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ABSTRACT
We present a method for the efficient rendering of large scale particle-based foam data in screen space using a
GPU based rendering pipeline. Our approach employs a multi-pass rendering technique to imitate some of the
effects that are commonly accomplished by using expensive ray-tracing based methods. We demonstrate through
different scenarios that our pipeline is able to produce convincing foam renderings for large scale scenarios and
it has a significant performance advantage compared to using ray-casting techniques for rendering such particle
data.
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1 INTRODUCTION

Foam is a complex phenomenon whose behavior and1

appearance is challenging to simulate in computer2

graphics. When viewed from a close distance, foam is3

composed of many air bubbles sticking to each other.4

It can occur inside most fluids as a result of trapped5

air. One can observe milky white foam caused by6

dashing waves on seashores. For most semi-transparent7

materials, it is an interesting observation that, even8

though the underlying material may have a color, the9

foam usually looks whitish to the viewer. The reason10

for this behavior is that the foam is composed of thin11

films of fluid containing air. As the number of such12

thin films increase per unit volume, all incoming light13

is reflected without allowing any light to penetrate14

beneath it. This optical phenomenon makes the foam15

look brighter than the material itself, to the point that it16

looks almost white. This paper focuses on the efficient17

rendering of such white foam by approximating some18

important effects in screen space, that are otherwise19

time consuming to compute in a physically correct20

way. Our technique is specifically useful for complex21

large-scale scenarios, where large amount of foam data22

need to be rendered. In the remainder of this section,23

we first summarize the existing works about GPU24

accelerated rendering of fluid data (Sec. 1.1), foam25
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simulation and rendering (Sec.1.2) and then highlight 26

our contribution (Sec. 1.3). 27

1.1 GPU Rendering of Fluids 28

For non-interactive applications, fluid surfaces are 29

generally visualized by triangulating the isosurface of 30

the particle data (e.g. [ZB05, YT10, AIAT12]) and 31

then rendering the resultant mesh using ray-tracing 32

based techniques to produce convincing results. For 33

real-time applications, the computational overhead 34

of those approaches remains too high. Therefore, 35

for the efficient GPU accelerated visualization of 36

fluid surfaces, several methods have been proposed 37

in the recent years, e.g., using screen space surface 38

construction [MSD07, FAW10], height field tech- 39

niques [CM10] and methods that are based on particle 40

splatting [vdLGS09, BSW10]. Even though foam is 41

actually composed of the molecules of the underlying 42

fluid, its characteristic appearance requires it to be 43

handled using different rendering approaches, which 44

will be explained in the next section. 45

1.2 Foam Simulation and Rendering 46

In computer graphics, foam generation techniques are 47

used to enhance the realism of existing fluid simula- 48

tions. High quality foam simulation and rendering tech- 49

niques are commonly encountered in movies [GLR+06, 50

BSK+07] and in commercial fluid simulation and visu- 51

alization packages [hyb11]. In those works, however, 52

the underlying foam generation and rendering stages 53

are usually described briefly. Although foam is com- 54

posed of fluid and air mixture, some of the existing re- 55

search also focus on generating foam particles, usually 56

in a scale smaller than the fluid particles to be able to 57
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Figure 1: A flood scenario. Foam is rendered using our technique and composited with the rest of the scene (left
and middle). Picture of real sea foam caused by a whirlpool (right) (©Reuters).

enhance the flow detail [TFK+03, GLR+06, LTKF08,58

MMS09, IAAT12].59

For high quality foam renderings, ray-tracing methods60

are commonly preferred both for the fluid and the foam61

[GLR+06]. Although the fluid surface can be ren-62

dered efficiently using ray-tracing, non-homogenous63

phenomena such as foam require expensive volume ren-64

dering techniques. In [IAAT12], the authors employed65

a volume ray-casting method which accounts for ab-66

sorption and emission of radiance but neglecting light67

scattering effects. In that method, each traced ray is68

sampled using equally spaced intervals; and according69

to the measured foam density at each sample point,70

the computed radiance is attenuated. The employed71

ray-casting approach, however, is time consuming to72

compute, especially for scenes with many millions of73

foam particles. The performance of volume ray-casting74

can be significantly improved by using the GPU-based75

method explained in [FAW10].76

In [vdLGS09, BSW10], alternative to generating new77

particles, selected fluid particles are visualized as foam78

particles using GPU-based techniques for real-time ap-79

plications. In [BSW10], Weber number thresholding80

is used to separate fluid and foam. Furthermore, the81

method also takes volumetric effects into account by82

rendering foam and fluid layers from back to front or-83

der. Therefore, it can visualize effects such as foam84

inside the fluid. Furthermore, based on the thickness85

of the foam, it generates foam color between two user86

defined colors. The approach, however, neglects infor-87

mation such as occlusion and irradiance from the envi-88

ronment when rendering foam, which limits its applica-89

bility to non-photorealistic real-time renderings.90

There also exist methods for the modeling of larger91

scale foam effects by using air bubbles (e.g. see92

[KVG02, KLL+07, HLYK08, IBAT11, BDWR12]).93

In these works, air phase is either visualized by94

rendering spheres [KVG02, BDWR12], or by re-95

constructing the surface of the modeled air phase96

[KLL+07, HLYK08, IBAT11]. Since we are focusing97

on large scale scenarios, where the single air bub-98

bles inside the foam are not clearly noticeable, such99

methods are beyond the scope of our paper.100

1.3 Contribution 101

We present an efficient method for large scale foam 102

rendering. In our approach, foam is rendered using a 103

novel multi-pass rendering algorithm and finally com- 104

posited with the pre-rendered images of the scene with- 105

out foam. In comparison to volume ray-casting meth- 106

ods that compute only absorption and emission of radi- 107

ance (e.g. [FAW10, IAAT12]), our approach is signifi- 108

cantly faster as the foam particles are directly rendered. 109

Furthermore, when compared to [BSW10], our pipeline 110

takes the scene occlusion and lighting into account and 111

therefore produces more convincing results that can be 112

composited with realistic renderings. Results show that 113

our new pipeline generates convincing large scale foam 114

renderings (e.g. see Fig. 1) using modern GPU-based 115

rendering architectures. 116

2 SCREEN SPACE FOAM RENDER-
ING PIPELINE

As more air bubble layers implies more light scatter- 117

ing, we relate the foam thickness to the foam intensity 118

as usually done in volume ray-casting. Later, we deter- 119

mine the regions on screen space which should receive, 120

and therefore scatter less light using ambient occlusion 121

and attenuate the foam intensity according to the oc- 122

clusion factor. Afterwards, we approximate per-pixel 123

foam irradiance to colorize the foam color according 124

to the environment. Finally, the generated results are 125

composited with the rest of the scene. We realized our 126

approach using a seven pass rendering algorithm. The 127

technical steps of our pipeline (illustrated in Fig. 2 and 128

3) can be summarized as: 129

• PASS #1 and #2: Storing eye space depth images 130

of solid and fluid meshes in two textures, which are 131

used to compute occlusion of foam fragments by 132

those primitives in the later stages. 133

• PASS #3: Storing an eye space depth image of the 134

foam particles in a texture, which is used in dif- 135

ferent parts of our pipeline. This pass also stores 136

a search radius for each foam fragment, in whose 137

range neighboring fragments are later considered for 138
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Figure 2: Diagram of our foam composition pipeline. Orange boxes denote the render passes and the arrows in
between denote data flow and dependencies. For each frame, the render passes from #1 to #7 are executed. Each
pass produces data explained in the enclosed rounded rectangles, which is then transferred through arrows to the
subsequent passes. All of the generated textures have the same resolution as the final output.

(a) Foam thickness (red denotes thickest, blue
denotes thinnest parts)

(b) Foam intensity (c) Foam shadow (inverted)

(d) Foam irradiance (e) Pre-rendered image (f) Image composited with foam

Figure 3: Some of the intermediate textures from our foam composition pipeline (a-e) and the final composited
result (f).
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screen space ambient occlusion and final composi-139

tion (Sec. 2.1). Additionally, this pass computes a140

normal for each foam fragment, which is used when141

approximating irradiance at the fragment location.142

• PASS #4: Accumulating foam particles via additive143

blending to approximate per-pixel foam thickness.144

This pass also discards foam fragments that are oc-145

cluded by solids and attenuates foam fragments that146

are inside of the fluid based on the fluid transparency147

(Sec. 2.2).148

• PASS #5: Conversion of per-pixel foam thickness to149

per-pixel foam intensity (Sec. 2.3).150

• PASS #6: Determination of foam fragments that151

should receive and scatter less light using screen152

space ambient occlusion (SSAO) and shadow gen-153

eration for such regions (Sec. 2.4.1). This pass also154

approximates the irradiance at each foam fragment155

from an environment texture if the scene is illumi-156

nated using image based lighting (Sec. 2.4.2).157

• PASS #7: Post processing of the foam and final158

composition with a pre-rendered image of the scene159

(Sec. 2.5).160

Since the first step of the pipeline is relatively straight-161

forward, we will focus on the remaining steps through-162

out this section. The following render passes are imple-163

mented using OpenGL Shading Language (GLSL).164

2.1 Smoothed Depth and Search Radius165

Computation166

We use point sprites instead of spheres for rendering167

foam particles. A regular point sprite has the same168

depth values for all of its fragments. However, to169

produce convincing results in the later steps of our170

pipeline, we modify the fragment depth values similar171

to [vdLGS09, BSW10], such that the spherical shapes172

of the particles are regained.173

To create the initial depth information, foam particles174

with ids i and radii ri in world space are rendered with175

depth testing and depth masking enabled. In [IAAT12],176

foam particles are separated to three different types,177

namely: spray, surface-foam and bubble particles. For178

bubble particles, we use half of ri to make them less179

visible. Furthermore, particle radii are randomized as180

ri =
ri

(i mod 5)+1 to make the particles look irregular be-181

tween the scales ri/5 and ri.182

The vertex shader computes eye space and projection183

space coordinates of the sprites and passes the resultant184

data to the fragment shader for further processing. In185

the fragment shader, the distance of the fragment po-186

sition to the point sprite center is calculated using the187

sprite’s texture coordinates to discard fragments that are188

outside of the circle. Afterwards, the flat depth values 189

of the point sprite are transformed to spherical depth 190

values. In this context, the first step is solving for the 191

w coordinate of a unit sphere for the fragment’s texture 192

coordinates in uvw space as w =
√

1−u2− v2, where u 193

and v denote texture coordinates of the fragment. Sub- 194

sequently, the eye space z coordinate of the fragment is 195

simply modified as 196

e f rag
f oamz

= e f rag
f oamz

+w · ri.

In contrast to [vdLGS09, BSW10], we do not apply fil- 197

tering to the generated depth values since it would re- 198

duce the effect of ambient occlusion. 199

In the same render pass, the vertex shader also projects 200

the search radius hi for each particle as 201

hi =
ri

tan
(

α

2

)∣∣∣evert
f oamz

∣∣∣ ,
where α is the field of view of the camera and evert

f oamz
de- 202

notes z coordinate of the eye position of the point sprite 203

(i.e., distance of the sprite to the camera). Afterwards, 204

the search radius is passed to the fragment shader as 205

h
f rag

to be written to a texture. The depth information 206

and the search radius are essential when rendering the 207

SSAO pass and when doing the final composition. 208

This pass also computes a world space normal for each 209

fragment n f rag by transforming (u,v,w) using the trans- 210

pose of the normal matrix, and stores the normals in a 211

texture. Per fragment normals will be required when 212

estimating irradiance in Sec. 2.4.2. 213

2.2 Thickness Estimation 214

Before estimating the intensity of foam at a given pixel 215

position, we estimate the foam thickness for each pixel. 216

In this step, foam particles are rendered again as point 217

sprites with the spherical depth modification as in the 218

previous render pass. Similar to [vdLGS09, BSW10], 219

the foam fragments are blended additively to estimate 220

thickness. Different from [vdLGS09, BSW10], how- 221

ever, depth buffer read and write is disabled as we do 222

not require the frontmost particles to be visible. 223

As foam particles are separated to spray, surface-foam 224

and bubble particles, we also employ this knowledge 225

to render foam fragments differently by using a falloff 226

function with different arguments, where the falloff is 227

based on the fragment’s distance to the particle center 228

in texture coordinates. The falloff function f is defined 229

as 230

f (x, b, n, m) =

{[
1−
( x

b

)n]m x
b ≤ 1

0 otherwise
, (1)

where x is the distance to the center, b is the maxi- 231

mum allowed distance, and n ≥ 0 and m ≥ 0 are expo- 232

nents which determine the shape of the function (e.g., 233

4



0.2 0.4 0.6 0.8 1.0
r

0.2

0.4

0.6

0.8

1.0

f

flifetime

fbubble

fsfoam

fspray

Figure 4: Different forms of the falloff function given
in (1) that are used in our experiments .

n = 1 and m = 1 result in linear falloff). When ren-234

dering spray, surface-foam and bubble fragments, we235

used fspray = f (x, 1, 1.5, 1), fs f oam = f (x, 1, 2.25, 1)236

and fbubble = 1− f (x, 1, 2, 1) respectively. These dif-237

ferent falloff functions are illustrated in Fig. 4 and the238

corresponding intensity results are shown in Fig. 5. We239

preferred a larger overall intensity for surface foam par-240

ticles to increase their visibility. Whereas, we preferred241

a comparatively smaller intensity value for the spray242

particles to make them relatively less visible. Further-243

more, we used hollow circle like structures for the bub-244

ble particles to make their appearance more convincing245

under water.246

In this step, the intensities of the foam particles are fur-247

ther modulated based on two additional factors. The248

first of these factors is the lifetime of the particle. For249

this purpose, we use fli f etime = f (li, 1, 2, 0.4), where250

0 < li < 1 denotes the normalized lifetime of a parti-251

cle. Such a function allows a foam particle to remain252

visible for a sufficiently long time and fade smoothly253

near the end of its lifetime. Furthermore, when a par-254

ticle lies in the back of the closest fluid surface (i.e.255

0 < e f rag
f luidz

< e f rag
f oamz

, where e f rag
f luidz

is the eye space z co-256

ordinate of the fluid surface), we apply an additional257

falloff to its intensity, which is defined as258

fatt = f (e f rag
f oamz

− e f rag
f luidz

, ηmax, ηn, ηm),

with the limiting distance ηmax, where the foam frag-259

ment completely fades to invisible, and ηn and ηm are260

the exponents for shaping the attenuation curve.261

At the end of this render pass, the final foam thickness262

values are stored in a texture (see Fig. 3a). In the next263

pass, the computed thickness values are processed and264

converted to normalized intensity values to lie between265

0 and 1. For all subsequent passes, a screen-filling quad266

is rendered to further process the relevant information267

that are saved in the textures.268

2.3 Intensity Estimation269

As foam is composed of more bubble layers, it scat-270

ters more of the incoming light. We use this knowl-271

edge to relate the foam intensity proportional to foam272

Figure 5: Intensity distributions of different types of
foam particles, namely: spray particles (left), surface
foam particles (middle) and air bubble particles (right).
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Figure 6: Different forms of the sigmoid function that
can be applied to the accumulated foam densities. The
function can be used to create different distributions
as well. For instance, to reduce the intensities below
some threshold, ρexp ≥ 2, can be used. We use the
ι(ρ, 3, 1.25) form in our experiments.

thickness. A texel from the previous render pass may 273

have any value between [0,∞). In this render pass, we 274

scale the values taken from that texture to the interval 275

[0,1]. However, scaling the values linearly to the tar- 276

get interval would make sparse areas invisible. We ex- 277

pect the foam to become completely opaque after some 278

thickness threshold. Therefore, to increase the effec- 279

tive range of the thinner regions, to reduce the range 280

of thicker regions and to normalize the intensities, we 281

define the following sigmoid function ι to non-linearly 282

scale a pixel thickness value ρ as 283

ι(ρ, ρmod , ρexp) =
ρρexp

ρmod +ρρexp
,

where ρmod > 0 and ρexp > 0 control how fast the func- 284

tion grows. Note that if ρ > 0 and ρexp > 0, 0 < ι < 1. 285

ι is illustrated in Fig. 6 for different parameters. Fur- 286

thermore, Fig. 7-top shows the effect of using different 287

ρmod values. 288

At the end of this step, the normalized intensities are 289

saved in a texture, which will be used in the following 290

steps (see Fig. 3b). 291

2.4 Foam Radiance Estimation 292

Since foam is composed of many transparent layers of 293

air bubbles, light can travel through it and then scat- 294

ter. Until the current stage of our pipeline, we assume 295

that foam scatters light uniformly, where the intensity 296

5



Figure 7: Application of different parameters for the
setting presented in Fig. 1-middle. top-left: ρmod =
1; top-right: ρmod = 5; bottom-left: AOShScale =0.1;
bottom-right: AOShScale = 2.

of the light was only related to the foam thickness. In297

this section, we determine the regions which should re-298

ceive, and therefore scatter less light using ambient oc-299

clusion (AO), and generate shadows for these regions300

(Sec. 2.4.1). Furthermore, the intensities that are com-301

puted in the previous section do not employ any knowl-302

edge about the actual illumination that comes from the303

scene. In this render pass, we will also use a very rough304

screen space approximation of the irradiance from the305

surrounding environment, which is used to colorize the306

foam fragments (Sec. 2.4.2).307

This render pass again gets the textures that have been308

computed in the previous step as input and computes309

two additional textures, one for the shadow and another310

for the illumination of the foam (see Fig. 3).311

2.4.1 Shadow Generation312

As object space AO methods (e.g. [ZIK98, Bun05,313

RWS+06]) are very expensive to compute, especially314

for complex dynamical phenomena such as foam, we315

investigated SSAO techniques [TCM06, Mit07, SA07,316

RGS09, BS09, HL10]. Finally, we decided to build our317

SSAO approach upon the basic concept explained in318

[Mit07] because of its efficiency and simplicity. One319

important difference of our method in comparison to320

[Mit07] is that we apply multiple sample collection it-321

erations to capture both small scale and large scale oc-322

clusions. Instead of increasing search radii, [HL10]323

used multiple depth maps with decreasing resolution324

to achieve the same effect. The search radii and total325

number of passes are controlled by three parameters:326

the initial search radius factor AOInitSRFac, which is a327

factor for h f rag to capture small scale occlusions; the328

search radius increment factor AOSRIncFac, which is an-329

other factor for h f rag to determine how much the search330

radius increases in each sample collection step; and fi-331

nally AO#Passes, which limits the total number of SSAO332

passes. For each fragment, 3d samples are generated 333

within the fragment search radius: 334

h f rag
pass = h f rag (AOInitSRFac +AOSRIncFac ·AOPass) ,

where AOpass increases by 1 in each sample collection 335

pass and AOpass ≤ AO#Passes. In our experiments we 336

used: AOInitSRFac = 1, AOSRIncFac = 7 and AO#Passes = 337

3. 338

The total number of samples ν in each sample collec- 339

tion pass is controlled by a user defined sampling den- 340

sity parameter AOSDens as 341

ν = clamp
(

3
4

πhscreen3

pass AOSDens, AO#MinSamp,

AO#MaxSamp

)
,

where hscreen
pass is the search radius projected to fragment 342

coordinates. Since h f rag can be very small for distant 343

fragments, a minimum value AO#MinSamp is used for ν . 344

An upper limit AO#MaxSamp is also introduced to pre- 345

vent too many samples from being generated for frag- 346

ments that are very close to the viewer. In our experi- 347

ments, we used AOSDensity = 0.5, AO#MinSamp = 16 and 348

AO#MaxSamp = 512. The samples are created inside a 349

cube in the range [−1,1] on all axes using the Hal- 350

ton sampling algorithm with a constant seed [Hal64], 351

which produces low-discrepancy sequences. Subse- 352

quently, the samples are mapped to a sphere by simply 353

neglecting the samples that lie outside of the sphere in 354

the range [−1,1]. 355

Additionally, the occlusion contribution λ of a sample s 356

depends on its distance to the fragment and we compute 357

it using a quadratic falloff as 358

λ = (1−|s|)2 .

Furthermore, if a sample is occluded by a fragment with 359

a distance larger than the user defined AOMaxOcclDist , 360

the sample does not contribute to the visibility of the 361

fragment. This effect is necessary to prevent occlusion 362

by distant fragments and is controlled using a quadratic 363

falloff function as 364

δ = max

1−

∣∣∣e f rag
f oamz

− sz

∣∣∣
AOMaxOcclDist

 , 0

2

,

where AOMaxOcclDist = 5 is used in our experiments. 365

The sample s is used to look up the occlusion in eye 366

space by other fragments (e.g. foam, fluid and solid 367

fragments) in the scene. Based on the knowledge col- 368

lected so far, the occlusion k of a sample is defined as 369

k =


1
[(

sz > e f rag
f oamz

∨ sz > e f rag
f luidz
∨

sz > e f rag
rigidz

)
∧ (0 < δ < 1)

]
0 otherwise

,
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which basically states that; if a sample is occluded by370

any other fragment in the scene and if the occlusion dis-371

tance is not larger than AOMaxOcclDist , the sample is oc-372

cluded.373

Afterwards, we compute the occlusion factor ω of a374

fragment as375

ω =
∑

AO#Passes
AOpass=1 (∑

v
i=1 λi ·δi · ki ·ai)

∑
AO#Passes
AOpass=1 (∑

v
i=1 λi)

,

where for the pass AOpass, i iterates over all generated376

samples which are inside the render area, and ai is the377

transparency of the sampled fragment, which is equiv-378

alent to ιi for foam fragments. For rigid and fluid frag-379

ments, ai is equivalent to the fragment’s transparency.380

Additionally, if there are multiple overlapping transpar-381

ent fragments at a sample position, ai is computed by382

adding all of the transparency values.383

Finally, so as to be more flexible about the appearance384

of the generated shadows, we compute the final shadow385

value ζ clamped into [0,1] as386

ζ = clamp
[
(ω ·AOShScale)

AOShExp +AOShO f f set , 0, 1
]

which is controlled by three self-explanatory user de-387

fined parameters. In the presented scenarios, we used:388

AOShScale = 1, AOShExp = 1.5 and AOShO f f set =−0.05.389

The ambient occlusion step especially improves the re-390

gions that have similar intensities, which would look391

totally flat otherwise (e.g., see Fig. 8, top-middle). Fur-392

thermore, Fig. 7-bottom shows the effect of different393

AOShScale values. The computed ζ values are written394

to a texture to be further used by the final composition395

step (see Fig. 3c).396

2.4.2 Irradiance397

If the scene is illuminated using image based lighting,398

we approximate the direct illumination of each foam399

fragment by looking up the environment map that has400

been used as the light source. Using the fragment nor-401

mal n f rag, we create a hemisphere around the normal402

and use the already generated samples from the SSAO403

step to create direction vectors nsample
i that are used for404

looking up the intensity P = (r,g,b) at an environment405

map position. Finally, the irradiance that is coming406

from the environment to a fragment location is simply407

computed in a cosine weighted fashion as408

I =

∑
v
i=1 P ·

(
nsample

i ·n f rag
)

∑
v
i=1 i

 ,

where i iterates only over the samples that are generated409

for the first sample collection pass. The sole purpose of410

this step is to reflect the hue of the environment onto411

the foam fragments to make the foam not look too dis- 412

tinct from the rest of the scene. Finally, the computed 413

I values are written to another texture to be used by 414

the next and the final render pass (see Fig. 3d). The 415

performance of this step can be improved by using an 416

irradiance environment map and making color look-up 417

once for every n f rag. 418

2.5 Composition 419

In this render pass, the information that has been cre- 420

ated in the previous steps and the pre-rendered images 421

of the scene without foam are composited to generate a 422

final image of the scene with foam (see Fig. 2). 423

Depending on the user defined AO#MaxSamples, the 424

shadow and radiance values computed in the previous 425

section can include high frequency noise. In order 426

to alleviate this problem, we apply Gaussian blur 427

with a filter radius of 3
2 hscreen

pass to both textures to 428

generate per-pixel ζ f iltered and I f iltered before doing the 429

composition. 430

Afterwards, to compute a final shadow color ζ f inal for 431

a pixel, the filtered shadow values are modulated with a 432

user defined color CShadowColor and clamped into [0,1] 433

as 434

ζ f inal = clamp
[
(cwhite−CShadowColor)�ζ f iltered , 0, 1

]
,

where cwhite = (1, 1, 1), and � denotes component- 435

wise multiplication. We select CShadowColor similar to 436

the visible color of the fluid that the foam is generated 437

on, and it was chosen in our experiments as (0, 0, 0.2) 438

because of the dark blue appearance of the fluids in our 439

renderings. Since ζ f inal will be subtracted when do- 440

ing the composition, the CShadowColor term is subtracted 441

from white to invert it. From our experiences, coloriz- 442

ing shadows makes the foam blend better with the un- 443

derlying fluid. 444

As foam is composed of many air-liquid interfaces, it 445

has a very large scattering albedo which causes it to 446

scatter most of the incoming light, but absorb only a 447

small amount of it. Therefore, it is usually observed 448

very bright. We control this phenomenon by linearly 449

scaling the irradiance values I using a user defined pa- 450

rameter CIrrScale, whose value depends on the desired 451

foam brightness and the color range of the environment 452

map used. Afterwards, we clamp the resulting color 453

into the [0,1] interval to compute 454

I f inal = clamp
(
CIrrScale · I f iltered , 0, 1

)
.

Finally, the composited pixel color c is computed as 455

c = (1− ι)cbg + ι
(
I f inal−ζ f inal

)
where cbg is the color at the corresponding pixel po- 456

sition of the background image on which the foam is 457

composited (see Fig. 3f). 458
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Figure 8: Comparisons of our method (top) to volume ray-casting that computes emission and absorption only
(bottom). As our method approximates shadows in concave regions, the foam looks more volumetric and detailed.
The scenes are named from left to right as: Wave, Lighthouse and Ship.

# Foam particles Resolution
Average foam rendering time per frame

Ray-casting [IAAT12] Ray-casting [FAW10] Ours (intensity only) Ours (total)

Wave up to 820K 800×600 2 min 10 s 235 ms 8 ms 52 ms

Ship up to 9M 800×600 4 min 20 s 760 ms 16 ms 102 ms

Lighthouse up to 15M 800×600 7 min 3 s 1 s 21 ms 150 ms

Flood up to 29M 1280×960 16 min 19 s 1.7 s 33 ms 235 ms

Table 1: Performance analysis of the example scenes.

3 RESULTS
In this section, we demonstrate the versatility of our459

approach in different animation sequences. For all460

presented scenes, the underlying fluid has been sim-461

ulated using the methods referred in [IAAT12], and462

the fluid surfaces have been reconstructed based on463

[SSP07, AIAT12, AAIT12]. The scenes were rendered464

using mental ray [NVI11] on an Intel Xeon X5690 CPU465

with 12 GB RAM, and the foam composition pipeline466

was implemented using GLSL and ran on an NVIDIA467

480 GTX GPU with 1.5 GB RAM. The ray-casting468

code used in [IAAT12] was implemented as a mental469

ray shader and ran on the CPU, and an optimized ver-470

sion based on [FAW10] was implemented on the GPU.471

All scenes were illuminated using image based lighting472

with a clear sky environment map.473

For all scenes, foam was simulated using [IAAT12] and474

the same foam data were used for the rendering com-475

parisons to [IAAT12]. For the comparisons shown in476

Fig. 8, the ray-casting technique explained in [IAAT12]477

took 9 s to 20 min depending on the complexity of the478

frame, excluding the other scene geometry and load-479

ing of the foam data. Using the optimized volume ray-480

casting scheme, the computation time has been reduced481

down to 90 ms to 2.5 s. Using our pipeline, the foam482

rendering of a frame took 30 ms to 270 ms depending 483

on the complexity of the foam in the scene being ren- 484

dered, excluding the time spent for loading of the foam 485

data from secondary storage to the GPU memory. The 486

results produced by using a basic volume ray-casting 487

scheme that only accounts for absorption and emission 488

of radiance is similar to the results we achieve exclud- 489

ing the additional effects that are described in Sec. 2.4 490

(see also Fig. 3b). Excluding those additional effects, 491

our pipeline took between 5 ms to 39 ms per frame. See 492

Table 1 for additional information about each scene. As 493

our pipeline also takes additional effects into account 494

(i.e. ambient occlusion and irradiance estimation), our 495

presented foam renderings look volumetric and blend 496

with the rest of the scene (see Fig. 8). Note that in 497

[IAAT12], the fluid surface has been constructed only 498

for the fluid particles that have more than five neigh- 499

bors. For our comparisons to [IAAT12], however, we 500

used the whole fluid surface for our renderings to bet- 501

ter estimate the SSAO of the foam by the fluid surface. 502

Therefore, differences between the two fluid surfaces 503

can be noticeable. 504

For all of our scenes, most of the rendering time has 505

been spent on the foam radiance estimation pass (be- 506

8



tween 50-80%). Whereas, the computational overheads507

of the rest of the render passes were significantly lower.508

4 DISCUSSION AND FUTURE WORK
Taking a closer look at sea foam from a distance less509

than a few meters, one may observe the underlying air510

bubbles at varying sizes which form the foam. Render-511

ing of such scenarios is not handled by our approach.512

However, using an air bubble generation technique like513

[BDWR12] for such close-ups might be an interesting514

direction for future research.515

For scenes where most of the light is coming from a516

specific direction at shallow angles (e.g. sunset scenar-517

ios), the currently employed SSAO based shadow gen-518

eration technique can fail to capture the resultant po-519

tentially large shadows cast by distant objects. For such520

cases, an explicit shadow generation algorithm which521

can handle image based lighting such as the one ex-522

plained in [CK09], or explicit shadow source selection523

as discussed in [Bjo04] can be employed. Since we as-524

sume that foam scatters most of the incident light ran-525

domly, we omitted Fresnel effect. However, it might526

be desirable to make the foam reflect the environment,527

when it is viewed from a shallow angle.528

Our algorithm neglects many physical effects that could529

be otherwise simulated by using modern ray-tracing530

techniques. Those effects include; scattering of light531

inside the foam, influence of the foam on the appear-532

ance of the surrounding objects and vice versa. How-533

ever, for large scale scenarios (e.g. as in Fig 1), those534

effects have less significance on the appearance of the535

foam, and our approximations can efficiently gener-536

ate convincing results. However, for close-ups, the537

effects that we have omitted have more significance538

on the final outcome. For those cases, using a vol-539

ume ray-casting method that simulates light scatter-540

ing can definitely yield more convincing results (e.g.541

[RNGF03, GLR+06]).542

Although we demonstrated our rendering scheme only543

for the particle data generated by the method explained544

in [IAAT12], we believe that our pipeline is mostly ap-545

plicable to the rendering of other particle based foam546

simulation techniques.547

5 CONCLUSION
We presented an efficient, screen-space foam rendering548

pipeline that can render large particle-based foam data549

sets on the GPU. Our approach uses a multi-pass ren-550

dering scheme, where different effects are added to the551

foam rendering incrementally, and the final foam ren-552

dering is composited with a pre-rendered image of the553

scene. The presented method can be used as an efficient554

alternative to ray-casting techniques for the rendering555

of large scale particle-based foam data.556
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