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Abstract
We propose a method for handling elastic solids
in SPH fluids. Our approach samples trian-
gulated surfaces of solids using boundary par-
ticles. To prevent fluid particle tunneling in
case of large expansions, additional bound-
ary particles are adaptively generated to pre-
vent gaps and undesired leakage. Furthermore,
as an object compresses, particles are adap-
tively removed to avoid unnecessary compu-
tations. We demonstrate that our approach
produces plausible interactions of SPH fluids
with both slowly and rapidly deforming solids.
Keywords: physically-based animation, fluid
simulation, Smoothed Particle Hydrodynamics,
fluid-solid coupling

1 Introduction

Simulating incompressible flow using
Smoothed Particle Hydrodynamics (SPH)
is a popular topic in computer animation, since
its particle based nature allows straightforward
handling of fine details, such as splashes and
droplets. The basic SPH interpolation works
well, only if the neighboring particles have
similar properties. For all other cases, boundary
handling techniques that are specific to the
problem of interest need to be applied. There
exist several schemes for handling rigid bound-
aries for SPH, for both one-way [1, 2, 3, 4]
and two-way fluid-rigid coupling [5, 6, 7].
However, for handling the interaction of SPH
fluids and deformable solids, only few works
exist [8, 9, 10, 11]. When handling deformable
boundaries, some important problems arise.
On one hand, particle deficiency issues at the
boundary need to be handled so as to prevent

spatial and temporal discontinuities of the
physical properties (e.g. density, pressure and
velocity) of the fluid particles. On the other
hand, in the case of large deformations, leakage
through the boundaries must be prevented.
Additionally, pairwise forces need to be sym-
metric for avoiding temporal artifacts. Our
work addresses these open issues by adapting
the rigid boundary handling method in [7] for
deformation handling. In the remainder of this
section, we discuss the existing works about
solid boundary handling in SPH (Sec. 1.1), and
then summarize our contribution (Sec. 1.2).

1.1 Handling Solid Boundaries in SPH

Triangles are one of the most practical mesh rep-
resentation primitives for defining solids in com-
puter graphics. However, in SPH simulations,
directly coupling triangle meshes with fluid par-
ticles poses some challenges. First of all, den-
sity estimation of fluid particles near boundaries
is only possible for simpler boundaries [3], but
is difficult for arbitrarily complex ones. Further-
more, for meshes with ambiguous surface ori-
entation (e.g. non-manifold meshes), comput-
ing fluid-solid forces correctly is a challenging
problem. These issues cause spatial and tempo-
ral discontinuities of the physical properties of
fluid particles, which in turn introduce falsified
forces to the solids in the case of two-way cou-
pling.

In order to avoid these issues, for handling
solid boundaries in SPH, most of the existing
works rely on boundary particles, e.g. [8, 2, 4,
7]. In this context, there exist distance-based
penalty methods [8, 2], frozen particle meth-
ods [1, 5] and methods that use combinations of
both techniques [9, 4]. In purely distance-based



penalty methods, non-penetration can be guar-
anteed by using stiff boundary forces. However,
SPH field quantities near the boundaries cannot
be estimated correctly, which results in stabil-
ity issues and artifacts. In frozen particle ap-
proaches, field quantities can be approximated
more correctly, which avoids spatial and tempo-
ral discontinuities, e.g. [4]. In these approaches,
however, satisfying non-penetration is very cru-
cial. For this purpose, either more than one layer
of frozen particles [1], frozen particles accompa-
nied with position correction [4], or frozen par-
ticles accompanied with an additional distance-
based force term [9] are used.

1.1.1 Two-way Rigid-Fluid Coupling

Some approaches have extended SPH boundary
handling to two-way rigid-fluid coupling. In this
context, in [12], fluid is considered as a col-
lection of particles that exchange impulses with
the surrounding rigid bodies. In [13], another
impulse-based formulation is proposed for the
two-way coupling of SPH fluids with particle-
based rigid bodies. In [6], a direct forcing
method for both one- and two-way rigid-fluid
coupling is employed. There exist some no-
table problems in those two-way coupling meth-
ods. First of all, they are not purely based
on hydrodynamic forces. Secondly, they rely
on surface normal information for rigid bod-
ies so as to generate forces, which is problem-
atic for non-manifold mesh features. More re-
cently, a momentum-conserving two-way cou-
pling method for SPH fluids and rigids, that
is completely based on hydrodynamic forces is
proposed in [7]. In this approach, the prob-
lem of inhomogeneous boundary sampling is
also addressed by governing particle contribu-
tions based on the represented volumes of the
boundary particles. Their approach also sup-
ports fluid interaction with thin structures and
non-manifold geometry. Deformable objects,
however, are not addressed in [7]. In this pa-
per we extend [7] to support solids with large
deformations (see Fig. 1).

1.1.2 Two-way Deformable-Fluid Coupling

Interaction of SPH fluids with deformable ob-
jects is firstly presented in [8], where the

employed boundary forces are based on the
Lennard-Jones potential. In this approach,
boundary particles are automatically generated
per triangle according to Gaussian quadrature
rules. Boundary particles generated in this fash-
ion, however, are not optimal for computing
field variables (e.g. density and forces) for
the nearby SPH particles, since the boundary
particles are distributed non-homogeneously for
different triangles with different sizes and as-
pect ratios. In [9], two way coupling of SPH
with thin deformable shells is realized. In this
work, deformable objects are also simulated us-
ing SPH, based on [14]. This approach com-
bines SPH forces with the explicit collision
handling scheme of [15] and position correc-
tion to prevent leakage in the case of deforma-
tions where the boundary particle spacing only
changes marginally. The authors also state that
for thin shells with low Young’s moduli, their
approach causes leaks. Recently, an SPH and
cloth coupling method using continuous colli-
sion detection to prevent tunnelling [10], and
an SPH and Finite Element Method coupling
method have been proposed [11]. However, both
techniques use penalty forces for the coupling,
and do not handle the fluid densities correctly
near the boundary. Therefore they are prone
to the problems we have described in the be-
ginning of this section. An image based fluid-
deformable interaction model has been briefly
discussed in [16]. In the context of Eulerian
fluids, two-way fluid-shell coupling have been
demonstrated in [17].

1.2 Contribution

In this paper, we extend the two-way rigid-
fluid coupling method described in [7] to sup-
port elastic solids. In our approach, triangle
deformations are evaluated and deformed parts
are locally resampled with boundary particles as
necessary. Adding or removing boundary parti-
cles does not introduce disturbance to the neigh-
boring fluid particles, since the boundary parti-
cle contributions are adjusted according to [7].
Therefore, in contrast to [9], our approach can
handle large deformations. Since the bound-
ary particles are generated in a close to uniform
fashion, field variables near the boundaries can
be approximated more correctly, in comparison



Figure 1: An elastic cloth stretches as it is filled with water. Our approach prevents leakage even in
the case of large expansions.

to [8]. As it is based on [7], our method only
relies on symmetric hydrodynamic forces and
does not require any additional force or position
correction to enforce non-penetration, which is
in contrast to [9, 8, 10, 11]. Consequently, our
method allows versatile interaction of SPH flu-
ids with both 2D and 3D elastic solids.

2 Fluid-Elastic Coupling

As mentioned in the previous section, the ap-
proach explained in [7] works well for fluid-
rigid coupling. However, a static setup of
boundary particles is not sufficient for de-
formable objects, since large deformations may
cause gaps between boundary particles, which
may cause undesired fluid leakage. In order to
avoid this problem, dynamic boundary particle
generation is necessary. Our algorithm takes the
triangle mesh of the deformable object as input
and generates boundary particles for the mesh
based on its vertices, edges and triangles, re-
spectively. This section explains the main parts
of our two-way fluid-elastic coupling algorithm.

2.1 Boundary Forces

In [7], the contribution of a boundary particle is
related to its volume, which is estimated by us-
ing the inverse of the number density of a bound-
ary particle bi based on its boundary particle
neighbors as

Vbi =
1

δbi
=

1∑
kWik

, (1)

where δbi denotes number density of the parti-
cle, k denotes boundary neighbors, W is a ker-
nel function with smoothing length h and Wik

is a shorthand for W (xi − xk, h). Hereby, the
contribution of a boundary particle in an SPH

interpolation of a nearby fluid particle is given
as Ψbi(ρ0) = ρ0Vbi , where ρ0 is the rest den-
sity of the fluid the boundary particle is inter-
acting with. Using this volume based contribu-
tion concept, the density of a fluid particle is
given as ρfi =

∑
j mfiWij + ρfi←b, where j

denotes fluid particle neighbors, and the density
contributed by boundary neighbors is given as
ρfi←b =

∑
k Ψbk(ρ0i)Wik. Using ρfi , the resul-

tant pressure is computed by either using [18] or
[19]. Afterwards, pressure and viscosity forces
are applied to both types of particles. We refer
the reader to [7] for those force computations.

Different from [7], in addition to pressure
and viscosity force, we use the cohesion force
of [19] between fluid and boundary particles to
generate fluid-solid adhesion as

Fa
fi←bk

= βΨbk(ρ0i)(xfi − xbk)Wik, (2)

where β is the adhesion coefficient. In (2), we
used Ψbk instead of the mass of the boundary
particles similar to the pressure and viscosity
forces in [7]. This additional force term is added
to make the fluid particles adhere to the bound-
aries. Finally, the adhesion force acting from a
fluid particle to a boundary particle is symmetric
(i.e. Fa

bk←fi
= −Fa

fi←bk
).

2.2 Force Transfer

For rigids, the net force and torque terms can
be easily computed by accumulating the forces
on all boundary particles of the rigid. For de-
formable objects, however, deformations result
in many more degrees of freedom than just po-
sition, orientation, linear and angular momen-
tum. Here, we will assume a mass-point-based
deformable solver, where the vertices represent
mass points and edges represent constraints (e.g.
as in [20]) . When generating the boundary par-
ticles per triangle as described in Sections 2.4



and 2.5, the barycentric coordinates describing
the position of a particle with respect to the posi-
tions of the corresponding triangle’s vertices are
stored with the particle. As the mesh deforms,
the particles are synchronized with the mesh ac-
cording to these barycentric coordinates similar
to [8]. When distributing the forces from bound-
ary particles to the mass points, barycentric co-
ordinates are again used for force weighting.

2.3 Boundary Requirements

The above density and force approximations are
valid only if the contribution of boundary parti-
cles to a fluid particle ρfi←b is defined uniformly
on the surface of the solid, since this term or
its derivative is used in all force terms. We de-
termined that, for a 2D simple cubic boundary
particle alignment with a spacing equivalent to
fluid particle spacing, ρfi←b ≈ 0.35ρ0 when a
fluid particle’s normal distance to a boundary
is less than h/2. When ρfi←b is considerably
smaller than this value at some point on the sur-
face, fluid particles can leak through the solid at
that point. We will refer to such boundary par-
ticle alignments as under-sampled. Such align-
ments can frequently occur when simulating ex-
panding deformable objects, as the distances be-
tween neighboring boundary particles get larger.
The inverse situation, i.e. over-sampling, oc-
curs when there are too many boundary particles
that do not further improve the approximation of
ρfi←b. Although [7] can handle over-sampling
by adapting boundary particle to fluid particle
contributions according to (1), over-sampling
causes performance overhead since the number
of neighboring particles increases. It should be
noted that, since ρfi←b essentially depends on
the boundary particle number density δb, we can
use δb at boundary particle positions as a met-
ric to decide if the resampling of a region is
necessary. We experimentally determined that
3.6 Γ(h) and 10 Γ(h) are appropriate thresholds
for detecting under-sampling and over-sampling
respectively, where Γ(h) is SPH kernel function
dimensional factor and defined as Γ(h) = 1

hd

and d denotes the simulation dimension. Our al-
gorithm starting with Sec. 2.4 deals with creat-
ing such a sampling without causing any under-
sampling, and with minimal over-sampling. The
analysis of our approach in terms of field vari-

able approximation is given in Sec. 2.6.

2.4 Initial Boundary Particle Generation

As the boundary forces explained in Sec. 2.1
are SPH based, we aim to generate an initial
boundary sampling, where we keep the sam-
pling density of the boundary close to fluid par-
ticle sampling density. We observed that in in-
compressible SPH simulations, spacing between
fluid particles remains around half of the SPH
smoothing length. This implies that for SPH
based fluid-boundary interaction, the sampling
spacing of the boundary particles should be as
close to fluid sampling spacing as possible to
achieve the same sampling density. This mo-
tivated us to create a geometric boundary par-
ticle generation scheme, where the spacing be-
tween boundary particles is close to fluid par-
ticle spacing. Our algorithm not only satisfies
the under/over-sampling requirements given in
the previous section (i.e. ρfi←b ≈ 0.35ρ0 and
3.6 Γ(h) < δ < 10 Γ(h)), but it is also very
efficient and suitable for locally adaptive resam-
pling (see Fig. 3 and 4).

For the initial boundary particle sampling,
our algorithm generates particles in three steps:
Placing particles at vertices, particle generation
for edges and sampling triangle interiors with
particles.

The first step in edge sampling is determining
the number of particles ne to generate, which is
simply done by dividing the edge length |e| =
|va − vb| by the particle diameter d = h

2 as

ne =
⌊
|e|
d

⌋
. The displacement vector pe be-

tween the particles is computed as pe = e
ne
. Af-

terwards, particles can be placed along the direc-
tion of the edge starting from any of its vertices
with pe displacements.

After sampling triangle edges, the next step is
sampling the triangle interiors. The approach we
employ is similar to scanline algorithms known
from rendering. In our algorithm, firstly the
shortest edge es is determined, and its normal
direction ŝ in the direction of the triangle in-
terior is computed as ŝ = es×(el×es)

|es×(el×es)| , where
el is the longest edge. Afterwards, the num-
ber of required sweeping steps nt for the trian-
gle is computed as nt =

⌊
ht
d

⌋
, where ht is the

height of the triangle in the sweeping direction



Figure 2: Two adjacent triangles sampled with
scanlines in the direction of their
longest edges (left). Same triangles
sampled in the direction of their short-
est edges (right), which results in bet-
ter particle distribution, with less over-
sampling. Blue, gray and red parti-
cles denote vertex, edge and interior
boundary particles respectively.

ŝ, which is computed by projecting el onto the
sweeping direction ŝ as ht = ŝ · el. For each
sweeping step, the line intersection positions i1
and i2 with the other two edges are computed as
explained in [21]. Finally, particles are placed
between the edge intersections with a displace-
ment vector ps = i1−i2

ns
where ns =

⌊
|i1−i2|

d

⌋
.

According to our experiments, choosing the
shortest edge as the scan direction results in a
better boundary particle distribution with less
over-sampling (see Fig. 2). The employed
step sizes in the particle generation result in
a boundary sampling that is sufficiently dense
according to the criterion introduced in Sec.
2.3. Furthermore, separate handling of trian-
gle vertices and edges from triangle interiors
allows robust handling of arbitrary mesh con-
figurations without any under-sampling. On
the other hand, the approach generates some
over-sampling, especially between the edges of
skinny triangles. However, due to the employed
boundary handling scheme that can handle over-
sampled boundaries (despite some performance
overhead), intersections between particles can
be handled when computing boundary forces.

2.5 Resampling of Deformed Regions

One way to completely avoid the under-
sampling problem is to regenerate all boundary
particles in each simulation step using the algo-
rithm explained in Sec. 2.4. However, in stable
solid simulations, deformations are temporally
coherent. We utilize this information by intro-

ducing measures for determining whether a tri-
angle needs to be resampled, or if the existing
sampling is sufficient. Therefore, we avoid com-
plete boundary sampling of a deformable object
in each simulation step by using samplings from
previous simulation steps as possible.

As discussed in Sec. 2.3, when under- or
over-sampling is detected (i.e. 3.6 Γ(h) < δ <
10 Γ(h)) , the triangle enclosing the boundary
particle, and all its edges can be resampled.
Even though the resampling criterion based on
δb is closely related to the SPH concept, it has
some important disadvantages. First of all, since
it relies on δb values, lazy updating of δb is not
possible (i.e. updating only when a boundary
particle is in the neighborhood of the fluid). Fur-
thermore, it needs an additional evaluation of the
δb values, which requires an additional neigh-
borhood search among boundary particles. So
as to avoid these performance issues, we de-
rived a heuristic for resampling detection that
is purely based on geometric measures, which
aims to generate a full boundary neighborhood
for fluid particles. In our geometric approach,
triangle edges and interiors are handled and re-
sampled separately. For detecting whether edge
resampling is necessary, the number of required
boundary particles ne is computed (see Sec.
2.4). Afterwards, the edges where ne changes
between two consecutive simulation steps are
resampled. For detecting whether triangle in-
terior resampling is necessary, we employ ad-
ditional rules. In each simulation step, firstly
the shortest edge es of a triangle is determined.
When es becomes another edge between two
simulation steps, the triangle is resampled. If
not, the number of necessary scanline steps nt
is computed. By multiplying the number of par-
ticles sampled onto the smallest edge nes of the
triangle with nt, the number of particles npa that
are necessary to sample the considered paral-
lelogram is computed. When npa for a trian-
gle changes between two consecutive simula-
tion steps, the triangle’s interior is resampled.
A comparison of the two resampling strategies
(i.e. the δb based and the geometric heuristic
based) is shown in Fig. 3 and 4. Note that our
geometric approach results in similar samplings
when compared to δb based sampling, where
3.6 Γ(h) < δ < 10 Γ(h) for any point in a trian-
gle is always satisfied.



Figure 3: The initial sampling of two adjacent triangles with boundary particles based on four different
boundary particle resampling schemes are shown in the top row. After the triangles are
deformed, the resultant samplings are shown in the bottom row. The left most column shows
the outcome when no new particles are generated. The seven point rule used in [8] tends
to generate non-uniform sampling patterns. Note that our geometric resampling criterion
is in good agreement with our δ based criterion and both produce good sampling patterns
without under-sampling and with minimal over-sampling. (The plotted particle diameter is
equivalent to h

2 )

Figure 4: The number density δ is used as a metric to evaluate under- and over-sampling. The δ
value for h = 1 is computed at each point inside the triangles in Fig. 3, where δ̄ denote
arithmetic mean and σ standard deviation. δ / 3.6 denotes under-sampling and may result
in fluid particle tunneling through the boundary. Whereas, δ ' 10 denotes over-sampling
and causes unnecessary computational overhead. Note that the underlying formulation of [7]
results in smooth boundary forces as long as the under-sampled regions are avoided. Using
[8] results in a non-uniform δ field, with variable δ̄ and σ as the triangles deform. Such large
variances can cause disturbance to the nearby fluid particles. Both of our approaches result
in a uniform δ field, with minimal temporal variance of δ̄ and σ as the triangles deform.
These properties make our approach a good match for generating boundary particles in [7].



Figure 5: A duck model composed of 2160 tri-
angles (left), sampled with boundary
particles by remeshing the model us-
ing [22] and placing particles at vertex
positions in 1.4 s (as done in [4, 7])
(center). The same mesh is sampled
using our algorithm in 15 ms (right).

2.6 Comparison to Other Boundary
Sampling Strategies and Analysis

In [4] and [7], the remeshing algorithm ex-
plained in [22] is used for improving isotropy
of triangle meshes. After the remeshing step,
boundary particles are placed at vertex posi-
tions of the resultant mesh. Even though this
approach might generate better samplings com-
pared to our method, especially in low-curvature
regions (see Fig. 5), the performance cost of
the approach makes it unsuitable for the appli-
cation to deformable objects, which might re-
quire boundary particle generation in each sim-
ulation step. Poisson disk sampling has also
been used for boundary particle generation in
[23], which however requires relaxation iter-
ations and neighborhood search when placing
particles. Furthermore, similar to the remesh-
ing based method, it is designed for producing
a global boundary particle distribution, which
makes it inappropriate for deformable objects,
where local particle insertions and deletions are
usually sufficient and also very efficient.

[8] proposes a seven point rule to gener-
ate boundary particles. Based on a user de-
fined threshold, which is chosen relative to the
smoothing length h of the fluid particles, a tri-
angle is subdivided into four smaller triangles,
which are again sampled with seven boundary
particles recursively. Because of the employed
subdivision technique, the number of particles
sampled per triangle is 4d × 7, where d is
the recursion depth of the triangle subdivisions.
Therefore, for small deformations, the approach
cannot generate only few particles per triangle,

but it generates four times more particles in each
subdivision. If the sampling threshold is chosen
small, it may result in severe over-sampling of
the triangles, while a large threshold may cause
gaps between the boundary particles. Whereas,
our approach only adds or removes small num-
ber of particles in case of small deformations.
The difference between both methods applied
to two neighboring triangles in both the initial
pose and after a deformation are depicted in
Fig. 3. As can be seen, our method results in
more homogenous boundary particle sampling.
In contrast, [8] results in under-sampling and
over-sampling for different parts of the triangles.
Even though smaller sampling thresholds might
be used to prevent under-sampling, it might
cause further over-sampling for already over-
sampled triangles. One important disadvantage
of over-sampling is that the required time for
both neighborhood search and force computa-
tions increases significantly. Furthermore, for
approximating field variables of fluid particles
near the boundary, our method provides better
boundary particle distributions without under-
sampling and with much less over-sampling. To
quantify the difference, in Fig. 4, we computed
the number density δ at each point inside the
triangles based on the generated boundary par-
ticles for the boundary configurations given in
Fig. 3. Note that our strategy results in a more
homogenous distribution of δ. Whereas, if [8] is
used, the deviation is considerably larger. These
properties make our approach a good match for
using with [7] for boundary particle generation.

Another triangle sampling strategy that can
be applied to local triangle sampling has been
briefly explained in [24] in the context of point-
based level sets. However, the case of deforming
triangles is not explained in that work.

3 Implementation

The simulation loop in our approach is similar
to the one used in [7], with some differences
that are related to the deformable-boundary in-
terface as discussed in Sec. 2.2. For simulat-
ing rigid and deformable bodies, we use Bul-
let Physics [25]. For SPH simulations, we use
the predictive-corrective formulation presented
in [18] for computing fluid pressures. For time



Figure 6: Underlying boundary particles of the
stretching cloth in Fig. 1. The red
regions denote the additional particles
added to the initial boundary sam-
pling.

step selection, we use the scheme presented in
[4], where the velocities of boundary particles
are also included in the time step estimation cri-
teria. Finally, fluid surfaces are reconstructed
using [26], and final renderings are done using
mental ray [27].

4 Results

In this section, we demonstrate the versatility of
our method using different scenarios. For all ex-
periments, we used the geometric approach for
resampling detection because of its performance
benefits. Several simulation steps were com-
puted for each frame. For each animation se-
quence, the average computation time per frame
was 10 to 30 seconds, excluding surface re-
construction and rendering, depending on the
frame complexity. The employed adaptive time-
stepping scheme produced time steps roughly
between 5 × 10−3 and 10−4 seconds. In our
simulations, we used different particle radii r
for different scenarios, where the SPH smooth-
ing length h was always chosen as 4r. Fluid-
boundary adhesion constant β was chosen as
0.05. The additional overhead of our approach
over [7] was below 5% in all scenes, excluding
deformable simulation. The simulations were
run on an Intel Xeon X5690 with 12 GB RAM.

In the scene corresponding to Fig. 1, an
elastic cloth with density 1200 kg

m3 consisting of
90K uniform triangles was stretched above a
box using point constraints at its corners. After-
wards, several rigid objects with different densi-
ties were dropped onto the cloth, which was later
exposed to a steady fluid flow from its top, con-
sisting of up to 1M fluid particles. The weight

Figure 7: A thin bowl is filled with water and
dropped onto the ground. Our ap-
proach can handle rapid deformations.

Figure 8: Interaction of fluid with a cloth and
several deformable solids.

of the rigid objects and the fluid caused the cloth
to slowly stretch, which was handled by updat-
ing the boundary particles in order to prevent the
leakage of fluid particles through the cloth (see
Fig. 6). Afterwards, when the cloth was released
and shrunk back to its original size, all addi-
tional boundary particles were automatically re-
moved. Our method ensures a sufficient bound-
ary particle sampling that prevents leakage. Be-
cause of the regular structure of the cloth, our
algorithm generated one boundary particle for
each vertex for the initial sampling of the sur-
face, which resulted in 46K boundary particles
in 22 ms. Whereas, the number of boundary
particles for the cloth’s maximum stretched state
was 62K. The average computation time for the
resampling was 9 ms per simulation step.

The presented method is also applicable to
fast deformations (see Fig. 7). In this scene,
a thin bowl with density 1000 kg

m3 consisting of
6754 triangles was constrained and filled with
110K fluid particles. The initial sampling of the
bowl took 14 ms that generated 42K boundary
particles. When the bowl was filled with fluid,
the constraints were released and the bowl was
dropped onto the ground. The impact caused a
sudden deformation, and consequently a rapid
change in the number of boundary particles up
to 44K. In this example, the average computa-



tion time for resampling was 2.5 ms per simula-
tion step.

In order to show that our boundary parti-
cle sampling also works with volumetric de-
formable objects, we created another scenario
(see Fig. 8). Several volumetric deformable ob-
jects and a thin shell cloth with density 300 kg

m3

interacted with a fluid that was represented by
1.2M fluid particles. The application of our geo-
metric resampling approach to a volumetric de-
formable object took under 1 ms on average.

5 Discussion and Future Work

Since our method always places particles at ver-
tex positions, it can cause over-sampling when
the average edge length of a triangle mesh is less
than the particle diameter. So as to prevent such
over-sampled areas from affecting the simula-
tion performance negatively, such meshes can be
remeshed before the simulation.

Besides the deformation model employed in
the paper, we believe that our approach can work
with different deformation models, as long as
the deformations can be mapped to a triangle
mesh and the forces can be transferred to the de-
formation model through the mesh vertices.

Our approach is also applicable for the bound-
ary particle sampling of static and dynamic rigid
objects with significant performance benefits
over existing methods, as discussed in Sec. 2.6.

Because of the local nature of our boundary
particle generation approach, it might be pos-
sible to extend it such that boundary particles
are adaptively generated only for the triangles
that are in the smoothing length h of the fluid
particles. This can allow SPH simulations in
very large solid domains (e.g. terrains, whole
cities), where the boundary particle sampling of
the whole domain might be infeasible because of
large memory and computational requirements.

6 Conclusion

In this paper, we extend the two-way rigid-
fluid coupling method described in [7] to elastic-
fluid coupling. Our approach firstly generates
initial boundary particle setups on solids with
appropriate sampling. As the simulated ob-
jects deform, our approach efficiently evaluates

the boundary sampling and efficiently resamples
only the necessary primitives to prevent both
undesired fluid leakage in the case of under-
sampling, and performance issues in the case
of over-sampling. Since our approach is based
on [7], which adjusts boundary particle contri-
butions, adding new boundary particles does not
result in discontinuous forces.

Our approach offers several benefits over ex-
isting works. In contrast to [9], it can handle
large deformations. Furthermore, since our ap-
proach generates a more uniform boundary par-
ticle sampling compared to [8], field variables
near the boundary can be better approximated.
Furthermore, in contrast to [9, 8, 10, 11], it does
not use additional distance based force terms.
As shown in the experiments, our approach al-
lows versatile two-way interaction of fluids with
both slowly and rapidly deforming solids.
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