
Position-based Methods for the Simulation of Solid Objects
in Computer Graphics

Jan Bender1, Matthias Müller2, Miguel A. Otaduy3 and Matthias Teschner4

1Graduate School CE, TU Darmstadt
2NVIDIA PhysX Research

3URJC Madrid
4University of Freiburg

Abstract
The dynamic simulation of solids has a long history in computer graphics. The classical methods in this field are
based on the use of forces or impulses to simulate joints between rigid bodies as well as the stretching, shearing
and bending stiffness of deformable objects. In the last years the class of position-based methods has become
popular in the graphics community. These kinds of methods are fast, unconditionally stable and controllable
which make them well-suited for the use in interactive environments. Position-based methods are not as accurate
as force based methods in general but they provide visual plausibility. Therefore, the main application areas of
these approaches are virtual reality, computer games and special effects in movies.
This state of the art report covers the large variety of position-based methods that were developed in the field of
deformable solids. We will introduce the concept of position-based dynamics, present dynamic simulation based
on shape matching and discuss data-driven approaches. Furthermore, we will present several applications for
these methods.

Keywords:

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

The simulation of solid objects such as rigid bodies, soft
bodies or cloth has been an important and active research
topic in computer graphics for more than 30 years. The
field was introduced to graphics by Terzopoulos and his
colleagues in the late eighties [TPBF87a]. Since then, a
large body of work has been published and the list is grow-
ing rapidly. There exists a variety of survey papers [GM97,
MTV05,NMK∗06,MSJT08,BETC12] which document this
development. However, due to the shear number of papers,
it has become difficult to cover the entire field in one survey.

In this state of the art report we focus on a special class
of simulation methods for solids, namely position-based ap-
proaches. Classical dynamics simulation methods formulate
the change of momentum of a system as a function of applied
forces, and evolve positions through numerical integration of
accelerations and velocities. Position-based approaches, in-

stead, compute positions directly, based on the solution to a
quasi-static problem.

Physical simulation is a well studied problem in the com-
putational sciences and therefore, many of the well estab-
lished methods have been adopted in graphics such as the Fi-
nite Element Method (FEM) [OH99], the Finite Differences
Method [TPBF87b], the Finite Volume Method [TBHF03],
the boundary element method [JP99] or particle-based ap-
proaches [DSB99, THMG04]. The main goal of computer
simulations in computational physics and chemistry is to
replace real-world experiments and thus, to be as accurate
as possible. In contrast, the main applications of physically
based simulation methods in computer graphics are special
effects in movies and commercials and more recently, com-
puter games and other interactive systems. Here, speed and
controllability are the most important factors and all that is
required in terms of accuracy is visual plausibility. This is
especially true for real-time applications.

Bender, Müller, Otaduy and Teschner / Position-based Methods for the Simulation of Solid Objects

Position-based methods are tailored particularly for the
use in interactive environments. They provide a high level
of control and are unconditionally stable even when sim-
ple and fast explicit time integration schemes are used. Due
to their simplicity, robustness and speed these approaches
have become very popular in computer graphics and in the
game industry recently. Since there exists no survey paper on
position-based simulation methods so far, we decided to pro-
vide an overview of this field of research in a state of the art
report and hope it will be useful for the growing number of
people interested in real-time physically-based simulations.

In this state of the art report, we focus the discussion on
several geometrically motivated methods, in particular those
that directly compute the positions of the solids being simu-
lated. We start with a description of position-based dynam-
ics methods, which compute equilibrium positions by itera-
tively resolving geometric constraints. Then, we cover shape
matching methods, and we conclude with data-driven meth-
ods, which compute positions as a function of data from pre-
captured deformation examples.

Collision detection is an important part of any simulation
system. However, an adequate discussion of this topic is be-
yond the scope of this report. Therefore, we refer the reader
to the surveys of Lin and Gottschalk [LG98] and the one of
Teschner et al. [TKH∗05].

2. Background

The most popular approaches for the simulation of dynamic
systems in computer graphics are force based. Internal and
external forces are accumulated from which accelerations
are computed based on Newton’s second law of motion. A
time integration method is then used to update the veloci-
ties and finally the positions of the object. A few simula-
tion methods (most rigid body simulators) use impulse based
dynamics and directly manipulate velocities. In contrast,
geometry-based methods omit the velocity layer as well and
immediately work on the positions. The main advantage of a
position-based approach is its controllability. Overshooting
problems of explicit integration schemes in force based sys-
tems can be avoided. In addition, collision constraints can be
handled easily and penetrations can be resolved completely
by projecting points to valid locations.

Among the force based approaches, one of the simplest
methods is to represent and simulate solids with mass-spring
networks. A mass spring system consists of a set of point
masses that are connected by springs. The physics of such a
system is straightforward and a simulator is easy to imple-
ment. However, there are some significant drawbacks of the
simple method.

• The behavior of the object depends on the way the spring
network is set up.
• It can be difficult to tune the spring constants to get the

desired behavior.

• Mass spring networks cannot capture volumetric effects
directly such as volume conservation or prevention of vol-
ume inversions.

The Finite Element Method solves all of the above prob-
lems because it considers the entire volume of a solid instead
of replacing it with a finite number of point masses. Here,
the object is discretized by splitting the volume into a num-
ber of elements with finite size. This discretization yields a
mesh as in the mass spring approach in which the vertices
play the role of the mass points and the elements, typically
tetrahedra, can be viewed as generalized springs acting on
multiple points at the same time. In both cases, forces at the
mass points or mesh vertices are computed due to their ve-
locities and the actual deformation of the mesh.

3. Position-Based Dynamics

In this section we present an approach which omits the ve-
locity and acceleration layer and immediately works on the
positions [MHHR07].

3.1. Overview

The objects to be simulated are represented by a set of N
particles and a set of M constraints. Each particle i has three
attributes, namely

mi mass

xi position

vi velocity

A constraint j is defined by the five attributes

n j cardinality

C j : R3n j → R scalar constraint function

{i1, . . . in j}, ik ∈ [1, . . .N] set of indices

k j ∈ [0 . . .1] stiffness parameter

unilateral or bilateral type

.

Constraint j with type bilateral is satisfied if
C j(xi1 , . . . ,xin j

) = 0. If its type is unilateral then it is
satisfied if C j(xi1 , . . . ,xin j

) ≥ 0. The stiffness parameter k j

defines the strength of the constraint in a range from zero to
one.

Given this data and a time step ∆t, the simulation proceeds
as described by Algorithm 1. Since the algorithm simulates
a system which is second order in time, both the positions
and the velocities of the particles need to be specified in (1)-
(3) before the simulation loop starts. Lines (5)-(6) perform
a simple explicit forward Euler integration step on the ve-
locities and the positions. The new locations pi are not as-
signed to the positions directly but are only used as predic-
tions. Non-permanent external constraints such as collision

Bender, Müller, Otaduy and Teschner / Position-based Methods for the Simulation of Solid Objects

Algorithm 1 Position-based dynamics
1: for all vertices i do
2: initialize xi = x0

i , vi = v0
i , wi = 1/mi,

3: end for
4: loop
5: for all vertices i do vi← vi +∆twifext(xi)
6: for all vertices i do pi← xi +∆tvi
7: for all vertices i do genCollConstraints(xi→ pi)
8: loop solverIteration times
9: projectConstraints(C1, . . . ,CM+MColl ,p1, . . . ,pN)

10: end loop
11: for all vertices i do
12: vi← (pi−xi)/∆t
13: xi← pi
14: end for
15: velocityUpdate(v1, . . . ,vN)
16: end loop

constraints are generated at the beginning of each time step
from scratch in line (7). Here the original and the predicted
positions are used in order to perform continuous collision
detection. The solver (8)-(10) then iteratively corrects the
predicted positions such that they satisfy the Mcoll external
as well as the M internal constraints. Finally, the corrected
positions pi are used to update the positions and the veloc-
ities. It is essential here to update the velocities along with
the positions. If this is not done, the simulation does not pro-
duce the correct behavior of a second order system. As you
can see, the integration scheme used here is very similar to
the Verlet method.

3.2. The System to be Solved

The goal of the solver step (8)-(10) is to correct the pre-
dicted positions pi of the particles such that they satisfy
all constraints. The problem that needs to be solved com-
prises of a set of M equations for the 3N unknown po-
sition components, where M is now the total number of
constraints. This system does not need to be symmetric. If
M > 3N (M < 3N) the system is over-determined (under-
determined). In addition to the asymmetry, the equations are
in general non-linear. The function of a simple distance con-
straint C(p1,p2) = (p1−p2)

2−d2 yields a non-linear equa-
tion. What complicates things even further is the fact that
collisions produce inequalities rather than equalities. Solv-
ing a non-symmetric, non-linear system with equalities and
inequalities is a tough problem.

Let p be the concatenation [pT
1 , . . . ,p

T
N]

T and let all the
constraint functions C j take the concatenated vector p as in-
put while only using the subset of coordinates they are de-

fined for. We can now write the system to be solved as

C1(p) � 0

. . .

CM(p) � 0,

where the symbol � denotes either = or ≥. Newton-
Raphson iteration is a method to solve non-linear symmet-
ric systems with equalities only. The process starts with a
first guess of a solution. Each constraint function is then lin-
earized in the neighborhood of the current solution using

C(p+∆p) =C(p)+∇pC(p) ·∆p+O(|∆p|2) = 0. (1)

This yields a linear system for the global correction vector
∆p

∇pC1(p) ·∆p =−C1(p)
. . .

∇pCM(p) ·∆p =−CM(p),

where ∇pC j(p) is the 1×N dimensional vector containing
the derivatives of the function C j w.r.t. all its parameters, i.e.
the N components of p. It is also the j-th row of the lin-
ear system. Both, the rows ∇pC j(p) and the right hand side
scalars −C j(p) are constant because they are evaluated at
the location p before the system is solved. When M = 3N
and only equalities are present, the system can be solved by
any linear solver, e.g. a preconditioned conjugate gradient
method. Once it is solved for ∆p the current solution is up-
dated as p← p+∆p. A new linear system is generated by
evaluating ∇pC j(p) and −C j(p) at the new location after
which the process repeats.

If M 6= 3N the resulting matrix of the linear system is non-
symmetric and not invertible. [GHF∗07a] solve this prob-
lem by using the pseudo-inverse of the system matrix which
yields the best solution in the least-squares sense. Still, han-
dling inequalities is not possible directly.

3.3. The Non-Linear Gauss-Seidel Solver

In the position-based dynamics approach, non-linear Gauss-
Seidel is used. It solves each constraint equation separately.
Each constraint yields a single scalar equation C(p)� 0 for
all the particle positions associated with it. The subsystem
is therefore highly under-determined. PBD solves this prob-
lem as follows. Again, given p we want to find a correction
∆p such that C(p+∆p) = 0. It is important to notice that
PBD also linearizes the constraint function but individually
for each constraint. The constraint equation is approximated
by

C(p+∆p)≈C(p)+∇pC(p) ·∆p = 0. (2)

The problem of the system being under-determined is solved
by restricting ∆p to be in the direction of ∇pC which con-

Bender, Müller, Otaduy and Teschner / Position-based Methods for the Simulation of Solid Objects

serves the linear and angular momenta. This means that only
one scalar λ - a Lagrange multiplier - has to be found such
that the correction

∆p = λ∇pC(p). (3)

solves Equation (2). This yields the following formula for
the correction vector of a single particle i

∆pi =−s wi∇piC(p), (4)

where

s =
C(p)

∑ j w j|∇p jC(p)|2
(5)

and wi = 1/mi.

As mentioned above, this solver linearizes the constraint
functions. However, in contrast to the Newton-Raphson
method, the linearization happens individually per con-
straint. Solving the linearized constraint function of a single
distance constraint for instance yields the correct result in a
single step. Because the positions are immediately updated
after a constraint is processed, these updates will influence
the linearization of the next constraint because the lineariza-
tion depends on the actual positions. Asymmetry does not
pose a problem because each constraint produces one scalar
equation for one unknown Lagrange multiplier λ. Inequali-
ties are handled trivially by first checking whether C(p)≥ 0.
If this is the case, the constraint is simply skipped.

We have not considered the stiffness k of the constraint
so far. There are several ways to incorporate it. The simplest
variant is to multiply the corrections ∆p by k∈ [0 . . .1]. How-
ever, for multiple iteration loops of the solver, the effect of k
is non-linear. The remaining error for a single distance con-
straint after ns solver iterations is ∆p(1−k)ns . To get a linear
relationship we multiply the corrections not by k directly but
by k′ = 1−(1−k)1/ns . With this transformation the error be-
comes ∆p(1−k′)ns = ∆p(1−k) and, thus, becomes linearly
dependent on k and independent of ns as desired. However,
the resulting material stiffness is still dependent on the time
step of the simulation. Real time environments typically use
fixed time steps in which case this dependency is not prob-
lematic.

3.4. Constraint Examples

In the following we will introduce different constraint exam-
ples. For a better readability we define pi, j = pi−p j.

3.4.1. Stretching

To give an example, let us consider the distance constraint
function C(p1,p2) = |p1,2|−d. The derivatives with respect
to the points are∇p1C(p1,p2) = n and∇p2C(p1,p2) =−n
with n =

p1,2
|p1,2| . The scaling factor s is, thus, s = |p1,2|−d

1+1 and

Figure 1: Projection of the constraint C(p1,p2) = |p1,2|−d.
The corrections ∆pi are weighted according to the inverse
masses wi = 1/mi.

Figure 2: For bending resistance, the constraint function
C(p1,p2,p3,p4) = arccos(n1 ·n2)−ϕ0 is used. The actual
dihedral angle ϕ is measured as the angle between the nor-
mals of the two triangles.

the final corrections

∆p1 =−
w1

w1 +w2
(|p1,2|−d)

p1,2

|p1,2|
(6)

∆p2 =+
w2

w1 +w2
(|p1,2|−d)

p1,2

|p1,2|
(7)

which are the formulas proposed in [Jak01] for the projec-
tion of distance constraints (see Figure 1). They pop up as a
special case of the general constraint projection method.

3.4.2. Bending

In cloth simulation it is important to simulate bending in
addition to stretching resistance. To this end, for each pair
of adjacent triangles (p1,p3,p2) and (p1,p2,p4) a bilateral
bending constraint is added with constraint function

Cbend(p1,p2,p3,p4) =

acos
(

p2,1×p3,1

|p2,1×p3,1|
·

p2,1×p4,1

|p2,1×p4,1|

)
−ϕ0

and stiffness kbend . The scalar ϕ0 is the initial dihedral angle
between the two triangles and kbend is a global user parame-
ter defining the bending stiffness of the cloth (see Figure 2).
The advantage of this bending term over adding a distance
constraint between points p3 and p4 or over the bending term
proposed by [GHDS03] is that it is independent of stretch-
ing. This is because the term is independent of edge lengths.

3.4.3. Triangle Collisions

The handling of self collisions within cloth can be handled
by an additional unilateral constraint. For vertex q moving
through a triangle p1, p2, p3, the constraint function reads

C(q,p1,p2,p3) = (q−p1) ·
p2,1×p3,1

|p2,1×p3,1|
−h, (8)

Bender, Müller, Otaduy and Teschner / Position-based Methods for the Simulation of Solid Objects

Figure 3: Constraint function C(q,p1,p2,p3) = (q− p1) ·
n− h makes sure that q stays above the triangle p1,p2,p3
by the cloth thickness h.

where h is the cloth thickness. If the vertex enters from be-
low with respect to the triangle normal, the constraint func-
tion has to be

C(q,p1,p2,p3) = (q−p1) ·
p3,1×p2,1

|p3,1×p2,1|
−h. (9)

3.4.4. Volume Conservation

For tetrahedral meshes it is useful to have a constraint that
conserves the volume of single tetrahedron. Such a con-
straint has the form

C(p1,p2,p3,p4) =
1
6
(
p2,1×p3,1

)
·p4,1−V0, (10)

where p1, p2, p3 and p4 are the four corners of the tetrahe-
dron and V0 is its rest volume.

3.4.5. Cloth Balloons

For closed triangle meshes, overpressure inside the mesh as
shown in Figure 5 can easily be modeled with an equality
constraint concerning all N vertices of the mesh:

C(p1, . . . ,pN) =

(
ntriangles

∑
i=1

(pt i
1
×pt i

2
) ·pt i

3

)
− kpressureV0.

(11)
Here t i

1, t
i
2 and t i

3 are the three indices of the vertices belong-
ing to triangle i. The sum computes the actual volume of the
closed mesh. It is compared against the original volume V0
times the overpressure factor kpressure. This constraint func-
tion yields the gradients

∇piC = ∑
j:t j

1=i

(pt j
2
×pt j

3
)+ ∑

j:t j
2=i

(pt j
3
×pt j

1
)+ ∑

j:t j
3=i

(pt j
1
×pt j

2
)

(12)
These gradients have to be scaled by the scaling factor given
in Equation (5) and weighted by the masses according to
Equation (4) to get the final projection offsets ∆pi.

3.5. Strain Limiting

Strain limiting is an important topic in the field of cloth sim-
ulation. The reason is that the low solver iteration counts
used in real-time applications yield stretchy cloth. Since

Figure 5: Simulation of overpressure inside a character.

most cloth types are perceived by the human eye as com-
pletely inextensible, it is important to make simulated cloth
inextensible in order to avoid disturbing visual artifacts.

A strain limiting method makes sure that the overall
stretch of the cloth stays below a certain threshold. In force
based simulations, strain limiting is a separate pass which
is executed before or after the regular cloth solver. In most
cases, this pass moves the positions of vertices directly, even
in force based simulations. Therefore, most strain limiting
methods fall under the category of position-based methods.

A straightforward way of limiting strain is to iterate
through all edges of a cloth mesh and project the adjacent
particles of overstretched edges as shown in Figure 1 so that
the stretch of the edge does not exceed the stretch limit.
Provot [Pro95] was among the first to use this method in the
context of cloth simulation. He performs a single iteration
through all cloth edges after a force based solver. Desbrun
et al. [DSB99] and Bridson et al. [BMR03] later used the
same post solver strain limiter but with multiple iterations
through all edges. Due to its simplicity, this method is still
one of the most popular strain limiting methods used in cloth
simulations .

The method is very similar to position based cloth sim-
ulation. The main difference is that the strain limiting pass
described above does not influence the velocities. These are
updated by the force-based solver. In contrast, position based
cloth simulation derives the new velocities from the projec-
tions, making an additional solver pass obsolete. Therefore,
every position based strain limiting method used in force
based simulations can directly be used in a PBD solver.

The result of projecting along edges depends on the
structure of the mesh. To reduce this artifact, Wang et al.
[WOR10] propose to limit the principal strains of the 2D
deformation field within each triangle. The 2D deformation
field can be determined by considering the 2D coordinates
of the vertices of a triangle within the planes of the rest and
current triangle configurations. [WOR10] compute the prin-
cipal strains of the 2D deformation gradient, clamp them
and construct a new 2D transformation using the clamped
strains. With this new transformation they correct the current
positions of the triangle vertices. As before, to limit strain
globally, they iterate through all triangles multiple times in a
Gauss-Seidel fashion.

Bender, Müller, Otaduy and Teschner / Position-based Methods for the Simulation of Solid Objects

Figure 4: The image shows a mesh that is simulated using stretching and bending constraints. The top row shows
(kstretching,kbending) = (1,1), (1

2 ,1) and (1
100 ,1). The bottom row shows (kstretching,kbending) = (1,0), (1

2 ,0) and (1
100 ,0).

Due to the relatively slow convergence rate of a Gauss-
Seidel solver, high iteration counts are necessary to limit the
strain globally which slows down the simulation. The two
main methods to improve the convergence rate are the use of
a global Newton-Raphson solver as proposed by Goldenthal
et al. [GHF∗07b] or to perform Gauss-Seidel iterations on a
hierarchy of meshes as proposed by [Mül08] and [WOR10].
However, these methods complicate the implementation and
even though their convergence rate is higher, a single it-
eration can be significantly more expensive than a simple
Gauss-Seidel iteration.

Recently, Kim et al. [KCM12] found a surprisingly sim-
ple and robust technique they call Long Range Attachments
(LRA) to prevent cloth from getting stretched globally with
low iteration counts. Their method exploits the fact that
stretching artifacts almost only appear when cloth is at-
tached. In this case, instead of only applying attachment con-
straints to the subset of the vertices near the region where
the cloth is attached and relying on error propagation of the
solver for all other vertices, they apply unilateral attachment
constraints to all the vertices by attaching each vertex to one
or more attachment point directly. The rest lengths of these
long range attachments can either be set to the Euclidean
distance in the rest state or via measuring geodesic lengths
along the cloth. Figure 6 demonstrates the method on a sin-
gle rope attached at one end. The method allows the simula-
tion of a piece of cloth with 90K vertices at interactive rates
as shown in Figure 7.

A similar approach was recently proposed by Müller et
al. [MKC12] to guarantee zero stretch in a single pass for
the case of attached ropes. This approach allows the simu-
lation of thousands of hair strands in real time (Figure 9).
Figure 8 visualizes the basic idea. Particle x1 is attached. To

Figure 6: The Long Range Attachments (LRA) method used
to simulate an inextensible rope attached at one end. Each
particle is constrained or remain inside a sphere centered
at the attachment point (red) whose radius is the initial dis-
tance from the particle to the attachment. For each config-
uration, target positions are shown in green when particles
need to be projected. Particles inside the constraint spheres
are allowed to move freely.

satisfy the first distance constraint, particle x2 is moved to-
wards x1 such that their mutual distance is l0. Particle x3
is then moved towards the new position of x2 and similarly
along the chain until the last particle is reached. After this
single pass, all the distance constraints are satisfied. This
method is called Follow The Leader (FTL). While LRA guar-
antees zero stretch of all the particles w.r.t. the attachment
points, the constraint between consecutive particles can still
remain overstretched. On the other hand, in contrast to LRA
which is momentum conserving, FTL introduces unphysical
behavior. Not projecting distance constraints symmetrically
means that a system is simulated for which each particle has

Bender, Müller, Otaduy and Teschner / Position-based Methods for the Simulation of Solid Objects

Figure 7: Simulation of a piece of cloth with 90K vertices at
20fps on a GPU using LRA.

infinitely more mass than its successor. To compensate for
this behavior, the authors replace the PBD velocity update
vi← (pi−xi)/∆t by

vi←
pi−xi

∆t
+ sdamping

−di+1
∆t

, (13)

where di+1 is the position correction applied to particle i+1
and sdamping ∈ [0,1] a scaling factor do influence damping.
While this modification of DFTL (dynamic FTL) hides the
un-physical behavior of FTL, it introduces a certain amount
of damping which is acceptable for the simulation of hair
and fur as the author’s results show.

l0

l0

l0

1x

2x

3x
4x

Figure 8: Follow The Leader (FTL) projection. Starting
from the attachment down, each particle is moved directly
towards its predecessor such that their mutual distance con-
straint is satisfied.

3.6. Wrinkle Meshes

In cloth simulations, reducing the mesh resolution not only
reduces the cost of a single solver iteration but also the num-
ber of iterations required to get visually pleasing results.
In [MC10] the authors proposed a way to reduce the res-
olution of the dynamic mesh without losing too much vi-
sual detail. The most significant detail in cloth simulations
are small wrinkles. The method is based on the observation
that global dynamic behavior of the cloth and wrinkle forma-
tion can be separated. Therefore, expensive dynamic simu-
lation including collision handling is performed on a low-
resolution mesh. The wrinkle formation is handled on a high
resolution mesh that is attached to the dynamic mesh (see
Figures 10 and 11). Since wrinkles do not oscillate, it is suf-
ficient to use a static solver with a low iteration count on the
high-resolution mesh.

Figure 10: Basic idea of wrinkle meshes. The high resolu-
tion wrinkle mesh (white vertices) follows the low-resolution
dynamic mesh (black vertices) by restricting the white ver-
tices to remain within a certain distance (gray discs) to the
dynamic mesh.

Figure 11: Visualization of the wrinkle mesh (solid) and the
underlying dynamic mesh (wireframe).

Figure 12 shows the constraints defined on the high-
resolution mesh to make it form wrinkles and follow the dy-
namic mesh. The attachment constraints makes sure that the
vertices of the wrinkle mesh stay close to their attachment
points on the dynamic mesh. If the dynamic mesh has out-
side/inside information, a one-sided constraint can be used

Bender, Müller, Otaduy and Teschner / Position-based Methods for the Simulation of Solid Objects

Figure 9: Dynamic FTL allows the simulation of every hair strand in real time. From left to right: 47k hair strands simulated at
25 fps including rendering and hair-hair repulsion. Long hair composed of 1.9m particles at 8 fps. Curly hair using visualization
post-processing.

which makes sure that the wrinkle vertices stay on the out-
side of the dynamic mesh, thus avoiding penetrations with
other objects. The stretching and bending constraints are re-
sponsible for wrinkle formation.

p

a

1p

2p
0l

n

a

p

1p 2p

3p

4p

Figure 12: Static constraints on a wrinkle mesh: Attach-
ment constraint (top left), one sided attachment constraint
(top right), stretch constraint (bottom left) and bending con-
straint (bottom right).

3.7. Damping

The quality of dynamic simulations can generally be im-
proved by the incorporation of an appropriate damping
scheme. As a positive effect, damping can improve the sta-
bility by reducing temporal oscillations of the point positions
of an object. This enables the use of larger time steps which
increases the perceived performance of a dynamic simula-
tion. On the other hand, damping changes the dynamic mo-
tion of the simulated objects. The resulting effects can be ei-
ther desired, e.g. reduced oscillations of a deformable solid,
or disturbing, e.g. changes of the linear or angular momen-
tum of the entire object.

Generally, a damping term CẊ can be incorporated into
the motion equation of an object where Ẋ denotes the vector
of all first time derivatives of positions. If the user-defined
matrix C is diagonal, absolute velocities of the points are

damped, which sometimes is referred to as point damping. If
appropriately computed, such point damping forces result in
an improved numerical stability by reducing the acceleration
of a point. Such characteristics are desired in some settings,
e.g. in the context of friction. In the general case, however,
the overall slow-down of an object, caused by point damp-
ing forces, is not desired. Point damping forces are, e.g.,
used in [TF88] or in [PB88], where point damping is used
for dynamic simulations with geometric constraints such as
point-to-nail.

In order to preserve linear and angular momentum of
deformable objects, symmetric damping forces, usually re-
ferred to as spring damping forces, can be used. Such forces
can be represented by non-diagonal entries in the matrix
C. Such damping forces are, e.g., described in [BW98]
or [NMK∗06]. These approaches are independent from
the deformation model. Therefore, they can also be ap-
plied to position-based methods. However, as [BW98]
and [NMK∗06] rely on topological information of the object
geometry, they cannot be applied to meshless techniques
such as shape matching.

Point and spring damping can be used to reduce cur-
rent velocities or relative velocities. However, it is generally
more appropriate to consider predicted velocities or relative
velocities for the next time step.

An interesting damping alternative has been presented
in [SGT09]. Here, the idea of symmetric, momentum-
conserving forces is extended to meshless representations.
Global symmetric damping forces are computed with respect
to the center of mass of an object. While such forces con-
serve the linear momentum, the preservation of the angular
momentum is guarantueed by force projection onto relative
positions or by torque elimination using Linear Program-
ming. The approach presented in [SGT09] iteratively com-
putes damping forces. The paper, however, also shows the
convergence of the iterative process and how to explicitely
compute the final solution. Therefore, the approach is an ef-
ficient alternative to compute damping forces for arbitrary
position-based deformation models with or without connec-

Bender, Müller, Otaduy and Teschner / Position-based Methods for the Simulation of Solid Objects

tivity information. The approach can be used to damp oscil-
lations globally or locally for user-defined clusters.

3.8. Parallelization

Parallelization of the PBD approach is an important topic
since multi-core systems and massively parallel GPUs are
ubiquitous today.

In a single CPU implementation, the solver processes
the constraints one by one in a Gauss-Seidel-type fashion.
Thereby, after each constraint projection, the positions of af-
fected particles are immediately updated. In a parallel imple-
mentation, the constraints are processed in parallel by mul-
tiple threads. If two constraints affecting the same particle
are handled by two different threads simultaneously, they are
not allowed to immediately update the particle’s position be-
cause writing to the same position simultaneously leads to
race conditions making the process unpredictable. A solu-
tion to circumvent this problem is to use atomic operations.
Such operations are guaranteed not to be interrupted. How-
ever, atomics can slow down parallel execution significantly.

To avoid these issues, a parallel implementation of PBD
needs to split the constraints into groups or phases. In each
phase, none of the constraints are allowed to share a com-
mon particle. With this restriction, the constraints in the first
phase can be processed in parallel without conflicts. Then,
after a global synchronization, the next phase can be pro-
cessed. This cycle is repeated until all constraints are pro-
cessed.

As an example, if N particles are connected in a serial
chain, the constraints 1−2,3−4,5−6,7−8, .. can be pro-
cessed in phase 1 and the constraints 2−3,4−5,6−7, .. in
phase 2. This specific example corresponds to the Red-Black
Gauss Seidel scheme, where there are two sets (colors) of
constraints. For more general types of constraint such as the
stretch, shear and bending constraints of cloth, more phases
are needed. In this general case, splitting constraints into
phases corresponds to the graph coloring problem, where
each constraint corresponds to a node of the graph and two
constraints are connected by an edge if they affect one or
more common particles. The minimum number of colors de-
termines how many phases are needed in the parallel execu-
tion of PBD. Keeping the number of phases small is not the
only optimization criterion. The sets also need to have simi-
lar sizes for good load balancing.

4. Shape Matching

The geometrically motivated concept of shape matching
to simulate deformable objects was introduced by Müller
et al. [MHTG05]. Shape matching is a meshless approach
which is able to simulate visually plausible elastic and plas-
tic deformations (see Figure 13). This approach is easy to
implement, very efficient and unconditionally stable.

x1

x2
x3

x0 x1

x2 x3

x0

g0

g1g2

g3

R, c

Figure 14: The initial shape with the vertex positions x̄i is
matched to the deformed configuration xi to obtain goal po-
sitions gi. The deformed shape is pulled towards these goal
positions to simulate elastic behavior.

The basic idea of simulating elastic behavior with shape
matching is shown in Figure 14. For the simulation the ini-
tial configuration of the deformable object must be stored.
Since no connectivity information is needed, this configura-
tion is defined by the initial positions x̄i. In each time step the
positions and velocities of the particles are updated without
considering any internal constraints between the particles.
Only external forces and collision response are taken into
account. Instead of using internal constraints, goal positions
are determined by matching the initial shape with the de-
formed configuration. Then, each particle is pulled towards
its goal position.

In the following we first describe how the goal positions
are determined. Then we show how large deformations can
be simulated using region-based shape matching and intro-
duce fast summation techniques for this approach. In the end
the concept of oriented particles and different extensions of
the shape matching method are presented.

4.1. Goal Positions

In order to obtain goal positions for the deformed shape the
best rigid transformation is determined which matches the
set of initial positions x̄ and the set of deformed positions
x. The corresponding rotation matrix R and the translational
vectors c and c̄ are determined by minimizing

∑
i

wi (R(x̄i− c̄)+ c−xi)
2

where wi are the weights of the individual points. The opti-
mal translation vectors are given by the center of mass of the
initial shape and the center of mass of the deformed shape:

c̄ = 1
M ∑

i
mix̄i, c = 1

M ∑
i

mixi, M = ∑
i

mi. (14)

If we minimize the term ∑i(Ar̄i − ri)
2 with ri = xi − c

and r̄i = x̄i− c̄, we get the optimal linear transformation A
of the initial and the deformed shape. This transformation is
determined by:

A =

(
∑

i
mirir̄T

i

)(
∑

i
mir̄ir̄T

i

)−1

= ArAs. (15)

Bender, Müller, Otaduy and Teschner / Position-based Methods for the Simulation of Solid Objects

Figure 13: Robust and volume-conserving deformations using shape matching. Armadillos (32442 particles total), 20 ducks
and 20 tori (21280 particles total) and 20 balls (7640 particles total) were simulated in real-time on a GPU.

In our case we are only interested in the rotational part of
this transformation. Since As is symmetric, it contains no
rotation. Therefore, we only need to extract the rotational
part of Ar to get the optimal rotation R for shape matching.
This can be done by a polar decomposition Ar = RS of the
transformation matrix where S is a symmetric matrix.

Finally, the goal positions are determined by

gi = T
[

x̄i
1

]
where T =

[
R (c−Rc̄)

]
. These goal positions are used to

define the following modified integration scheme:

vi(t +∆t) = vi(t)+α
gi(t)−xi(t)

∆t
+∆t

1
mi

fext(t)

xi(t +∆t) = xi(t)+∆tvi(t +∆t)

where α ∈ [0,1] is a user defined stiffness parameter which
defines how far the particles are pulled to their goal posi-
tions.

4.2. Region-Based Shape Matching

The shape matching algorithm described above allows only
for small deviations from the initial shape. For the sim-
ulation of large deformations the concept of region-based
shape matching became popular, see e.g. [MHTG05, RJ07,
DBB11]. The idea is to perform shape matching on several
overlapping regions of the original shape. In each region we
can have a small deviation from the corresponding part of
the initial shape which results in a large deformation over all
regions.

Diziol et al. [DBB11] propose to define a region for each
particle of the model where the i-th region contains all parti-
cles in the ω-ring of the i-th particle in the original mesh of
the model. Shape matching is a meshless method but Diziol
et al. require a mesh to define the shape matching regions.

Figure 15: The stiffness of the model depends on the re-
gion size. Smaller regions (top) allow larger deformations
than larger regions (bottom). The hexagons in the left im-
ages represent the overlapping regions of the model. The
right images show the goal positions after one particle is
moved away.

Rivers and James [RJ07] use a regular lattice instead to de-
fine their regions. No matter which kind of regions are used,
the stiffness of the model depends on the size of the overlap-
ping regions (see Figure 15). Enlarging the regions results in
a more global shape matching and therefore the stiffness of
the simulated model is increased.

In region-based shape matching a particle is part of multi-
ple regions. In the following we denote the set of regions
to which a particle i belongs by <i. Since particles can
belong to more than one region, Rivers and James [RJ07]
proposed to use modified particle masses m̃i = mi/|<i| for
shape matching. This ensures that a particle which is part of
many regions has not more influence than others. The opti-
mal translation vectors for a region i are determined by

c̄i =
1

M̃i
∑

j∈<i

m̃ jx̄ j, ci =
1

M̃i
∑

j∈<i

m̃ jx j (16)

Bender, Müller, Otaduy and Teschner / Position-based Methods for the Simulation of Solid Objects

where M̃i = ∑ j∈<i
m̃ j is the effective region mass which can

be precomputed. The optimal rotation matrix R is computed
by extracting the rotational part of the following matrix:

Ar,i = ∑
j∈<i

m̃ jx jx̄T
j − M̃icic̄T

i . (17)

In this form the first term depends on the particles j of the
region while the second term depends on the region i if the
translation vectors are already available. This isolation of the
dependencies is required for fast summation techniques (see
below).

After performing shape matching for all regions, we get
multiple goal positions for each particle. The final goal po-
sition for a particle is determined by blending the goal posi-
tions of the corresponding regions:

gi =
1
|<i| ∑

j∈<i

T j

[
x̄i
1

]
.

4.3. Fast Summation Techniques

In the case of region-based shape matching the stiffness in-
creases with growing region size ω. However, at the same
time the computation of the optimal translation c and the
transformation matrix Ar becomes a bottleneck since large
sums have to be computed for each region. For a mesh with
the dimension d and n regions, O(ωdn) operations are re-
quired with the naive approach.

Rivers and James demonstrated in [RJ07] how the num-
ber of operations for computing the sums can be reduced to
O(n) for regular lattices (d = 3). In their approach they com-
pute the summation for a set of particles just once and reuse
it for all regions that contain this set. This reduces redun-
dant computations significantly for a system with large over-
lapping regions. The fast summation of Rivers and James
is based on the usage of cubical regions. These cubical re-
gions can be subdivided in two-dimensional plate regions
which can again be subdivided in one-dimensional bar re-
gions. The region summation is performed in three passes.
In the first pass the sum for each bar is determined. The re-
sults are used to compute the sums for the plates which are
again used to obtain the final region sum. Each pass requires
O(ω) operations. However, the region sum can even be de-
termined in constant time if we take into account that the
sum of two neighboring bars, plates or cubes only differs
by one element. Lattice shape matching can be performed in
linear time if the sums in Equations (16) and (17) are evalu-
ated using the fast summation technique described above.

The FastLSM method of Rivers and James has several
limitations. To handle regions where the lattice is not reg-
ular, e.g. on the boundary, several sums are defined in a pre-
processing step for the corresponding node. In the case of
fracturing the definition of these sums must be performed
at run-time which is expensive to compute. Small features

need a fine sampling to obtain realistic results. Since a regu-
lar lattice is used, a fine sampling yields an explosion of the
computational costs. FastLSM does not support a varying
region size to simulate inhomogeneous material.

Steinemann et al. [SOG08] introduce an adaptive shape
matching method which is based on lattice shape matching
to overcome these limitations. A fast summation is realized
by an octree-based sampling and an interval-based definition
of the shape matching regions. The hierarchical simulation
model is created by starting with a coarse cubic lattice and
then performing an octree subdivision. The subdivision pro-
cess can be controlled by a user-defined criterion. At the end
of the process a simulation node is placed at the center of
each leaf cell and a virtual node at the center of each non-
leaf cell. A virtual node stores the sum of all its descendant
simulation nodes.

The fast summation for the hierarchical model is per-
formed by an interval-based method which requires O(1)
operations per region. For each simulation node ni a shape
matching region is defined by a region width ωi. To perform
a fast summation, all summation nodes of a region are de-
termined in a pre-processing step by a top-down traversal.
During the traversal each node n j where all descendant leaf
nodes are closer than ωi is added to region i. If the descen-
dant leaf nodes are contained only partially in region i, the
current node must be refined. Only in this case the traversal
continues.

The top-down traversal assigns O(1) summation nodes to
each region. A fast summation can now be performed in two
steps. In the first step the sums of all nodes in the hierarchy
are determined. This is done by first computing the sums
for the simulation nodes which are the leaf nodes of the hi-
erarchy, and then updating the sums of the virtual nodes in
a bottom-up fashion. The second step sums up the values
of the summation nodes for each region. For a roughly bal-
anced octree the computation of the sums takes O(n) time
where n is the number of simulation nodes. Hence, the adap-
tive shape matching method requires linear time when using
the described fast summation technique to evaluate Equa-
tions (16) and (17).

In contrast to Rivers and James, Diziol et al. [DBB11]
only use the surface mesh of a volumetric model to simu-
late its deformation. Therefore, no interior elements are re-
quired for the simulation which reduces the computational
costs. Diziol et al. introduce a fast summation technique for
arbitrary triangle meshes (d = 2) to compute the large sums
of the region-based approach efficiently. This technique only
requires O(ωn) operations instead of O(ω2n) and can be per-
formed very efficiently in parallel.

The fast summation technique of Diziol et al. is based on
a subdivision of all particles of the mesh in disjoint paths. A
path i is a set of vertices xi1 , . . . ,xin which are connected by
edges. The paths are determined in a precomputation step.

Bender, Müller, Otaduy and Teschner / Position-based Methods for the Simulation of Solid Objects

P0

P1

P2

P3

P4

−
x0+x1+x2

−
x1+x2+x3

Path P0 sum
in regions

x0+x1x0 x0+x1+x2+x3x0+x1+x20Prefix sum P0

x0 x1 x2 x3

Figure 16: Fast summation technique for arbitrary triangle
meshes [DBB11]. First the prefix sums for the disjoint paths
are determined. Then the region sum is computed by adding
the difference of the intersection interval for each path.

The goal of the path construction algorithm is that each re-
gion is intersected by a minimum number of paths. To de-
termine the optimal path layout is computational expensive.
Therefore, a heuristic is used to find a good path layout.

The fast summation is split in two phases (see Figure 16).
In the first phase the prefix sum for each path i is computed
with j ∈ [1,ni]:

cp
i j
=

j

∑
k=1

m̃ik xik , Ap
i j
=

j

∑
k=1

m̃ik xik x̄T
ik .

Since the prefix sums for all paths are independent from each
other, they can be computed in parallel. The sums for a re-
gion r are computed by first setting cr := 0 and Ar := 0.
Then for each path i which intersects the region in the inter-
val [ik, . . . , il], the following terms are added:

cr := cr + cp
il − cp

ik−1
, Ar := Ar +Ap

il −Ap
ik−1

. (18)

The final translational vector and the affine matrix are de-
termined by cr := (1/M̃r)cr and Ar := Ar− M̃rcr c̄T

r respec-
tively.

4.4. Oriented Particles

For a small number of particles or particles that are close
to co-linear or co-planar (as in Figure 17), the matrix Ar in
Equation (15) becomes ill-conditioned and the polar decom-
position needed to obtain the optimal rotation tends to be
numerically unstable.

To solve this problem, Müller et al. [MC11b] proposed
to use oriented particles. By adding orientation information
to particles, the polar decomposition becomes stable even
for single particles. The moment matrix of a single spherical
particle with orientation R ∈ R3×3 and finite radius r at the
origin is well defined and can be computed via an integral

over its volume as

Asphere =
∫

Vr

ρ(Rx)xT dV = ρR
∫

Vr

xxT dV (19)

=
4
15

πr5
ρR =

4
15

πr5 m
Vr

R

=
1
5

mr2R,

where Vr is the volume of a sphere of radius r. Since R is an
orthonormal matrix, Ai always has full rank and an optimal
condition number of 1. For an ellipsoid with radii a,b and c
we get

Aellipsoid =
1
5

m

 a2 0 0
0 b2 0
0 0 c2

R. (20)

However, the moment matrices of the individual particles
cannot simply be added because each one is computed rel-
ative to the origin. We need the moment matrix of particle i
relative to the position xi− c.

Fortunately, this problem can be fixed easily. As we saw
above, the equation for computing the moment matrix

A = ∑
i

mi(xi− c)(x̄i− c̄)T , (21)

can be re-written as

A = ∑
i

mixix̄T
i −Mcc̄T , (22)

where c̄ and c are the centers of mass of the initial and the
deformed shape, respectively (see Equation (14)).

Therefore, shifting the evaluation from the origin to the
position xi− c yields

Aglobal
i = Ai +mixix̄T

i −micc̄T . (23)

Equation (21) now generalizes to

A = ∑
i

(
Ai +mixix̄T

i

)
−Mcc̄T (24)

= ∑
i
(Ai +mi(xi− c)(x̄i− c̄T). (25)

As you can see, the last form looks like Equation (21) but
with all the individual particle moment matrices added in
the sum.

In addition to position x and velocity v, oriented particles
carry a rotation which can be defined as an orthonormal ma-
trix R as above or a unit quaternion q. They also carry the
angular velocity ω. In the prediction step of position-based
dynamics, these two quantities have to be integrated as well:

xp← x+v∆t (26)

qp←
[

ω

|ω| sin(
|ω|∆t

2
),cos(

|ω|∆t
2

)

]
q, (27)

For stability reasons, qp should directly be set to q if |ω|< ε.

Bender, Müller, Otaduy and Teschner / Position-based Methods for the Simulation of Solid Objects

After the prediction step, the solver iterates multiple times
through all shape match constraints in a Gauss-Seidel type
fashion as before. To simulate objects represented by a mesh
of linked particles, [MC11b] define one shape matching
group per particle. A group contains the corresponding parti-
cle and all the particles connected to it via a single edge. The
positions of the particles in a group are updated as in regular
shape matching by pulling them towards the goal positions
while the orientation of the center particle only is replaced
by the optimal rotation of shape matching.

After the solver has modified the predicted state (xp,qp),
the current state is updated using the integration scheme

v← (xp−x)/∆t (28)

x← xp (29)

ω← axis(qpq−1) · angle(qpq−1)/∆t (30)

q← qp, (31)

where axis() returns the normalized direction of a quaternion
and angle() its angle. Again, for stability reasons, ω should
be set to zero directly if |angle(qpq−1)| < ε. There are two
rotations, r= qpq−1 and−r transforming q into qp. It is im-
portant to always choose the shorter one, i.e. if r.w < 0 use
−r. As in traditional PBD for translation, changing the rota-
tional quantity qp in the solver also affects its time derivate
ω through the integration step creating the required second
order effect.

The orientation information of particles cannot only be
used to stabilize shape matching but also to move a visual
mesh along with the physical mesh. With position and ori-
entation, each particle defines a full rigid transformation at
every point in time. This allows the use of traditional linear
blend skinning with particles replacing skeletal bones.

An additional advantage of having orientation informa-
tion is that ellipsoids can be used as collision volumes for
particles. This allows a more accurate approximation of the
object geometry than with the same number of spherical
primitives (see Figure 18).

4.5. Extensions

There exist several extensions for shape matching. In the fol-
lowing we will introduce volume conservation and plastic
deformation.

4.5.1. Volume Conservation

The conservation of volume plays an important role in the
dynamic simulation of deformable bodies. Since most soft
biological tissues are incompressible, this is an essential ex-
tension in the field of medical simulation. However, it is also
used in the field of shape modeling [vFTS06] since volume
conserving deformations appear more realistic.

In the following we introduce the position-based approach

Figure 17: This underwater scene demonstrates the ability
of the oriented particle approach to handle spare meshes
such as the one-dimensional branches of the plants or the
fins of the lion fish.

Figure 18: The rotation information of oriented particles
cannot only be used to stabilize shape matching, it also al-
lows the use of ellipsoids as collision primitives. The figure
shows how the same mesh is approximated much more accu-
rately with ellipsoids (right) than with the same number of
spheres (left).

for volume conservation of Diziol et al. [DBB11]. This
method considers only the surface of a simulated object and
does not require interior particles which reduces the compu-
tational effort. The volume V of a volumetric 3D shape V can
be determined by using the divergence theorem as proposed
by [HJCW06]:∫∫∫

V

∇·xdx =
∫∫
∂V

xTndx = 3V (32)

where ∂V is the boundary of the shape and n is the surface
normal. If the boundary is given as triangle mesh, the inte-

Bender, Müller, Otaduy and Teschner / Position-based Methods for the Simulation of Solid Objects

gral can be written as sum over all triangles i:

V (X) :=
1
3

∫∫
∂V

xTndx =
1
9 ∑

i
Ai(xi1 +xi2 +xi3)

Tni (33)

where Ai is the area and i1, i2 and i3 are the vertex indices
of the i-th triangle. Now we can define a volume constraint
C := V (X)−V (X̄) = 0 and compute a position correction
(see Section 3):

∆xi =−
wiC(X)

∑ j w j‖∇x jC(X)‖2∇xiC(X). (34)

The weights wi are used to realize a local volume conserva-
tion (see below). The gradient can be approximated by

∇C(X)≈ 1
3
[nT

1 , . . . ,n
T
n]

T

where ni = ∑A jn j is the sum of the area weighted normals
of all triangles which contain particle i.

The weights in Equation 34 are chosen as follows:

wi = (1−α)wl
i +αwg

i , wl
i =

‖∆xi‖
∑ j ‖∆x j‖

, wg
i =

1
n

where wl
i and wg

i are the weights for local and global vol-
ume conservation, respectively, and the user-defined value
α ∈ [0,1] is used to blend between both. The vector ∆xi con-
tains the position change of the i-th particle in the shape
matching step. Hence, strongly deformed particles partici-
pate more in volume correction. The weight of a colliding
particle is set to zero in order to ensure that a collision con-
straint is not violated during the position correction for the
volume conservation. Finally, the weights are smoothed by
a Laplacian filter.

Diziol et al. also propose another definition for the local
weights wl

i . To propagate volume changes through the ob-
ject, they first determine pairs of opposing particles in a pre-
processing step by intersecting the geometry with multiple
rays. Then they choose a local weight which does not only
depend on the position change of a particle but also on the
distance change of the corresponding particle pairs.

Analogous to the positions correction we perform a veloc-
ity correction to fulfill the constraint ∂C/∂t = 0. This leads
to a divergence free velocity field.

In Figure 19 different configurations for the presented vol-
ume conservation method are compared with each other.

4.5.2. Plastic Deformation

Shape matching can be extended in order to simulate plastic
deformations [MHTG05]. If we perform a polar decompo-
sition Ar = RS for the linear transformation matrix Ar (see
Equation 15), we get a rotational part R and a symmetric
part S = RT Ar. The matrix S represents a deformation in
the unrotated reference frame. Hence, for each region we can
store the plastic deformation state in a matrix Sp which is ini-
tialized with the identity matrix I. As proposed by O’Brien

Figure 19: Four spheres with different volume conservation
squeezed by a plate. Left to right: global conservation, lo-
cal conservation with distance constraints, local conserva-
tion without distance constraints and no volume conserva-
tion. The maximum volume loss was 0.6%, 0.7%, 0.7% and
40% respectively.

et al. [OBH02], we use two parameters cyield and ccreep to
control the plastic behavior of the material. If the condition
‖S− I‖2 > cyield is fulfilled for the deformation matrix S of
the current time step, the plastic deformation state is updated
as follows:

Sp← [I+∆tccreep(S− I)] Sp.

After this update, Sp is divided by 3
√

det(Sp) in order to
conserve the volume. The plastic state Sp is integrated in the
shape matching process by deforming the reference shape in
Equation 15. This is done by replacing the definition of r̄i
(see Section 4.1) with

r̄i = Sp (x̄i− c̄) .

Note that the plasticity can be bound by the condition
‖Sp− I‖2 > cmax where cmax is the threshold for the max-
imum plastic deformation. If this condition is fulfilled, we
use Sp← I+ cmax(Sp− I)/‖Sp− I‖2.

4.6. Cloth Simulation

Stumpp et al. [SSBT08] presented a region-based shape
matching approach for the simulation of cloth. In their work
they define a region for each triangle in the model. But in-
stead of using the triangles directly as regions for shape
matching, overlapping regions are defined. The region of a
triangle is defined by the outer corners of its adjacent tri-

Bender, Müller, Otaduy and Teschner / Position-based Methods for the Simulation of Solid Objects

angles. These overlapping regions enable the bending resis-
tance of the cloth model.

To perform shape matching the optimal translation vec-
tors of the regions are determined by evaluating Equation 16.
Since the triangular regions are two-dimensional, the op-
timal rotation can be extracted by a 2D polar decomposi-
tion [SD92]. For each region the current positions of the ver-
tices x and their rest state positions x̄ are projected in the
two-dimensional space of the corresponding triangle. Then
a 2D version of the matrix Ar is determined by evaluating
Equation 17 for the projected position vectors. By a polar
decomposition of the resulting matrix the 2D rotation ma-
trix is obtained. This rotation matrix is used to compute 2D
goal positions for the particles. Finally, these goal positions
are transformed to world space and the particles are pulled
towards the resulting positions.

The size of the shape matching regions directly influences
the stiffness of the model. Since the simulation model of
Stumpp et al. has triangular regions, the stiffness of high res-
olution models is too low for realistic results. Therefore, they
introduce so-called fiber clusters which are used to increase
the stretching stiffness. These one-dimensional regions are
determined in a pre-processing step by subdividing the mesh
into multiple edge strips with an angle of approximately 180
degree between adjacent edges. During the simulation each
strip is traversed in both directions to obtain goal positions
for the particles. In each step of a traversal the next particle in
the strip is pulled towards the current one in order to restore
the initial length of the corresponding edge. After perform-
ing both traversals the resulting goal positions are averaged.
Each goal position defines a displacement. These displace-
ments are translated so that they sum up to 0 to preserve
the momentum of the model. The final goal positions are
blended with the goal positions of the triangular regions. The
usage of fiber clusters is not physically correct but the results
are visually plausible and the increased stiffness yields more
realistic results.

4.7. Parallelization

In Section 4.3 we presented different fast summation tech-
niques for shape matching. The one of Diziol et al. [DBB11]
is best suited for a parallel implementation on the GPU.
In the following the GPU implementation of this technique
with CUDA is described in detail. For such an implementa-
tion memory access and memory layouts play an important
role as well as the number of kernel calls.

Since each kernel call introduces a computational over-
head, the particles of all objects in a simulation are packed
into one single array. This array is ordered according to the
path layout which is used for the fast summation (see Sec-
tion 4.3). Since the array contains the paths one after an-
other, a segmented prefix sum [SHZO07] can be used to de-
termine the prefix sums of all paths at once. To avoid nu-
merical problems due to the 32 bit floating-point arithmetics

on the GPU, the path length is limited to 512. The resulting
prefix sums are stored in texture memory to benefit from the
texture cache when the translational vectors and the affine
matrices are determined (see Equation 18).

The volume conservation introduced in Section 4.5.1 can
also be performed efficiently on the GPU. This is done by
evaluating the volume integral (see Equation 32), the inte-
gral which is required to obtain a divergence free velocity
field and the weights for the local volume conservation in
parallel. Both integrals can be written as sums over the ver-
tices (see Equation 33). Hence, the integrals as well as the
weights can be computed by a segmented sum reduction. Fi-
nally, the smoothing of the weights by a Laplacian filter can
be performed in parallel using the fast summation technique
as described above.

5. Geometric Data-Driven Methods

The behavior of solid objects can be accurately described us-
ing well-known mechanical models, but real-world objects
display other inherent sources of complexity that largely
limit the results of traditional models in computer anima-
tion. Complexity is produced, for example, by nonlinear or
anisotropic behaviors, by heterogeneous properties, or by a
high dynamic range. These sources of complexity are typi-
cally addressed by designing complex nonlinear constitutive
models to describe the mechanical behavior of solid objects.
However, these models require computationally expensive
simulation algorithms, and their parameters are difficult and
tedious to tune, particularly if the properties are heteroge-
neous. All in all, the animation of solid objects is limited by
the domain of effects captured by the underlying physical
models, but also by their parameterization accuracy.

Data-driven methods offer an alternative to complex con-
stitutive models, as they turn the modeling metaphor into
the knowledge of a system’s response under several ex-
ample conditions. This section describes geometric data-
driven methods in computer animation. It formulates a two-
scale representation of geometry and dynamics, describes
the computation of detailed geometry as the interpolation of
example data, and discusses several successful examples.

5.1. Two-Scale Geometry and Dynamics

Let us consider the surface of a solid object (e.g., the cloth
in Figure 20), with vertex positions x ∈ R3. These positions
can be decomposed into a low-resolution position x0 and a
fine-scale displacement ∆x, expressed in a local reference
system for each vertex (i.e., with orientation R):

x = x0 +R∆x. (35)

This definition of vertex positions essentially decomposes
large-scale geometry (i.e., the overall shape of the object)
from the small-scale deformation (i.e., wrinkles).

Bender, Müller, Otaduy and Teschner / Position-based Methods for the Simulation of Solid Objects

Figure 20: Data-driven animation of cloth wrinkles. On the left, a low-resolution feature mesh, a smooth mesh obtained by
subdivision, and a high-resolution detail mesh. On the right, a schematic depiction of the data-driven wrinkle computation.
The feature mesh is subdivided to obtain the smooth mesh, and then detailed wrinkles are added in a local reference frame by
combining detail from examples.

The large-scale and fine-scale geometry can be repre-
sented at different resolutions, connected through subdivi-
sion schemes. As shown in Figure 20 for a cloth object, a
low-resolution feature mesh defines the large-scale defor-
mation. A high-resolution smooth mesh is obtained by sub-
dividing the feature mesh a user-defined number of times,
and can be regarded as an upsampled version of the fea-
ture mesh. Finally, a high-resolution detail mesh is obtained
by adding local displacements onto the smooth mesh. The
smooth and detail meshes fully share the connectivity, thus
trivially defining their correspondence.

Once large-scale and fine-scale geometry are separated,
they can be computed using different models. The choice of
models can be made based on the following observations.
First, for many objects such as the face or cloth, the most
salient dynamic effects can be captured at a large scale. For
example, Bickel et al. [BLB∗08] and Ma et al. [MJC∗08]
compute the large-scale face geometry from an actor’s per-
formance, using a single face scan and sparse mocap mark-
ers as input, and a linear deformation model. Wang et
al. [WRO11] compute the large-scale geometry of tight cloth
as a function of a character’s pose. Zurdo et al. [ZBO12] and
Kavan et al. [KGBS11] compute the large-scale geometry
of loose cloth using a low-resolution dynamics model with
contact handling.

A second important observation is that plausible high-
resolution wrinkles can often be defined as a quasi-static
function in a reduced low-resolution domain u. For the face,
and due to the repetitive nature of facial expressions, tissue
becomes weaker at certain locations, and expressive wrin-

kles appear in a deterministic fashion as a function of large-
scale deformation, and indirectly as a function of muscle
activations and facial bone configurations. For cloth, even
though real wrinkles require a large number of degrees of
freedom to capture their true diversity, plausible wrinkles
can be defined in the reduced domain of large-scale deforma-
tion. We can formally write the dependency between high-
resolution detail ∆x and the low-resolution configuration u
as a position-based model ∆x = f (u).

The reduced-domain definition presents some limitations,
which should be mentioned upfront. Fine-scale wrinkle dy-
namics cannot be captured, as wrinkles are defined quasi-
statically. And the model captures only a limited set out of all
the possible wrinkles that a solid object might present. How-
ever, the power of data-driven methods is that the generic
function f makes use of data from real deformation exam-
ples; therefore, data-driven wrinkles preserve natural char-
acteristics such as length, width, and consistency over time,
and they appear plausible despite their limitations.

5.2. Data-Driven Geometric Detail

At this point, we have a suitable setting to define a position-
based data-driven model. For data collection, we need to
record example deformations (denoted by the subscript
i), with vertex displacements {∆xi} and low-resolution
configurations {ui} in correspondence. Then, we apply
learning methods to design a data-driven approximation of
the function f , which can be formally defined as ∆x ≈
f̂ (u,{∆xi},{ui}).

Bender, Müller, Otaduy and Teschner / Position-based Methods for the Simulation of Solid Objects

A general and successful approach to define a data-driven
approximation f̂ is through a linear combination of example-
based basis functions,

∆x = ∑
j

w j(u)b j, (36)

with weights w j computed as a function of the low-
resolution configuration u. In the expression above, b j ∈ R3

constitutes an example-based detail displacement, and rep-
resents the values associated with one vertex in the jth basis
function.

In the rest of this section, we discuss several examples of
position-based data-driven deformation models, which differ
in terms of the choice of low-resolution configuration, basis
functions, or interpolation method.

5.2.1. Weighted Pose-Space Deformation

Bickel et al. [BLB∗08] proposed a data-driven method to
compute facial wrinkles as a function of large-scale defor-
mation and a small set of example deformations, and later
Zurdo et al. [ZBO12] followed a similar strategy for cloth
animation. Figure 21 shows an example facial animation by
Bickel et al., and Figure 22 an example cloth animation by
Zurdo et al.

In their methods, the basis function combination in Equa-
tion (36) follows the weighted pose-space deformation
(WPSD) approach [KM04]. In a nutshell, the basis functions
constitute local vertex displacements in example deforma-
tions, called poses, and the weights w are convex weights for
each of the poses. The weights of the poses are computed us-
ing scattered-data interpolation based on radial basis func-
tions (RBFs) in pose space. In this case, the pose space is
given by the large-scale deformation u.

As shown by Zurdo et al., pose weights can be com-
puted through WPSD on the sparse vertices of the feature
mesh, and then simply interpolated to the vertices of the de-
tail mesh using subdivision weights. For the computation of
pose weights on a given vertex, WPSD requires a local def-
inition of the pose space u. Both Bickel et al. and Zurdo et
al. use a metric of local low-resolution strain, formed by con-
catenating the deformation of the 16 closest edges of the fea-
ture mesh, multiplied by fast-decaying weights. With RBF
interpolation, the weight of each pose is computed as

w j = ∑
i

ωi, j φ(‖u−ui‖). (37)

The RBF weights ωk, j are precomputed such that pose
weights fulfill the Kronecker delta for the database of poses,
i.e., w j(ui) is 0 if j 6= i and 1 if j = i, for poses j and i in the
database. The function φ represents a specific type of RBF.
Both Bickel et al. and Zurdo et al. use RBFs with global sup-
port φ(r) = r, as they avoid complex tuning of support radii
for unevenly sampled data [CBC∗01].

The selection of poses starts with the generation of train-
ing data, which requires a database of synchronized fea-
ture and detail meshes. Zurdo et al. employ the TRACKS
method [BMWG07] to precompute cloth simulations where
the detail mesh tracks the motion of the feature mesh. In
the training simulations, contact is solved both on the fea-
ture mesh and the detail mesh, and then the high-resolution
information in the poses captures the response to contact.
From all mesh pairs in the database, Zurdo et al. select only
a small number of poses (typically 6), until the L2 error be-
tween synthesized animations and the training dataset is be-
low a certain threshold. The set of poses is grown in a greedy
manner, adding each time the mesh pair with largest L2 error
between the training and synthesized configurations.

5.2.2. Polynomial Displacement Maps

Ma et al. [MJC∗08] designed Polynomial Displacement
Maps (PDM), a method for data-driven computation of wrin-
kles in facial animation, following the computational strat-
egy of Polynomial Texture Maps [MGW01]. Despite the
computational differences, the method shares many similar-
ities with the WPSD approach of Bickel et al. [BLB∗08].

In the general data-driven framework described by Equa-
tion (36), the low-resolution configuration of PDM is defined
as a two-dimensional local strain metric of the feature mesh,
u = (u1,u2). In particular, this metric is obtained through
principal component analysis of a five-dimensional vector
formed by the local vertex offset and the in-plane strain of
the feature mesh. Based on this low-resolution configura-
tion, the weights in Equation (36) are defined based on bi-
quadratic polynomials, w(u) = (u2

1 u2
2 u1u2 u1 u2 1). Finally,

the detail position of each vertex in the detail mesh, ∆x, is de-
fined as a scalar displacement in the local normal direction.

Due to the choice of biquadratic PDMs, the per-vertex dis-
placements are computed through linear combination of six
basis functions, which are stored in texture maps. Ma et al.
compute the coefficients in these texture maps as the result
of a least-squares problem that minimizes the fitting error
over the training data.

5.2.3. Physics-Inspired Upsampling

Kavan et al. [KGBS11] proposed a data-driven method
to compute cloth animations with detailed wrinkles at
videogame frame rates. In their approach, high-resolution
cloth positions are computed following a position-based
data-driven method, but the data is learned from dynamic
simulations with tracking of high-resolution and low-
resolution geometry, similar to the approach by Zurdo et
al. [ZBO12] described earlier.

In physics-inspired upsampling (PIU), the weights w in
Equation (36) correspond directly to the vertex positions of
the feature mesh. The basis functions coefficients b extend
subdivision schemes, and are learned from a database of ex-
ample deformations.

Bender, Müller, Otaduy and Teschner / Position-based Methods for the Simulation of Solid Objects

Figure 21: Example of facial animation with the data-driven method of Bickel et al. [BLB∗08]. From left to right: large-scale
deformation interpolating mocap markers, full result data-driven detail computation, the same result with full shading, and
comparison to the real actor’s face.

Figure 22: Top row: a low-resolution model of a dress, with only 381 triangles, defines the dynamics, the large-scale defor-
mation, and response to contact. The dress is then subdivided to 24384 triangles for rendering. Bottom row: high-resolution
wrinkles are interpolated from 6 example poses based on the large-scale deformation of the dress, using the data-driven method
of Zurdo et al. [ZBO12].

For the description of the method in more detail, let us
define the low-resolution deformation u as a vector that con-
catenates the vertex positions of the low-resolution feature
mesh. We also define a matrix B of upsampling basis func-
tions, being each row of B the basis function for one vertex
coordinate. Finally, we define a vector X that concatenates
all vertex positions of the high-resolution detail mesh. Note
that the method of Kavan et al. computes high-resolution
positions directly, not local displacements as discussed ear-
lier. With these definitions, the data-driven detail from Equa-
tion (36) can be rewritten as X = Bu.

Given the data captured in training simulations, expressed
as example deformations of the feature mesh, {ui}, and the
detail mesh, {Xi}, Kavan et al. compute basis functions

through an optimization problem

B = argmin∑
i
‖Bui−Xi‖. (38)

The optimization must satisfy additional constraints. In par-
ticular, the basis functions B must constitute a partiton of
unity, and the objective function includes a regularization
term to prevent overfitting.

As mentioned earlier, one of the limitations of pure
position-based data-driven methods is that wrinkles are
quasi-static functions of low-resolution deformations. In
PIU, Kavan et al. add oscillatory modes to allow the sim-
ulation of traveling waves.

Bender, Müller, Otaduy and Teschner / Position-based Methods for the Simulation of Solid Objects

5.3. Parallelization

One of the most attractive features of position-based data-
driven methods is that they can be massively parallelized.
Taking as reference Equation (36), the multiplication of ba-
sis weights times the basis values follows the same proce-
dure at all vertices of the detail mesh, but it can be executed
in a completely independent manner on each vertex. There-
fore, this multiplication is very well suited for implementa-
tion on SIMD architectures. In fact, it can be handled as a
dense matrix-vector product.

Moreover, the evaluation of weights w can also be done
independently for each basis. In the PIU method described
above, the weights are trivially defined as the positions of
vertices in the feature mesh, hence they do not need fur-
ther evaluation. In the WPSD and PDM methods, on the
other hand, these weights are computed as a function of low-
resolution deformation. As shown by Zurdo et al. [ZBO12],
the nonlinear weights at feature vertices can be evaluated
easily on the CPU, and then interpolated to detail vertices
using subdivision weights. This interpolation step is trivial
to parallelize on SIMD architectures.

Thanks to the highly parallel nature of data-driven algo-
rithms, existing implementations exhibit very high perfor-
mance. For example, Zurdo et al. [ZBO12] simulate cloth
with 25.6K triangles at 125 fps including contact handling
on the feature mesh, Kavan et al. [KGBS11] simulate a cape
with 10K vertices at 1kHz, and Bickel et al. [BLB∗08] ani-
mate a face with more than 1M triangles at 30 fps.

5.4. Discussion

The particular data-driven methods discussed here present
different pros and cons. Among all methods, PIU is prob-
ably the fastest method, as it relies on simple matrix-vector
multiplication. However, the result is limited to a linear oper-
ator, and wrinkles may appear smoothed. WPSD and PDM,
on the other hand, allow nonlinear operators, and the combi-
nation of the input data is decided in a local manner.

With WPSD and PDM, the representation is more com-
pact, thanks to the choice of low-resolution strain as inter-
polation domain. Low-resolution strain has also been used
as a parameter space for cloth wrinkles in procedural mod-
els [RPC∗10], or in the Wrinkle Meshes method [MC10]. In
the position-based Wrinkles Meshes method, described in
Section 3.6, the low-resolution strain affects wrinkle model-
ing indirectly, as it influences the deformation of the high-
resolution cloth.

One limitation of most data-driven methods is that
wrinkles are defined as a quasi-static function of the
feature mesh, hence they exhibit no dynamics. Kavan et
al. [KGBS11] somewhat alleviate this problem by adding
oscillatory modes, but the solution does not support all
dynamic effects. The work of de Aguiar et al. [dASTH10]

offers an interesting approach to data-driven simulation of
dynamic effects, but it models low-resolution motion, not
high-resolution details.

6. Applications

In this section we introduce different application areas of
position-based methods. These methods are mainly used
in interactive applications where performance, controllabil-
ity and stability is more important than accuracy, like e.g.
in [SGdA∗10]. But there exist also other works which use a
position-based approach for stabilization.

One application area for position-based methods is
interactive surgical simulation. In this area Wang et
al. [WXX∗06] introduce a mass-spring model based on
a surface mesh to simulate deformable bodies in real-time.
Since such a model can neither preserve its volume nor
resume its rest shape in the absence of external forces, the
authors propose to couple the surface model with a rigid core
by using spring forces. This rigid core is simulated using
shape matching [MHTG05] which results in a fast and sta-
ble simulation. Kubiak et al. [KPGF07] present a simulation
method for surgical threads which is based on the position-
based dynamics approach of Müller et al. [MHHR07]. Their
method simulates the stiffness, bending and torsion of a
thread and also provides feedback for a haptic device. For
the simulation Kubiak et al. define distance constraints for
stiffness and bending, torsion constraints, contact constraints
and friction constraints. The presented method allows for an
interactive and robust simulation of knots.

The simulation of complex hairstyles using a shape
matching approach is presented by Rungjiratananon et
al. [RKN10]. Their approach is based on Lattice Shape
Matching which was originally introduced by Rivers and
James [RJ07]. For the simulation each hair strand is rep-
resented by a chain of particles which is subdivided in
overlapping chain regions. After shape matching an ad-
ditional position-based strain limiting is applied to each
strand which moves the particles in direction of their root.
Different hair styles are realized by using appropriate initial
configurations and by modifying the region sizes of a chain.

O’Brien et al. [ODC11] use position-based dynamics for
the physically plausible adaptation of motion-captured an-
imations. In their work they use a vertex-based character
skeleton and different constraints to preserve the skeleton
structure, to define joint limits and to implement a center of
mass control. In addition to the kinematic constraints, they
define a couple of dynamics constraints which consider ver-
tices in multiple frames. Dynamics constraints are used to
enforce smooth acceleration and dynamical correctness.

Fierz et al. [FSAH12] introduce a position-based ap-
proach to stabilize a finite element simulation. When us-
ing an explicit time integration for a finite element simu-
lation, the time step size is typically limited by the stiffness

Bender, Müller, Otaduy and Teschner / Position-based Methods for the Simulation of Solid Objects

of the model and its spatial discretization. In each simula-
tion step Fierz et al. use the Courant-Friedrichs-Lewy (CFL)
condition to determine the maximum allowed time step size
for each tetrahedral element in their volumetric simulation
model. However, instead of using the time step size given by
the CFL condition to perform a stable simulation step with
an explicit integration scheme, they use a fixed size and mark
all elements where the condition is not met. The marked el-
ements are then simulated using a shape matching approach
while for all other elements a linear finite element method is
used for the simulation.

7. Conclusion

In this survey, we focused on a popular and practically rele-
vant subset of approaches for dynamically deforming solids,
namely on position-based approaches. Such geometrically
motivated techniques are not force-driven and particularly
appropriate in interactive applications due to their versatility,
robustness, controllability and efficiency. We explained gen-
eral ideas of position-based methods, shape-matching ap-
proaches and data-driven techniques. Various deformation
aspects for 2D and 3D solids and efficient solution strate-
gies were discussed with a particular focus on the benefits
of position-based approaches compared to force-driven tech-
niques.

References
[BETC12] BENDER J., ERLEBEN K., TRINKLE J., COUMANS

E.: Interactive Simulation of Rigid Body Dynamics in Computer
Graphics. In EG 2012 - State of the Art Reports (Cagliari, Sar-
dinia, Italy, 2012), Cani M.-P., Ganovelli F., (Eds.), Eurographics
Association, pp. 95–134. 1

[BLB∗08] BICKEL B., LANG M., BOTSCH M., OTADUY M. A.,
GROSS M.: Pose-space animation and transfer of facial details.
In Proc. of the ACM SIGGRAPH / Eurographics Symposium on
Computer Animation (2008), pp. 57–66. 16, 17, 18, 19

[BMR03] BRIDSON R., MARINO S., REDKIW R.: Simulation of
clothing with folds and wrinkles,. In Proc. ACM/Eurographics
Symposium on Computer Animation (2003), pp. 28–36. 5

[BMWG07] BERGOU M., MATHUR S., WARDETZKY M.,
GRINSPUN E.: TRACKS: Toward directable thin shells. Proc.
of ACM SIGGRAPH (2007). 17

[BW98] BARAFF D., WITKIN A.: Large steps in cloth simula-
tion. In Proceedings of Computer graphics and interactive tech-
niques (New York, NY, USA, 1998), SIGGRAPH ’98, ACM,
pp. 43–54. 8

[CBC∗01] CARR J. C., BEATSON R. K., CHERRIE J. B.,
MITCHELL T. J., FRIGHT W. R., MCCALLUM B. C., EVANS
T. R.: Reconstruction and representation of 3D objects with ra-
dial basis functions. In Proc. of ACM SIGGRAPH (2001), pp. 67–
76. 17

[CK02] CHOI K.-J., KO H.-S.: Stable but responsive cloth. ACM
Transactions on Graphics 21, 3 (2002), 604–611.

[CK05] CHOI M. G., KO H.-S.: Modal warping: Real-time sim-
ulation of large rotational deformation and manipulation. IEEE
Transactions on Visualization and Computer Graphics 11, 1 (Jan.
2005), 91–101.

[dASTH10] DE AGUIAR E., SIGAL L., TREUILLE A., HODGINS
J. K.: Stable spaces for real-time clothing. ACM Transactions
on Graphics 29, 4 (July 2010), 106:1–106:9. 19

[DBB11] DIZIOL R., BENDER J., BAYER D.: Robust real-time
deformation of incompressible surface meshes. In Proceedings
of the 2011 ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation (2011), SCA ’11, Eurographics Association. 10,
11, 12, 13, 15

[DGW11] DICK C., GEORGII J., WESTERMANN R.: A hexa-
hedral multigrid approach for simulating cuts in deformable ob-
jects. IEEE Transactions on Visualization and Computer Graph-
ics 17, 11 (2011), 1663–1675.

[DSB99] DESBRUN M., SCHRÖDER P., BARR A.: Interactive an-
imation of structured deformable objects. In Proc. of SIGGRAPH
99 (1999), ACM, pp. 1–8. 1, 5

[FSAH12] FIERZ B., SPILLMANN J., AGUINAGA I., HARD-
ERS M.: Maintaining large time steps in explicit finite element
simulations using shape matching. Visualization and Computer
Graphics, IEEE Transactions on 18, 5 (may 2012), 717 –728. 19

[GHDS03] GRINSPUN E., HIRANI A. N., DESBRUN M.,
SCHRÖDER P.: Discrete shells. In Proceedings of the 2003
ACM SIGGRAPH/Eurographics symposium on Computer ani-
mation (Aire-la-Ville, Switzerland, Switzerland, 2003), SCA ’03,
Eurographics Association, pp. 62–67. 4

[GHF∗07a] GOLDENTHAL R., HARMON D., FATTAL R.,
BERCOVIER M., GRINSPUN E.: Efficient simulation of inex-
tensible cloth. ACM Transactions on Graphics 26, 3 (2007), 49.
3

[GHF∗07b] GOLDENTHAL R., HARMON D., FATTAL R.,
BERCOVIER M., GRINSPUN E.: Efficient Simulation of Inex-
tensible Cloth. SIGGRAPH (ACM Transactions on Graphics) 26,
3 (Jul 2007). 6

[GM97] GIBSON S. F., MIRTICH B.: A survey of deformable
modeling in computer graphics. Tech. Rep. TR-97-19, Mit-
subishi Electric Research Lab., Cambridge, MA, 1997. 1

[HES03] HAUTH M., ETZMUSS O., STRASSER W.: Analysis of
numerical methods for the simulation of deformable models. The
Visual Computer 19, 7-8 (2003), 581–600.

[HJCW06] HONG M., JUNG S., CHOI M., WELCH S.: Fast
volume preservation for a mass-spring system. IEEE Comput.
Graph. Appl. 26 (2006), 83–91. 13

[ISF07] IRVING G., SCHROEDER C., FEDKIW R.: Volume con-
serving finite element simulations of deformable models. ACM
Trans. on Graphics 26, 3 (July 2007), 13:1–13:6.

[ITF04] IRVING G., TERAN J., FEDKIW R.: Invertible finite ele-
ments for robust simulation of large deformation. In Proc. of the
2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim.
(2004), Eurographics Association, pp. 131–140.

[Jak01] JAKOBSEN T.: Advanced character physics. In Proceed-
ings, Game Developer’s Conference 2001 (San Jose, 2001). 4

[JP99] JAMES D. L., PAI D. K.: Artdefo: accurate real time
deformable objects. In Proc. of SIGGRAPH 99 (1999), ACM,
pp. 65–72. 1

[KCM12] KIM T.-Y., CHENTANEZ N., MÜLLER M.: Long
Range Attachments - A Method to Simulate Inextensible Cloth-
ing in Computer Games. In Eurographics/ ACM SIGGRAPH
Symposium on Computer Animation (Lausanne, Switzerland,
2012), Lee J., Kry P., (Eds.), Eurographics Association, pp. 305–
310. 6

[KGBS11] KAVAN L., GERSZEWSKI D., BARGTEIL A. W.,
SLOAN P.-P.: Physics-inspired upsampling for cloth simulation
in games. Proc. of ACM SIGGRAPH (2011). 16, 17, 19

Bender, Müller, Otaduy and Teschner / Position-based Methods for the Simulation of Solid Objects

[KM04] KURIHARA T., MIYATA N.: Modeling deformable hu-
man hands from medical images. In Proc. of the ACM SIG-
GRAPH / Eurographics Symposium on Computer Animation
(2004), pp. 357–366. 17

[KNE10] KELAGER M., NIEBE S., ERLEBEN K.: A Triangle
Bending Constraint Model for Position-Based Dynamics. In
VRIPHYS 10: 7th Workshop on Virtual Reality Interactions and
Physical Simulations (Copenhagen, Denmark, 2010), Erleben
K., Bender J., Teschner M., (Eds.), Eurographics Association,
pp. 31–37. 4

[KPGF07] KUBIAK B., PIETRONI N., GANOVELLI F., FRATAR-
CANGELI M.: A robust method for real-time thread simulation.
In Proceedings of the 2007 ACM symposium on Virtual reality
software and technology (New York, NY, USA, 2007), VRST
’07, ACM, pp. 85–88. 19

[LG98] LIN M. C., GOTTSCHALK S.: Collision detection be-
tween geometric models: A survey. In In Proc. of IMA Confer-
ence on Mathematics of Surfaces (1998), pp. 37–56. 2

[MC10] MÜLLER M., CHENTANEZ N.: Wrinkle meshes. In Pro-
ceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation (Aire-la-Ville, Switzerland, Switzer-
land, 2010), SCA ’10, Eurographics Association, pp. 85–92. 7,
19

[MC11a] MÜLLER M., CHENTANEZ N.: Adding Physics to An-
imated Characters with Oriented Particles. In VRIPHYS 11: 8th
Workshop on Virtual Reality Interactions and Physical Simu-
lations (Lyon, France, 2011), Bender J., Erleben K., Galin E.,
(Eds.), Eurographics Association, pp. 83–91.

[MC11b] MÜLLER M., CHENTANEZ N.: Solid simulation with
oriented particles. ACM Trans. Graph. 30, 4 (July 2011), 92:1–
92:10. 12, 13

[MG04] MÜLLER M., GROSS M.: Interactive virtual materi-
als. In Proceedings of Graphics Interface 2004 (School of
Computer Science, University of Waterloo, Waterloo, Ontario,
Canada, 2004), GI ’04, Canadian Human-Computer Communi-
cations Society, pp. 239–246.

[MGW01] MALZBENDER T., GELB D., WOLTERS H.: Polyno-
mial texture maps. In Proceedings of ACM SIGGRAPH 2001
(Aug. 2001), Computer Graphics Proceedings, Annual Confer-
ence Series, pp. 519–528. 17

[MHHR07] MÜLLER M., HEIDELBERGER B., HENNIX M.,
RATCLIFF J.: Position based dynamics. Journal of Visual Com-
munication and Image Representation 18, 2 (2007), 109–118. 2,
19

[MHTG05] MÜLLER M., HEIDELBERGER B., TESCHNER M.,
GROSS M.: Meshless deformations based on shape matching.
ACM Transactions on Graphics 24, 3 (2005), 471–478. 9, 10,
14, 19

[MJC∗08] MA W.-C., JONES A., CHIANG J.-Y., HAWKINS T.,
FREDERIKSEN S., PEERS P., VUKOVIC M., OUHYOUNG M.,
DEBEVEC P.: Facial performance synthesis using deformation-
driven polynomial displacement maps. ACM Trans. Graph.
(Proc. of ACM SIGGRAPH Asia) 27, 5 (2008). 16, 17

[MKC12] MÜLLER M., KIM T.-Y., CHENTANEZ N.: Fast Sim-
ulation of Inextensible Hair and Fur. In in Proceedings of Virtual
Reality Interactions and Physical Simulations (VRIPhys) (2012),
Eurographics Association. 6

[MSJT08] MÜLLER M., STAM J., JAMES D., THÜREY N.: Real
time physics: class notes. In ACM SIGGRAPH 2008 classes
(New York, NY, USA, 2008), SIGGRAPH ’08, ACM, pp. 88:1–
88:90. 1

[MTV05] MAGNENAT-THALMANN N., VOLINO P.: From early

draping to haute couture models: 20 years of research. The Visual
Computer 21 (2005), 506–519. 1

[Mül08] MÜLLER M.: Hierarchical Position Based Dynamics.
In VRIPHYS 08: Fifth Workshop in Virtual Reality Interactions
and Physical Simulations (Grenoble, France, 2008), Faure F.,
Teschner M., (Eds.), Eurographics Association, pp. 1–10. 6

[NMK∗06] NEALEN A., MÜLLER M., KEISER R., BOXERMAN
E., CARLSON M.: Physically based deformable models in com-
puter graphics. Computer Graphics Forum 25, 4 (December
2006), 809–836. 1, 8

[OBH02] O’BRIEN J. F., BARGTEIL A. W., HODGINS J. K.:
Graphical modeling and animation of ductile fracture. ACM
Trans. Graph. 21, 3 (July 2002), 291–294. 14

[ODC11] O’BRIEN C., DINGLIANA J., COLLINS S.: Space-
time vertex constraints for dynamically-based adaptation of
motion-captured animation. In Proceedings of the 2011 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation
(New York, NY, USA, 2011), SCA ’11, ACM, pp. 277–286. 19

[OH99] O’BRIEN J. F., HODGINS J. K.: Graphical model-
ing and animation of brittle fracture. In SIGGRAPH ’99: Pro-
ceedings of the 26th annual conference on Computer graphics
and interactive techniques (New York, NY, USA, 1999), ACM
Press/Addison-Wesley Publishing Co., pp. 137–146. 1

[PB88] PLATT J. C., BARR A. H.: Constraints methods for flex-
ible objects. In Proceedings of the 15th annual conference on
Computer graphics and interactive techniques (New York, NY,
USA, 1988), SIGGRAPH ’88, ACM, pp. 279–288. 8

[Pro95] PROVOT X.: Deformation constraints in a mass-spring
model to describe rigid cloth behavior. In In Graphics Interface
(1995), Davis W. A., Prusinkiewicz P., (Eds.), Canadian Human-
Computer Communications Society, pp. 147–154. 5

[RJ07] RIVERS A. R., JAMES D. L.: FastLSM: fast lattice shape
matching for robust real-time deformation. In SIGGRAPH ’07:
ACM SIGGRAPH 2007 papers (New York, NY, USA, 2007),
ACM, p. 82. 10, 11, 19

[RKN10] RUNGJIRATANANON W., KANAMORI Y., NISHITA T.:
Chain shape matching for simulating complex hairstyles. Com-
puter Graphics Forum 29, 8 (2010), 2438–2446. 19

[RPC∗10] ROHMER D., POPA T., CANI M.-P., HAHMANN S.,
SHEFFER A.: Animation wrinkling: Augmenting coarse cloth
simulations with realistic-looking wrinkles. ACM Transactions
on Graphics 29, 5 (2010), 157:1–157:8. 19

[SD92] SHOEMAKE K., DUFF T.: Matrix animation and polar
decomposition. In Proceedings of the conference on Graphics in-
terface ’92 (San Francisco, CA, USA, 1992), Morgan Kaufmann
Publishers Inc., pp. 258–264. 15

[SGdA∗10] STOLL C., GALL J., DE AGUIAR E., THRUN S.,
THEOBALT C.: Video-based reconstruction of animatable human
characters. ACM Trans. Graph. 29, 6 (Dec. 2010), 139:1–139:10.
19

[SGT09] SCHMEDDING R., GISSLER M., TESCHNER M.: Opti-
mized damping for dynamic simulations. In Spring Conference
on Computer Graphics (2009), pp. 205–212. 8

[SHZO07] SENGUPTA S., HARRIS M., ZHANG Y., OWENS
J. D.: Scan primitives for GPU computing. In Proc. of the
22nd ACM SIGGRAPH/Eurographics Symp. on Grap. Hardware
(2007), Eurographics Association, pp. 97–106. 15

[SOG08] STEINEMANN D., OTADUY M. A., GROSS M.: Fast
adaptive shape matching deformations. In Proceedings of the
2008 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (Aire-la-Ville, Switzerland, Switzerland, 2008), SCA
’08, Eurographics Association, pp. 87–94. 11

Bender, Müller, Otaduy and Teschner / Position-based Methods for the Simulation of Solid Objects

[SSBT08] STUMPP T., SPILLMANN J., BECKER M., TESCHNER
M.: A Geometric Deformation Model for Stable Cloth Simula-
tion. In VRIPHYS 08: Fifth Workshop in Virtual Reality Interac-
tions and Physical Simulations (Grenoble, France, 2008), Faure
F., Teschner M., (Eds.), Eurographics Association, pp. 39–46. 14

[TBHF03] TERAN J., BLEMKER S., HING V. N. T., FEDKIW
R.: Finite volume methods for the simulation of skeletal muscle.
In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symp. on
Comput. Anim. (2003), Eurographics Association, pp. 68–74. 1

[TF88] TERZOPOULOS D., FLEISCHER K.: Deformable models.
The Visual Computer 4 (1988), 306–331. 8

[THMG04] TESCHNER M., HEIDELBERGER B., MULLER M.,
GROSS M.: A versatile and robust model for geometrically com-
plex deformable solids. In Proceedings of the Computer Graph-
ics International (Washington, DC, USA, 2004), CGI ’04, IEEE
Computer Society, pp. 312–319. 1

[TKH∗05] TESCHNER M., KIMMERLE S., HEIDELBERGER B.,
ZACHMANN G., RAGHUPATHI L., FUHRMANN A., CANI M.-
P., FAURE F., MAGNENAT-THALMANN N., STRASSER W.,
VOLINO P.: Collision detection for deformable objects. Com-
puter Graphics Forum 24, 1 (Mar. 2005), 61–81. 2

[TPBF87a] TERZOPOULOS D., PLATT J., BARR A., FLEISCHER
K.: Elastically deformable models. In Proceedings of the 14th
annual conference on Computer graphics and interactive tech-
niques (New York, NY, USA, 1987), SIGGRAPH ’87, ACM,
pp. 205–214. 1

[TPBF87b] TERZOPOULOS D., PLATT J., BARR A., FLEISCHER
K.: Elastically deformable models. In Computer Graphics (Pro-
ceedings of SIGGRAPH 87) (1987), vol. 21, ACM, pp. 205–214.
1

[vFTS06] VON FUNCK W., THEISEL H., SEIDEL H.-P.: Vector
field based shape deformations. ACM Trans. on Graphics 25, 3
(July 2006), 1118–1125. 13

[WOR10] WANG H., O’BRIEN J., RAMAMOORTHI R.: Multi-
resolution isotropic strain limiting. ACM Trans. Graph. 29, 6
(Dec. 2010), 156:1–156:10. 5, 6

[WRO11] WANG H., RAMAMOORTHI R., O’BRIEN J.: Data-
driven elastic models for cloth: Modeling and measurement.
ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4 (2011), 71. 16

[WXX∗06] WANG Y., XIONG Y., XU K., TAN K., GUO G.: A
mass-spring model for surface mesh deformation based on shape
matching. In Proceedings of the 4th international conference on
Computer graphics and interactive techniques in Australasia and
Southeast Asia (New York, NY, USA, 2006), GRAPHITE ’06,
ACM, pp. 375–380. 19

[ZBO12] ZURDO J. S., BRITO J. P., OTADUY M. A.: Animating
wrinkles by example on non-skinned cloth. IEEE Transactions
on Visualization and Computer Graphics 99, PrePrints (2012).
16, 17, 18, 19

