color, for example, is used for
the matching of fresco fragments [Brown et al. 2008; Toler-Franklin
et al. 2010], we concentrate on geometric features that can be used
for arbitrary point clouds obtained by a range scanner. Various ap-
propriate geometric descriptors are applied for surface alignment.
Among these are differential quantities like curvature, which could
be computed based on approximating polynomials [Gal and Cohen-
Or 2006; Cazals and Pouget 2003], integral invariants [Pottmann
et al. 2007] or volumetric descriptors [Gelfand et al. 2005; Huang
et al. 2006]. Also, spin images [Johnson 1997] are used to estab-
lish a global initial alignment. In addition, spatial relations be-
tween points with similar features are used to enhance the regis-
tration [Gelfand et al. 2005; Aiger et al. 2008].

1.2 Non-rigid Registration

Most of the above-mentioned approaches are concerned with
rigid registration problems. While articulated objects could be
matched using rigid registration algorithms by dividing objects into
parts [Gelfand et al. 2005], deformable objects have to be handled
in a different manner. Therefore, there is a large research area deal-
ing with non-rigid registration and similarity problems [Brown and
Rusinkiewicz 2007; Huang et al. 2008; Raviv et al. 2010]. The pos-
sible transformations are extended allowing deformations instead of
rigid transformations, and the goal is to minimize some deformation
energy term [Huang et al. 2008]. For example, thin-plate splines
are used for this purpose [Brown and Rusinkiewicz 2007]. Other
methods are concerned with finding correspondences between non-
rigid objects, which are possibly deformed, or pose-invariant cor-
respondences [Ovsjanikov et al. 2008; Gal et al. 2007], e. g. be-
tween a standing and a sitting dog, without any knowledge about
the relative positions. Many approaches are based on geodesic dis-
tances [Huang et al. 2008; Tevs et al. 2009] or surface metrics which

are invariant under isometric deformations [Liu et al. 2009]. The
so called Möbius voting algorithm [Lipman and Funkhouser 2009]
makes use of the fact that isometries of simply-connected surfaces
are contained in the Möbius group and performs a voting scheme
similar to the Hough transform. Also, multi-dimensional scal-
ing [Raviv et al. 2010], spectral correspondences [Jain et al. 2007]
and skeleton-based approaches [Zheng et al. 2010; Kin-Chung Au
et al. 2010] are used to perform non-rigid registration. As non-rigid
registration is not the focus of this paper, we refer the reader to [van
Kaick et al. 2010] for a thorough overview of the topic.

1.3 Contribution

In this paper, we introduce a novel method for the global reg-
istration of partially overlapping point clouds. We employ
surface-approximating polynomials and compute an extended set of
rotationally-invariant features for surface points. Further, we pro-
pose to transform polynomials with similar features into a common
coordinate system and to compare the coefficients. This results in
more discriminating information about different shapes than relying
on features only. Further, it allows to optimize the transformation
using a local optimization scheme such as Newton iteration. More-
over, we introduce a modified distance metric to account for the
fact that feature values and polynomial coefficients can have dif-
ferent orders of magnitude. In summary, the contributions of this
work are new rotational invariants for surface-approximating poly-
nomials, a modified distance measure and transformed polynomi-
als, which results in a more detailed comparison of the surfaces.

Finally, we show that the approach can be used in the simultane-
ous registration of different objects, each consisting of several par-
tial scans. Fig. 1 shows the processing of nine partial scans. The
three resulting faces are registered simultaneously, and the partial
scans are assigned and registered correctly. Although there is sig-
nificant overlap between the three left scans and among the three
right scans, they are assigned to their corresponding front view of
the face.

In the following section, we give an overview of our global regis-
tration approach. Details of the algorithm are given in Sec. 3 and
Sec. 4. We outline the application of our approach in simultane-
ous multi-scan registration of several objects in Sec. 5. Finally, we
present some experiments to illustrate the capabilities of the ap-
proach in Sec. 6.

2 Overview

Our approach belongs to the class of feature-based voting methods,
where the basic idea is to compute local descriptors on surfaces
which are invariant under rigid transformations, to compute candi-
date transformations for points with similar features on various ob-
jects, and to perform a voting scheme to locate the transformation
with the largest number of votes. We aim at a coarse initial align-
ment for partially overlapping scans, which then could be refined
using a local optimization algorithm such as ICP.

Alg. 1 gives an overview of our global registration algorithm. For
two partially overlapping objects A and B, we first compute surface-
approximating polynomials (Sec. 3.1) and a set of rotationally-
invariant descriptors based on these polynomials (Sec. 3.2, 3.3).
Then, we look for possible correspondences by comparing the in-
variant features. For a given point y∈ B, a point x∈ A is considered
to be a candidate if the descriptor values of the corresponding poly-
nomials px and py differ less than some threshold ε . We then ex-



tract a rotation Rxy based on px and py that transforms px into the
local coordinate system of py (Sec. 3.4). This allows to compare
py with the transformed polynomial pR

x . As different polynomials
lead to similar descriptor values, the transformed polynomials re-
turn more discriminating information about the local neighborhood,
which improves the correspondence search.

Let x be the candidate with the smallest distance of pR
x and py with

respect to the distance measure presented in Sec. 3.5. Then, Rxy is
extended in a straightforward way to a transformation that aligns x
and y and serves as a candidate for the initial alignment of A and B.
We perform a vote for the corresponding transformation similar to
the Hough transform and choose the transformation with the largest
number of votes as the initial alignment. As we show in Sec. 6,
using transformed polynomials, it is sufficient to insert only one
vote per point, representing the candidate with the best-matching
transformed polynomial, to get a global registration result. Indeed,
this has some benefits in the simultaneous registration of partial
scans of different similarly-shaped objects.

Algorithm 1: Transformed Polynomials

1 Compute a surface-approximating polynomial for each surface
point (Sec. 3.1);

2 Compute rotationally-invariant features and find candidate
pairs with similar features (Sec. 3.3);

3 For each candidate pair, transform the polynomials into a
common coordinate system to compare the coefficients
(Sec. 3.4);

4 For matching polynomials, insert a vote into a subdivision
scheme for the transformation space, and choose the
transformation with the largest number of votes (Sec. 4);

Feature based approaches are widely used in rigid registration, sym-
metry and shape retrieval, e. g. [Gelfand et al. 2005; Li and Guskov
2005; Mitra et al. 2006; Gal and Cohen-Or 2006; Pauly et al. 2008;
Aiger et al. 2008]. They employ differential features [Mitra et al.
2006; Pauly et al. 2008], integral features [Gelfand et al. 2005;
Aiger et al. 2008] or polynomials to estimate surface descriptors [Li
and Guskov 2005; Gal and Cohen-Or 2006; Pauly et al. 2008]. To
the best of our knowledge, none of the approaches uses the trans-
formed polynomials introduced in Sec. 3 or the invariants intro-
duced in Sec. 3.3.

3 Transformed Polynomials

In this section, we describe the details of the transformed polynomi-
als which are the essential step in the global registration approach.
First, we introduce the surface-approximating polynomials that we
use (Sec. 3.1), before we briefly review the transformation of poly-
nomials (Sec. 3.2). Then, we describe the invariant descriptors
(Sec. 3.3) and show how the rotation between polynomials in differ-
ent coordinate systems is obtained (Sec. 3.4). Finally, we present a
distance measure that accounts for the fact that the coefficients and
invariants of one polynomial can have different orders of magnitude
(Sec. 3.5).

3.1 Surface-approximating Polynomials

To establish correspondences between partial scans of an ob-
ject, we first describe the surface at each point using a surface-
approximating polynomial. In order to be robust against noise, we

choose the Moving Least Squares approach [Levin 2004]. How-
ever, our algorithm does not depend on this choice and also works
for other types like osculating jets [Cazals and Pouget 2003], which
are used in [Pauly et al. 2008]. The Moving Least Squares approach
first computes a best-fit plane for each point x such that the squared
orthogonal distance of all points in a neighborhood is minimized.
Then, the normal nx of this best-fit plane is taken as the surface nor-
mal for x and is extended to a local orthonormal coordinate system
(l1x , l2x ,nx). Within this coordinate system, a surface-approximating
polynomial px : R2 → R is calculated based on the neighborhood
of x. For the plane as well as for the polynomial, the influence of
points is weighted depending on their distance to x. The weight is
controlled by the feature size h, which hereby implicitly defines the
neighborhood of a point x. Note that we actually do not use the
Moving Least Squares approach for smoothing the input surface as
this would lead to worse registration results [Aiger et al. 2008].

For our registration approach, we choose polynomials of degree 3,
as they return good approximation results, while polynomials with
higher degree tend to oscillate and result in a worse approxima-
tion [Alexa et al. 2001]. In general, the polynomial has the form

p(u,v) = a30u3 +a20u2 +a10u+a21u2v+a11uv

+a12uv2 +a01v+a02v2 +a03v3 +a00.
(1)

In the following section, we introduce the transformation of poly-
nomials, before the rotationally-invariant features are described.

3.2 Polynomial Transformation

In this section, we review the transformation of a polynomial
p : R2 → R into a rotated coordinate system and show how the
coefficients are transformed. First, we need this transformation
to determine polynomial invariants under rotation. Second, this
is a necessary step for comparing different polynomials, as each
surface-approximating polynomial p is defined in a local coordi-
nate system. Thus, they have to be transformed into a common
coordinate system in order to be comparable.

We assume that p is defined in the standard basis B = (e1,e2) and
that BR = (r1,r2) defines a coordinate system which is rotated by
R. Then, the basis transformation from BR to B is also given by R.
We now look for the rotated polynomial pR that is defined in BR

and equals p.

For a point given as (u,v) in B and (uR,vR) in BR, pR has to fulfill
pR(uR,vR) = p(u,v). Inserting the basis transformation leads to
p(u,v) = p(R(uR,vR)), which can be re-ordered in terms of uR and
vR to get the coefficients of pR. In order to compare two given
polynomials p in B and qR in BR, p has to be transformed to pR or
qR to q. Then, the coefficients can be compared.

3.3 Invariants

Our invariants are partially based on differential properties of the
polynomials. Differential invariants are also used in [Pauly et al.
2008] and [Mitra et al. 2006], for example. Therefore, we first dis-
cuss the relationship between the derivatives of rotated polynomi-
als. Further, we combine both differential and integral invariants of
a polynomial, which are developed in this section.



For the differential invariants of a polynomial p(u,v), we consider
the derivative at the point (u,v) = (0,0). The partial derivatives are
given as

∂u p(0,0) = a10, ∂v p(0,0) = a01

∂uu p(0,0) = 2a20, ∂vv p(0,0) = 2a02, ∂uv p(0,0) = a11

∂uuu p(0,0) = 6a30, ∂vvv p(0,0) = 6a03

∂uuv p(0,0) = 2a21, ∂uvv p(0,0) = 2a12.

(2)

The first two invariants are connected to the gradient of p and to the
Hessian matrix. For a pair of transformed polynomials p and pR,
we can use the chain rule to see that the gradient of pR is the rotated
gradient of p. Hence, its length remains constant.

Further, the second partial derivatives are summarized in the Hes-
sian matrix. Again, the chain rule leads to a relation between the
Hessian matrices H of p and HR of pR, namely H = RHRRT .
Hence, its determinant is constant.

In the following, we introduce two new invariants that are related
to the third derivative and to an integral, respectively. Integral in-
variants are also used in [Gelfand et al. 2005; Huang et al. 2006;
Pottmann et al. 2007], for example.

To obtain an integral descriptor that is rotationally-invariant, the in-
tegration area has to be invariant under rotation. Thus, we use a disc
with an arbitrary radius d, and integrate the polynomial using polar
coordinates u = r cos(φ),v = r sin(φ). Then, p(u,v) corresponds to

p(r,φ) =a30r3 cos3(φ)+a20r2 cos2(φ)+a10r cos(φ)

+a21r3 cos2(φ)sin(φ)+a11r2 cos(φ)sin(φ)

+a12r3 cos(φ)sin2(φ)+a01r sin(φ)

+a02r2 sin2(φ)+a03r3 sin3(φ)+a00.

(3)

We integrate this function for φ ∈ [0,2π] and use

∫ 2Π

0
cos(φ)k sin(φ)ldφ = 0 (4)

with k or l being odd. It follows that most of the summands in (3)
vanish as they contain a sin- or cos-term with an odd exponent.
Only the purely quadratic terms a20r2 cos2(φ) and a02r2 sin2(φ)

remain, and
∫ 2π

0 p(r,φ)dφ results in r2π(a20 + a02). Integrating
this term for r ∈ [0,d] with an arbitrary radius d results in D ·(a20+
a02) with some constant D depending on d. It follows that the sum
a20 +a02 remains constant under rotations.

So far, a30,a21,a12 and a03 are not part of any invariant. However,
as they represent the third partial derivatives, one could conclude
that there is an invariant containing these quantities. We suggest
the following expression that is invariant under rotation:

3a30a12 +3a03a21−a2
21−a2

12 = const. (5)

The invariance can be shown by transforming the coefficients ai j to

the corresponding rotated coefficients aR
i j . For R =

(
r00 r01
r10 r11

)
,

the transformed coefficients are

aR
30 =a21r2

00r01 +a12r00r2
01 +a30r3

00 +a03r3
01

aR
03 =a21r2

10r11 +a12r10r2
11 +a30r3

10 + r3
11a03

aR
21 =a12r10r2

01 +3a30r2
00r10 +2a21r00r10r01

+2a12r00r01r11 +a21r2
00r11 +3r11r2

01a03

aR
12 =3a30r00r2

01 +2a21r00r01r11 +a21r2
01r10

+a12r00r2
11 +2a12r01r10r11 +3a03r10r2

11.

(6)

Inserting (6) into (5) and using the fact that R is a rotation, i. e.
r2

00 + r2
01 = 1 and so on, leads to

3aR
30aR

12 +3aR
03aR

21−aR
21

2−aR
12

2

= 3a30a12 +3a03a21−a2
21−a2

12,
(7)

which means that (5) is invariant under rotations.

In summary, we use a set of four different invariants:

1. a2
10 +a2

01 = const, which is the length of the gradient.

2. 4a20a02− a2
11 = const, which is the determinant of the Hes-

sian matrix.

3. a20 + a02 = const, which corresponds to an integral of the
polynomial over a disc.

4. 3a30a12+3a03a21−a2
21−a2

12 = const, which is related to the
third derivative.

3.4 Polynomial Rotation Extraction

Having found a candidate pair x,y with polynomials px, py by com-
paring the invariants described in the previous section, we compute
the rotation Rxy between px and py that aligns the polynomials in
one coordinate system in order to compare their coefficients. By
first aligning the local coordinate systems of x and y, Rxy is ex-
tended to a transformation Txy aligning both points. The extraction
of Rxy is based on the relationship between the Hessian matrices
Hx and Hy of px and py. This is explained in this section. It is sim-
ilar to [Mitra et al. 2006; Pauly et al. 2008], who use the principal
curvatures to align different points.

We know that Hx and Hy are symmetric. Hence, they are diagonal-
izable, and there are rotations Qx and Qy such that

Dx = QT
x HxQx (8)

Dy = QT
y HyQy (9)

have diagonal form. For a pair of transformed polynomials, the
diagonal forms have to be equal. If this is not the case, the two
points cannot correspond to each other. Otherwise, we conclude

QT
x HxQx = QT

y HyQy (10)

⇒Hx = QxQT
y HyQyQT

x . (11)

Thus, Rxy = QxQT
y is the basis transformation matrix that trans-

forms px into the coordinate system of py.



As we transform px into the coordinate frame of py, we can op-
timize Rxy using some optimization scheme like Newton iteration
to minimize the distance between the transformed coefficients. This
further improves the quality of the surface matching. The employed
distance measure is explained in the following section.

3.5 Distance Measure

As the coefficients and invariant features of a polynomial can have
different orders of magnitude, we suggest a modified distance mea-
sure to account for this fact. While for small coefficients, the
squared distance is an appropriate measure, for large coefficients,
a relative distance like the quotient is more appropriate. Obviously,
the quotient should approximate 1, so (1−a/b)2 would be a candi-
date for a distance measure for large coefficients a and b.

As the quotient is not symmetric and it would not be possible to
use spatial subdivision techniques for the features, we suggest to
compare the logarithms of large coefficients and invariants. Thus,
we define (ln(a)− ln(b))2 to be the distance of a and b. Taking
the Taylor series of ln(x) around 1, ln(x) = ln(1)+ ln′(1)(x−1)+
O((x− 1)2) = x− 1+O((x− 1)2), we see that |ln(a)− ln(b)| =
|ln(a/b)| is a first-order approximation of |1−a/b|. As we demand
that a/b approximates 1 for similar coefficients, (ln(a)− ln(b))2 is
a sufficient approximation for (1−a/b)2.

There is a straightforward way to determine where to switch be-
tween the different measures. Assuming that it is reasonable to
always take the minimum of both possible measures leads to the
conclusion that |1−a/b| < |a−b| holds iff |b| > 1. Hence, if |a|
and |b| are greater than 1, we take the logarithmic difference.

4 Global Registration

In this section, we describe how the global registration of two ob-
jects A and B is computed.

For each point x ∈ A and y ∈ B, we compute the surface-
approximating polynomials px and py and determine their invari-
ants. For each pair x ∈ A,y ∈ B with similar features, we transform
the polynomial px into the local coordinate system of py and com-
pare the coefficients. Then, for each x ∈ A, we take the point y ∈ B
with the best-matching polynomial and compute the aligning trans-
formation Txy. Taking only the best-matching point is possible due
to the transformed polynomials, as we get a thorough comparison
of the local neighborhood.

Finally, we perform a voting scheme similar to the Hough trans-
form and take the transformation TAB with the largest number of
votes as the initial alignment of A and B. Further, for each point
pair (x,y) whose transformation Txy voted for TAB, y is stored as a
corresponding point to x. As an alternative to TAB, the stored cor-
respondences can be used to compute an initial alignment using the
method presented in [Horn 1987].

Of course, it is possible to take more than only the best-matching
polynomial, but as we show in Sec. 6, in our application the best-
matching polynomial is sufficient. Especially for similarly-shaped
objects, we avoid mismatches that influence the global alignment.

4.1 Runtime

The theoretical runtime is dominated by the search for the lo-
cal neighborhood to establish the surface polynomials and by the

search for point pairs with similar features. Using kd-trees, we
have to perform O(n) range queries which take O(logn+ k) time
if n is the number of object points and k is the number of points re-
turned by the range query. In the worst case, all points have similar
features, which results in k = n and a runtime of O(n2).

Indeed, the largest part of the runtime is spent in the computation
of the polynomials and the search for candidate points, while the
remaining parts - including the voting scheme - typically take only
a few seconds. However, the computation of the polynomials and
candidates for two points x1 and x2 is completely independent of
each other, which means that the time-consuming steps can be per-
fectly parallelized.

5 Multi-scan Registration

In this section, we outline an application of the transformed poly-
nomials approach in multi-scan registration and show that it re-
turns discriminating information when registering different objects
simultaneously.

For a given set of partial scans A1, . . . ,Ak, we register all scans pair-
wise to obtain a set of transformations Ti j and a set of correspon-
dences between all objects. Like [Li and Guskov 2005; Huang et al.
2006], we establish a connectivity graph with nodes A1, . . . ,Ak and
weighted edges e(Ai,A j) if we find an aligning transformation Ti j.
The weight c(e(Ai,A j)) reflects the registration quality from Ai to
A j. We perform two independent registration steps for each pair
of object (Ai,A j). Therefore, we can control the edge weights in a
twofold way. First, we check if Ti jT ji approximates the identity. If
not, the corresponding edges are rejected. This is similar to [Huang
et al. 2006] who check circles for consistency. Second, if y ∈ A j is
correspondent to x∈ Ai, we check if the reverse relation is also true.
Therefore, we get a bijection between the corresponding points of
Ai and A j and count the number of bijective pairs, which then serves
as the weight for the edge e(Ai,A j).

The quality of these edge weights is illustrated in Fig. 1. The left
parts of the three faces are similar to each other and have more
overlap among themselves than to their corresponding front scan,
and the same holds for the right parts. Nevertheless, the approach
finds about an order of magnitude more correspondences from the
left and right scans to their respective front scan than among each
other and to the not corresponding front scans (Sec. 6). This is
due to the transformed polynomials which allow to take only one
candidate pair per point. Thus, lots of matches are excluded which
would occur over the cheeks, for example, and would lead to higher
weights between the left and between the right scans. Therefore, the
edge weights obtained by the transformed polynomials approach
return information about the connectivity of the objects, although
the structures are quite similar and are likely to be mixed up.

Similar to [Li and Guskov 2005; Huang et al. 2006], we register
objects (Ai,A j) that share the edge with the highest weight. Then,
if an object Ak has correspondences to Ai and A j, the correspond-
ing transformations are checked for consistency as in [Huang et al.
2006], and the edge weights are summed up. This is done up to
some user-defined threshold. In Fig. 1, we end up with separated
objects.

6 Results

In this section, we illustrate the capabilities of our developed global
registration approach. All results are obtained using the trans-



formed polynomials approach without any local improvement. The
experiments have been performed on an AMD Opteron 8435 with
24 cores at 2.6 GHz and 64 GB memory.

In our implementation, the feature size for the Moving Least
Squares approach (Sec. 3.1) is set to 3% of the bounding box di-
agonal. Two points x,y are considered as candidates if the distance
of their polynomial invariants (Sec. 3.5) is smaller than 10−5. As
we transform the polynomials afterwards and take only the best-
matching candidate, this threshold rather affects the runtime than
the registration result. The subdivision scheme for the aligning
transformations has a cell size of 6◦ for the rotation angle and of
0.05 for the components of the rotation axis, which is represented
as a unit vector. For the translational components, the cell size cor-
responds to the feature size.

In order to illustrate the quality of the global alignments, we applied
the ICP algorithm [Besl and McKay 1992; Chen and Medioni 1991]
after the transformed polynomials approach. For an optimal global
alignment, ICP should end up with no additional rotation. There-
fore, we denote the additional rotation angle obtained by ICP to
show the quality of the transformed polynomials approach. How-
ever, the figures show the global registration results without any
local improvement.

The first experiment shows an artificial test setup with two mod-
els of the Stanford Buddha. We used a resampled mesh consisting
of 135634 points, where one model is rotated by an arbitrary an-
gle. Although there are lots of similar surface parts which lead
to similar surface polynomials, the approach locates 135631 cor-
respondences correctly. Note that we allow exactly one possible
correspondence per point. Using the transformed polynomials, the
best-matching polynomial leads to the correct correspondence for
most of the points. The runtime for this experiment was 211s. Here,
applying ICP resulted in no additional rotation angle, so the optimal
alignment was reached.

(a) (b)

Figure 2: The Stanford Buddha consisting of 135634 points. (a)
Relative orientation before registration. (b) Transformation found
by the global registration approach. 135631 points are assigned
correctly by the transformed polynomials approach.

All of the following experiments are performed with real data col-
lected by different range scanners.

Fig. 3 shows the registration of ten range scans of the Stanford
bunny. A similar experiment has also been performed in [Gelfand
et al. 2005]. In contrast to [Gelfand et al. 2005], where overlapping
scans are pre-assigned and registered pairwise in single registra-
tion steps, all scans are reliably assigned and registered simulta-
neously within 583s using the transformed polynomials approach.
The scans are not pre-sorted in any way, and no pair of scans is
excluded a priori. Compared to [Gelfand et al. 2005], where only
few correspondences are found between overlapping objects, we lo-
cate 5376 correspondences on average. Applying ICP, we obtain an
average additional rotation angle of 0.44◦.

(a)

(b)

Figure 3: (a) 10 range scans of the Stanford Bunny with arbitrary
orientations. (b) Point clouds of the registered scans. The result is
obtained without any local refinement.

As shown in Fig. 1, the algorithm is also able to assign partial
scans of different faces correctly. The face scans are obtained by
a faceScan-III system from Breuckmann and have an average size
of 79800 points. The approach locates 9500 correspondences on
average between correct pairs of scans, while there are typically
200-300 correspondences between false left-left or right-right pairs,
which serve as weights for the simultaneous registration approach
(Sec. 5). As in Fig. 3, the scans are not pre-sorted in any way
and no pairs are excluded a priori. We emphasize that this is a
special strength of our approach. For example, algorithms looking
for a largest common point set would be likely to assign a higher
weight between two left scans than between the correct left and
front scan. Registering nine partial scans simultaneously required
72 single registration steps, which took 100s on average. Applying
ICP resulted in an additional rotation angle of 0.3◦ on average.

Fig. 4 and Fig. 5 illustrate that the approach is able to handle noisy
data. In Fig. 4, we added some random noise to the face scans to il-
lustrate the robustness of the approach. Although the noise is in the
same order of magnitude as the feature size, the global registration
finds a proper initial alignment. The objects in Fig. 5, a teddy bear
besides a mobile robot, were scanned with a Microsoft R© Kinect

TM
-

camera and are rather noisy (Fig. 5 (b)). Nevertheless, the scans
are assigned and registered simultaneously within 1766s. Apply-
ing ICP, we obtain an additional rotation angle of 1◦ on average.

6.1 Limitations

The transformed polynomials approach leads to more discriminat-
ing information than using surface features only and therefore, it is
able to distinguish different objects. However, the approach natu-
rally has some limitations.

Obviously, our approach runs into problems if we cannot compute
distinct features like it is the case for objects with large feature-
less parts, e. g. planes. For such situations, the approach described
in [Aiger et al. 2008] is more appropriate.

Like all registration approaches, the approach has problems to es-
tablish an initial transformation if there is only a small overlap.



(a)

(b)

Figure 4: (a) Although the scanned data naturally contains noise,
we added some random noise to a face scan to illustrate the ro-
bustness of our approach. (b) The simultaneous global registration
algorithm is able to obtain a proper alignment within 1118s.

(a)

(b)

Figure 5: (a) Range scans of a teddy bear and a mobile robot. (b)
The transformed polynomials approach returns a good global reg-
istration, although the scans are quite noisy.

The multi-scan registration is based on a heuristic, which does not
work in every case. However, due to the transformed polynomials,
the approach at least returns few false correspondences between dif-
ferent objects, although they have a similar shape. Consequently,
a lot of partial scans are registered correctly before the first false
match would occur. Therefore, similar to [Li and Guskov 2005],
the number of non-registered objects decreases, which simplifies
the manual separation of the objects, if the heuristic does not com-
pletely work.

7 Conclusion

In this paper, we introduced a novel approach for the global rigid
registration of partially overlapping point clouds. We introduced
new invariants for the search of possible candidates and the trans-
formed polynomials which lead to an improved correspondence
search. We outlined that the established correspondences can be
applied for the simultaneous registration of several similarly shaped
objects. In the results, we showed the capabilities of the approach
for global registration tasks.

Future work will be concerned with the simultaneous registration
and scaling of objects that have different sizes using ratios of the
rotational invariants.

8 Acknowledgements

This project is supported by the German Research Foundation
(DFG) under contract number SFB TR8. The Bunny and the Bud-
dha models are taken from the Stanford 3D Scanning Repository of
the Stanford University Computer Graphics Laboratory.

References

AIGER, D., MITRA, N. J., AND COHEN-OR, D. 2008. 4-points
congruent sets for robust pairwise surface registration. In SIG-
GRAPH ’08: ACM SIGGRAPH 2008 papers, ACM, New York,
NY, USA, 1–10.

ALEXA, M., BEHR, J., COHEN-OR, D., FLEISHMAN, S., LEVIN,
D., AND SILVA, C. T. 2001. Point set surfaces. In VIS ’01: Pro-
ceedings of the conference on Visualization ’01, IEEE Computer
Society, Washington, DC, USA, 21–28.

BESL, P., AND MCKAY, N. 1992. A method for registration of 3-d
shapes. IEEE Trans. PAMI 14, 2, 239–256.

BRONSTEIN, A. M., BRONSTEIN, M. M., AND KIMMEL, R.
2009. Topology-invariant similarity of nonrigid shapes. Int. J.
Comput. Vision 81, 3, 281–301.

BROWN, B. J., AND RUSINKIEWICZ, S. 2007. Global non-rigid
alignment of 3-d scans. In SIGGRAPH ’07: ACM SIGGRAPH
2007 papers, ACM, New York, NY, USA, 21.

BROWN, B. J., TOLER-FRANKLIN, C., NEHAB, D., BURNS,
M., DOBKIN, D., VLACHOPOULOS, A., DOUMAS, C.,
RUSINKIEWICZ, S., AND WEYRICH, T. 2008. A system for
high-volume acquisition and matching of fresco fragments: re-
assembling theran wall paintings. In SIGGRAPH ’08: ACM SIG-
GRAPH 2008 papers, ACM, New York, NY, USA, 1–9.

CAZALS, F., AND POUGET, M. 2003. Estimating differential
quantities using polynomial fitting of osculating jets. In Proceed-
ings of the 2003 Eurographics/ACM SIGGRAPH symposium on
Geometry processing, Eurographics Association, Aire-la-Ville,
Switzerland, SGP ’03, 177–187.

CHEN, Y., AND MEDIONI, G. 1991. Object modeling by regis-
tration of multiple range images. In Proc. of IEEE International
Conference on Robotics and Automation, 2724–2729.

CHEN, C.-S., HUNG, Y.-P., AND CHENG, J.-B. 1998. A fast
automatic method for registration of partially-overlapping range
images. In Proc. ICCV, 242–248.

CHEN, C.-S., HUNG, Y.-P., AND CHENG, J.-B. 1999. RANSAC-
based DARCES: a new approach to fast automatic registration
of partially overlapping range images. IEEE Transactions on
Pattern Analysis and Machine Intelligence 21, 11 (November),
1229 –1234.

FISCHLER, M. A., AND BOLLES, R. C. 1981. Random sample
consensus: a paradigm for model fitting with applications to im-
age analysis and automated cartography. Commun. ACM 24, 6,
381–395.



GAL, R., AND COHEN-OR, D. 2006. Salient geometric features
for partial shape matching and similarity. ACM Trans. Graph.
25, 1, 130–150.

GAL, R., SHAMIR, A., AND COHEN-OR, D. 2007. Pose-oblivious
shape signature. IEEE Transactions on Visualization and Com-
puter Graphics 13, 2, 261–271.

GELFAND, N., MITRA, N. J., GUIBAS, L. J., AND POTTMANN,
H. 2005. Robust global registration. In Proceedings of the third
Eurographics symposium on Geometry processing, Eurographics
Association, Aire-la-Ville, Switzerland, 197:1–197:10.

HORN, B. K. P. 1987. Closed-form solution of absolute orientation
using unit quaternions. J. Opt. Soc. Amer. A 4, 4, 629–642.
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