
SPH Fluids in Computer Graphics

Markus Ihmsen - University of Freiburg

Jens Orthmann - University of Siegen

Barbara Solenthaler - ETH Zürich

Andreas Kolb - University of Siegen

Matthias Teschner - University of Freiburg

Topics / Research Challenges

 SPH fluid solver

 Neighborhood query

 Incompressibility / pressure computation

 Boundary handling

 Multiple phases

 Multi-resolution

 Surface reconstruction and rendering

Concept

Lagrangian Approach

 flow properties are considered at irregular positions

 particles have volume , mass , density , pressure

 particles move with their velocity

Momentum Equation

 Navier-Stokes

 Lagrangian form with advected fluid samples / particles

 Eulerian form with fixed fluid samples
Accounts for the missing
movement of the sample

Momentum Equation

 Navier-Stokes

 Pressure
 Acceleration due to pressure differences

 Preserves the fluid volume / density

 Viscosity
 Acceleration due to friction between particles with different velocities

 Other
 Gravity

 Acceleration due to boundary handling

Smoothed Particle Hydrodynamics SPH

 Interpolation method
 Proposed by Gingold and Monaghan (1977) and Lucy (1977)

 Can be used for sets of arbitrary samples to
 Interpolate quantities

 Approximate spatial derivatives

 SPH in a Lagrangian fluid simulation
 Fluid is represented with a set of particles / samples

 SPH is used to discretize

 Quantity at arbitrary position is approximately computed
with a set of known quantities at sample positions

 is not necessarily a sample position

 If is a sample position, it contributes to the sum

 is a kernel function that weights the contributions
of sample positions according to their distance to

 is the so-called smoothing length

 is not necessarily the particle distance
or the size of the compact support of

Interpolation with SPH

Kernel Function

 Close to a Gaussian, but with compact support

 Number of neighboring particles considered in the interpolation
 Depends on dimensionality, kernel support, particle spacing / mass

 In 3D, 30-40 neighboring particles are recommended

 E.g., cubic spline, support , particle spacing

 Trade-off between performance and interpolation accuracy

Spatial Derivatives with SPH

 Original approximations

 Currently preferred approximations
Preserves linear and
angular momentum

More robust as it avoids
the second derivative of W

Sampling independent

Momentum Equation – SPH Discretization

 Navier-Stokes

 Density

 Pressure acceleration

 Viscosity acceleration

Simple SPH Fluid Solver

 Find all neighbors of particle

 Compute density

 Compute pressure

 Compute accelerations

 Update velocity and position

Topics / Research Challenges

 SPH fluid solver

 Neighborhood query

 Incompressibility / pressure computation

 Boundary handling

 Multiple phases

 Multi-resolution

 Surface reconstruction and rendering

 For the computation of SPH sums, each particle needs to know
30-40 neighbors in each simulation step

 Current scenarios
 Up to 100 million fluid particles

 Up to 3 billion neighbors per simulation step

 Efficient construction and processing of dynamically changing
neighbor sets is essential

Neighbor Search

Characteristics

 SPH computes sums
 Dynamically changing sets of neighboring particles

 Temporal coherence

 Spatial data structures accelerate the neighbor search
 Fast query

 Fast generation - each simulation step

 sparsely, non-uniformly filled simulation domain

 Similarities to collision detection and intersection tests in
raytracing
 However, cells adjacent to the cell of a particle have to be accessed

Characteristics

 Uniform grid
 E.g., [Mueller03, Harada07, Green08, Goswami11, Ihmsen11, Macklin13]

 Generally preferred - construction in O(n), access in O(1)

 Hierarchical data structures
 E.g., [Vermuri98, Keiser06, Adams07]

 Less efficient - construction in O(n log n), access in O(log n)

 Verlet lists
 E.g., [Verlet67, Hieber07]

 Potential neighbors computed within larger distance than actual support

 Potential neighbors updated every n-th simulation step

 Memory-intensive and slow

 Cell index c = k + l · K + m · K · L is computed for a particle
 K and L denote the number of cells in x and y direction

 Particles are sorted with respect to their cell index
 e.g., radix sort, O(n)

 Each grid cell (k, l, m) stores a reference to the first particle in the
sorted list

Index Sort – Uniform Grid

uniform grid

sorted particles with
their cell indices

 Sorted particle array is queried

 Particles in the same cell are queried

 References to particles of adjacent cells are obtained from the
references stored in the uniform grid

 Cache-hit rate
 Particles in the same cell are close in memory

 Particles of neighboring cells are not necessarily close in memory

Index Sort – Query

 Particles are sorted with
respect to z-curve index

 Improved cache-hit rate
 Particles in adjacent cells

are close in memory

 Efficient computation of
z-curve indices possible

Z-Index Sort

z-curve

Z-Index Sort - Reordering

Particles colored according
to their location in memory

Spatial compactness is
enforced using a z-curve

Topics / Research Challenges

 SPH fluid solver

 Neighborhood query

 Incompressibility / pressure computation

 Boundary handling

 Multiple phases

 Multi-resolution

 Surface reconstruction and rendering

 Role of pressure forces
 Counteracts volume compression

 Acceleration due to pressure differences

 Incompressibility
 Is essential for a realistic fluid behavior

 Inappropriate compression leads, e.g., to oscillations at the free surface

 Is computationally expensive:
 Simple computations require small time steps

 Large time steps require complex computations

Pressure Computation

 Non-iterative state-equation-based
 Compressible [Müller03]

 Weakly-compressible [Becker07]

 Iterative state-equation based
 PCISPH [Solenthaler09]

 Local Poisson SPH [He12]

 PBF [Macklin13]

 Pressure projection
 Divergence free [Cummins99]

 Density invariant [Shao03]

 IISPH [Ihmsen13]

Pressure Computation - Models

 Pressure is locally computed from density, e.g.,

 Compressible SPH

 Weakly compressible SPH

 Stiffness constants are user-defined

 Penalty approach
 Current density fluctuations result in density gradients

 Density gradients result in pressure gradients

 Pressure gradients result in pressure force from high to low pressure

 Properties
 Fast computation, but small time steps

 Stiffness constant govern compressibility

 Stiffness restricts the time step (scenario dependent)

State Equations (EOS, SESPH)

Non-iterative EOS Solver (SESPH)

 Compute pressure after advecting particles with non-pressure forces

 Splitting concept
 Compute all non-pressure forces

 Compute intermediate velocity

 Compute intermediate position

 Compute intermediate density

 Compute pressure from intermediate density using an EOS

 Compute final velocity

 Motivation
 Consider competing forces

 Take (positive or negative) effects of non-pressure forces
into account when computing the pressure forces

SESPH with Splitting

SESPH with Splitting

- follows from the continuity equation

- avoids neighbor search

 Pressure forces are iteratively accumulated and refined

 Concept
 Compute non-pressure forces, intermediate velocity and position

 Iteratively
 Compute intermediate density from intermediate position

 Compute pressure from intermediate density

 Compute pressure forces

 Update intermediate velocity and position

 Motivation
 Parameterized by a desired density error, not by a stiffness constant

 Provides a fluid state with a guaranteed density error

Iterative SESPH with Splitting

Iterative SESPH with Splitting

user-defined density error

 Different quantities are accumulated

 Pressure forces (local Poisson SPH)

 Pressure (predictive-corrective SPH, PCISPH)

 Distances (position-based fluids, PBF)


 Different EOS and stiffness constants are used

 Local Poisson SPH:

 PCISPH:

 PBF:

Iterative SESPH - Variants

β is a pre-computed constant

 Typically 3-5 iterations for density errors between 0.1% and 1%

 Typical speed-up over non-iterative SESPH: 50
 More computations per time step compared to SESPH

 Significantly larger time step than in SESPH

 EOS and stiffness constant influence the number of
required iterations to get a desired density error
 Rarely analyzed

 Non-linear relation between time step and iterations
 Largest possible time step does not necessarily lead to an optimal overall

performance

Iterative SESPH - Performance

Projection Schemes

 Compute pressure with a pressure-Poisson equation

 : predicted velocity considering all non-pressure forces

 : predicted density with respect to , e.g.,

 Source terms:
 : divergence-free condition, e.g., [Cummins99]

 : density invariance condition , e.g., [Shao03, IISPH]

IISPH - Method

 Continuity equation

 SPH discretization

 Constrain to reference density

 Velocities are unknown

IISPH - Method

 Split velocity

 Intermediate velocities without pressure force

 Discretization

IISPH – Pressure Force

 Momentum preserving formulation

 Linear system with unknown pressure values

 Properties
 A particle has up to 40 neighbors

 Approximately 40*40 non-zero coefficients per equation

IISPH - Implementation

 Relaxed Jacobi
 Matrix-free implementation

 Implicit computation of non-diagonal entries

 Seven scalar values per particle are stored

 Two loops over set of particles per iteration

 Fully parallelized

 Fast convergence

IISPH - Properties

 Efficiency
 Low number of iterations, typically between 5-15

 Iterations are cheap to compute

 Pressure solver outperforms previous schemes by factor 7

 Plausibility
 Enforces compression of less than 0.1%

 Robustness
 Handles larger time steps than previous schemes

 Adaptive time-stepping is easy

Comparison of Iterative Methods

 Avergage number of iterations to enforce volume preservation with
an error of 0.1%

Topics / Research Challenges

 SPH fluid solver

 Neighborhood query

 Incompressibility / pressure computation

 Boundary handling

 Multiple phases

 Multi-resolution

 Surface reconstruction and rendering

SPH Approximation at the Boundary

 Particle deficiency at the interface
 Results in discontinuities

 Large pressure gradients

 Solution:
 Sample boundaries with particles to

approximate field variables

Strategies

 Sampling
 Pre-sampling, e.g., [Keiser06,

Solenthaler07, Akinci12, Schechter12]

 Online sampling, e.g., [Hu06]

 Field approximation of boundary particle
 Interpolate, e.g., [Solenthaler07, Ihmsen10]

 Mirror, e.g., [Akinci12, Schechter12]

 Force computation
 Penalty forces, e.g., [Müller04, Lenaerts08]

 Direct forcing, e.g., [Becker09]

 Pressure-based, e.g.,
[Solenthaler07,Akinci12]

Sampling of Arbitrary Meshes

 Uniform sampling not always possible

 Particle spacing must not be larger than smoothing length

 Correct particle volumes in oversampled boundary regions
[Akinci12]

 Mirror fluid particle‘s rest density onto rigid particle to get mass
contribution

 Example: adapted density computation

Sampling - Mass Contribution

Topics / Research Challenges

 SPH fluid solver

 Neighborhood query

 Incompressibility / pressure computation

 Boundary handling

 Multiple phases

 Multi-resolution

 Surface reconstruction and rendering

Multiphase Fluids

 Particles offer the advantage that the free surface and the interface
between two fluids is sharply defined

 [Müller 05, Tartakovsky05, Hu06, Solenthaler08, Schechter12]

[Schechter12]

Liquid-air interface

[Solenthaler08]

Liquid-liquid interface

Particle Attributes

 Particles carry attributes individually
 Mass
 Rest density
 Viscosity coefficient
 Color attributes
 Temperature

 Buoyancy emerges from individual rest
densities Vi

fluid1 = Vj
fluid2

 Diffusion of concentration, temperature [Müller05]

High Density Ratios

[Solenthaler08]

High Density Ratios

[Solenthaler08]

 Standard SPH
 Cannot handle discontinuities at interfaces

 Results in spurious and unphysical interface
tension

 Large density differences lead to instability
problems

 Adapted SPH
 Stable simulations despite high density ratios
 We need full control over behavior

h

ρ0=100 ρ0=1000

Particle density
 Problems near

interfaces where rest
densities and masses
vary

 Falsified smoothed
quantities

Interface Problems

Desired density field SPH density field

Adapted density

Apply the same idea to all forces!

[Solenthaler08]

No Artificial Tension Forces

[Solenthaler08]

Liquid-air Interface

 Density deficiency at the free surface due to lack of neighbors
-> Surface tension artifacts, clustering in spray

[Schechter12]

 Air particles solve these problems, at the cost of higher memory
consumption and computation costs



Liquid-air Interface

[Schechter12]

 Air particles solve these problems, at the cost of higher memory
consumption and computation costs

Trapped Air

 Similar to [Schechter12], [Müller05]
dynamically sample parts of the free
surface with air particles -> trapped air

[Müller05]

 High density ratios are challenging;
simulate phases separately [Ihmsen11]
and couple them via drag force

Ihmsen et al. / Air bubbles with SPH

Figure 1: Trapped air. Air bubbles are generated on the fly in regions of high velocity differences. The bubble flow is significantly influenced

by the liquid. Bubbles are merging and deforming. This simulation contains 1.4 million liquid particles and up to 6000 air particles.

We model the buoyancy of the air bubbles by a saturated

function that accounts for the volume. Thereby, large bub-

bles rise faster than small bubbles. Furthermore, a cohesion

force is employed that minimizes the surface and makes ris-

ing bubbles merge.

In order to simulate trapped air without explicitly model-

ing the air surrounding the fluid, we generate them on the fly

in surface regions with high velocity differences. When air

particles have reached the surface, they are treated as foam

and finally deleted after a user defined time.

The presented bubble model can be easily incorporated

into any existing SPH solver with negligible computational

overhead. We suggest to use the predictive-corrective SPH

(PCISPH) algorithm [SP09] since it can handle large time

steps and is efficient to compute. Therefore, high resolution

scenes can be simulated where the size of the bubbles is

small in comparison to the liquid volume. A first example

is illustrated in Fig. 1.

2. RELATED WORK

In this work, we focus on an SPH based fluid simulation

for animating air bubbles and their interaction with water. In

Computer Graphics, SPH is applied to model different mate-

rials like gas [SF95], deformable objects [DC96], [SSP07],

hair [HMT01] and liquids [MCG03]. However, the interac-

tion of air and water is hardly covered since the high density

ratio poses severe problems to the SPH algorithm [Mon02].

In [MSKG05], the standard SPH model for single-phase

fluid simulations [MCG03] is extended to handle multiple

fluids. This approach can handle density ratios of up to 10.

In order to simulate air bubbles, an artificial buoyancy force

is applied. However, as stated in [SP08], this approach suf-

fers from falsified density estimations at the interface which

induce wrong pressure values. This in turn, limits the time

step and might result in numerical instabilities for fast rising

air particles due to large pressure forces. [SP08] overcomes

this problem by ignoring the mass in the computation of the

particle density. Thereby, sharp density changes at the fluid

interface can be reproduced. Although this method can han-

dle density ratios of up to 100, the flow of small, light vol-

umes like air bubbles can not be realistically handled. Ac-

cording to Solenthaler et al., the buoyant volumes can not

break up the crystallized particle configuration formed by

the pressure forces. In order to circumvent these problems,

we ignore particle neighbors of other phases when comput-

ing the density. Thus, we treat each phase separately. The

interaction of both phases is modeled via a drag force.

A similar idea is presented in [CPPK07] for simulating

dynamic gas bubbles generated from gas dissolution. In this

approach, each phase is computed separately, where the air

bubbles are modeled by discrete entities with fixed shape and

the liquid is computed with SPH. The bubbles are coupled to

the liquid via a drag force while the influence of the bubbles

onto the liquid is neglected. In contrast, our bubble model

is based on SPH and the governing forces are computed dif-

ferently. Furthermore, we couple the liquid and air phase in

a two-way manner using a different formulation of the drag

force.

Capturing the fine scale flow of bubbles with Eule-

rian methods, requires very fine grid resolutions. As stated

in [HLYK08], for numerical reasons, each bubble should at

least occupy 3 nodes in each dimension. Although, the com-

putational overhead can be minimized by adaptively refining

the grid using an octree [LGF04], the required grid spacing

significantly restricts the time step. Consequently, pure grid-

based methods like the regional level set method [ZYP06]

are only suited to handle relatively large bubbles in compar-

ison to the fluid volume. Alternatively, hybrid methods have

been proposed [HK03,GH04], in which the bubbles are sim-

ulated by passive air particles that are advected according to

the underlying grid. Similar to [KVG02], the particles are

modeled as spheres which do no not change their shape. By

coupling the bubble particles to a low resolution grid, mil-

lions of air particles can be simulated efficiently as shown

in [KSK10]. However, in these models the interaction of par-

ticles is often neglected. Therefore, the size and shape of air

bubbles is not varying over time. In contrast, in the proposed

model, the air bubbles can consist of many particles. The

International Conference on Computer Graphics Theory and Applications 2011

[Ihmsen11]

Topics / Research Challenges

 SPH fluid solver

 Neighborhood query

 Incompressibility / pressure computation

 Boundary handling

 Multiple phases

 Multi-resolution

 Surface reconstruction and rendering

Motivation for Adaptive Spatial Discretization

 Many particles are needed to get the desired visual quality

 Computational cost depends linearly on the particle number

3K particles 30M particles

[Solenthaler09][Müller03]

3M particles

[Ihmsen13]

Idea: Allocate computing resources to interesting regions

Criteria

 High resolution in regions of interest and low resolution otherwise

[Horvath13]

Near the surface

[Solenthaler11]

Near the interface

[Solenthaler11]

Object interaction

[Solenthaler11]

View frustum

[Horvath13]

Distance to Camera

Approaches

[Adams07] [Solenthaler11]

Dynamic particle refinement
[Desbrun99, Adams07, Orthmann12]

Multi-scale methods
[Solenthaler11, Horvath13]

1 simulation with
differently sized particles

2 (or multiple) coupled simulations,
each with equally sized particles

Dynamic Particle Refinement

 Dynamically split and merge particles

i

i ∃j i / |ρj − ρi |
mi

ρi
> ∆

∆

n

mnew
j

new
j

mnew
j =

mi

n
new
j = i ,

hnew
j mnew

j

ρnew
j

r

x

r

x

i ∀j i , |ρj − ρi |
mi

ρi
< δ

δ

r

x

r

x

I M

˜ = (x̃, ỹ, z̃)

I M =

I Ox − I xy − I xz

− I xy I Oy − I yz

− I xz − I yz I Oz

I Ox = j mj ((yj − ỹ)2 + (zj − z̃)2) I Oy = j mj ((x j − x̃)2 + (zj − z̃)2)

I Oz = j mj ((x j − x̃)2 + (yj − ỹ)2) I xy = j mj (x j − x̃)(yj − ỹ)

I yz = j mj (yj − ỹ)(zj − z̃) I xz = j mj (x j − x̃)(zj − z̃)

I M

tr ace(I M)

3

3

det(I M)

mnew
i ←

j

mj

new
i ← (

j

mj j)/ mnew
i

new
i ← (

j

mj j)/ mnew
i

ρnew
i ←

mnew
i

j (mj / ρj)
.

i

i

[Desbrun99]

Symmetric visibility

Reproduce field quantities

Smooth size transition

Dynamic Particle Refinement

 Dynamically split and merge particles

[Adams07]

Field Discontinuities

 Supporting incompressibility increases the problems of field
discontinuities
-> shocks, smaller time steps

 Non-continuous sampling over time introduces large errors

t

1

[Orthmann12]

Field Discontinuities

 Supporting incompressibility increases the problems of field
discontinuities
-> shocks, smaller time steps

 Non-continuous sampling over time introduces large errors

 Smooth temporal blending of resolution levels [Orthmann12]

t

1

blend operator

[Orthmann12]

Field Discontinuities

 Supporting incompressibility increases the problems of field
discontinuities
-> shocks, smaller time steps

 Non-continuous sampling over time introduces large errors

 Smooth temporal blending of resolution levels [Othmann12]
Reference solutionTemporal blending

[Orthmann12]

Resolution
difference is
limited

Resolution Differences

Base resolution

2x resolution
-> 8x more particles

4x resolution
-> 64x more particles

User-defined regionsLow-resolution input

L and H merged Final rendering

Complete neighborhoods

Particles added / deleted

Particles advected

Boundary region

L

H

L

H

High-resolution region

Feedback

Boundary conditions

Figure 3: Method overview. In our two-scale algorithm, a fluid subset (yellow particles) determined in the low-resolution level (L) is
additionally simulated with higher resolution (H). Appropriate boundary conditions given by L are defined (red particles), and a feedback
force from H onto L is included to get corresponding flows. The particles of both simulations can then bemerged for thefinal rendering.

particles j

< qi > =
X

j

m j

⇢j

qj W (x i j , h), (1)

where m j is the mass of particle j and ⇢j its density. In our im-
plementation, we use the SPH force equations for multiple fluids
proposed in [Solenthaler and Pajarola 2008], and the kernels given
in [Müller et al. 2003]. Wehaveadditionally integrated our method
into the incompressible PCISPH solver presented in [Solenthaler
and Pajarola 2009] to keep density variations below 1%. The main
differencebetween SPH / WCSPH and PCISPH isthat pressureval-
uesareset in adifferent way: While in SPH / WCSPH pressures are
defined by theequation of state, PCISPH iteratively adaptspressure
values according to the predicted density error of the particles.

4 Two-Scale Model

Our method, illustrated in Figure 3, uses two simulations with dif-
ferent resolution scales, a low-resolution L and a high-resolution
H. Theresolution difference isauser-defined valueand can becho-
sen arbitrarily large. We have defined the particle size difference
to be a multiple of 8 in each scaling step. This results in a regular
particlesampling asdiscussed in Section 4.3. In our simulationswe
typically useaparticlesizedifferenceof afactor of 8 (doubled reso-
lution) or 64 (quadrupled resolution). Larger resolution differences
can be chosen as well, but, as we discuss in Section 6, our experi-
ments have shown that these sizes work best to keep the influence
of the damping effects from L small.

The coarse level L (blue particles) acts as the base simulation and
computes the physics for the whole fluid. In L we determine a
subset of the fluid that we want to simulate with higher resolution
(yellow particles). We show how this region can be determined in
Section 4.1. This subset region defines the second simulation. An
additional particle layer (red particles) is used to model the bound-
ary conditions for H. These particles are advected by the flow field
of L, see Section 4.2, and are dynamically added and deleted as
described in Section 4.3. When a boundary particle enters the ac-
tive, yellow region, care is taken that thephysical quantities change
smoothly, see Section 4.4. Since we get more flow details in H we
include a feedback force from H onto L, this is described in Sec-
tion 4.5. The particles of H and L can then be merged for the final
rendering. The adapted SPH and PCISPH Algorithm as well as
parameter settings are given in Section 5.

4.1 High-Resolution Region

The high-resolution region H can be defined by any type of sam-
pling condition and can change dynamically during the simulation.
Since we aim for better visual quality we use geometry driven cri-
teria in all our examples, this is insofar important since the surface
particles are typically used to reconstruct the fluid surface. How-
ever, physics-driven conditions and combined criteria can be incor-
porated as well.

Spatial conditions are straightforward to define, an example is
shown in Figure 1 where a region around obstacles is defined to
be simulated with higher resolution to get more surface details at
impact locations. Camera information can be additionally included
to change the region according to the field of view as shown in
Figure 2. Often, it is desirable to allocate computing resources
to the surface of the fluid to get more surface details and fine-
scaled splashes as in Figure 3. We define a particle to be at the
surface if the distance to the center of mass of its neighborhood
x i ,cm = x i −

P
j x j /

P
j 1 is above a threshold as described

in [Solenthaler et al. 2007]. Isolated particles are detected sepa-
rately, they are defined by having empty neighborhoods. We use
flood fill to extract several layers of particles that are close to the
surface. The interface between multiple fluids can be determined
similarly, the only difference is that x i ,cm is based on particles of
the samefluid type only. An example where the interface region is
sampled with higher resolution is shown in Figure 4. Our method
isable to handle very complex high-resolution regions that dynam-
ically change over time, thus any other criterion to defineH can be
incorporated aswell.

In order to keep the computation cost low, as many operations as
possible are executed in L. Therefore, the high-resolution region is
detected in L and then transferred onto H. Each particle in H stores
a parent particle, which is the closest particle in L, and is classified
according to the region of its parent. In the following, we refer to
the particles that are inside the high-resolution region as active.

4.2 Boundary Region

We detect the boundary region analogously to H using the flood
fill method. Boundary particles are advected by the flow of L, the
velocity is interpolated from L onto H (interpolated quantities q
from L are indicated with q̂ in the following) by

v̂ i 2 H =
X

k 2 L

v k W, (2)

Multi-scale Methods

 Allow larger resolution differences
 Avoid splitting / merging and thus field discontinuities

[Solenthaler11]

 Use separate but coupled simulations for each level -> mlevel, hlevel const
 Two-scale approach [Solenthaler11]

Multi-scale Methods – View Frustum

[Solenthaler11]

Extended to Multi-scale

[Horvath13]

 Multiple resolution levels

 Combined criteria

boundary

active

inactive

boundary

active

Figure 2: A two-scale example with the coarse and fine resolu-
tion levels. The fluid volume is shown in grey, and a user-specified
refinement volume in light yellow. Active particles are light blue,
boundary particles are blue, and inactive particles are dark blue.
In this illustration, and in all our multi-scale examples, only parti-
cleswhich are sufficiently close to the surface are refined.

0 20 40 60 80 100

0.7

0.8

0.9

Frame

M
as

s
C

o
n
se

rv
at

io
n

Two-Scale

Multi-Scale

Figure 3: Mass conservation comparison. With the original two-
scale model, a mass loss of 22% is observed in our dam break ex-
ample, while thetotal massisconserved with theproposed emission
strategy.

Applying the same strategy to complex geometries results in in-
stabilities as extensive oversampling near the solid is introduced.
Oversampled particles can also be observed at the boundar y layer
of the fine level. Since those particles are advected, the dense sam-
pling is less critical in terms of stability. However, mass loss is
observed as it may happen that too many particles in H are deleted
if their parent in L changes from boundar y to i nact i ve. We see
gradual mass loss occurring over the course of a long simulation,
especially during very dynamic and splashy parts of the evolution.
In our dam break test, we observe a mass loss in one refinement
scale of 22% over six seconds of simulated time (see Figure 3, red
curve, and Figure 10, top row).

4 Multi-Scale Method

Wehavereplaced many critical components of the two-scale model
that arenecessary to simulatemultipleresolution levelsfor complex
environments that are typical in production scenarios. Wefirst dis-
cuss in Section 4.1 how we change the method to support arbitrary
numbers of levels. In Section 4.2, we then present a robust fluid
boundary emission which conserves the total mass and maintains
boundary integrity. As theemission strategy produces oversampled
particle regions, wepresent an elaborated relaxation in Section 4.3.
We introduce a particle-dependent relaxation coefficient, which is
considered in the SPH equations and the final displacement con-
trol. With this, therest volumeof aparticle isgradually approached,
eliminating any instabilitiescaused by theirregular sampling. In or-
der to keep our refinement confined to regionsnear thefluid surface,

Figure4: Examplesystemdefinition. Thesolid bridgeand riverbed
objects in white, a fluid initial state in blue. The simulation domain
bounds are in green, with two frustum-shaped regionsof refinement
in purple and red.

we define an improved and temporally smooth fluid surface depth
calculation based on the equations for a level set in Section 4.4.
Lastly, we show how the top-level time-step for the system is orga-
nized in Section 4.5, which recursively computesall scalesof detail
starting from the coarsest.

4.1 Terminology and Level Definition

In contrast to the two-scale model, our method is not restricted to
two resolution levels only. We label these levels, referred to as
states in the following, explicitly as (L 0 , L 1 , ..., L n − 1). Hence,
for any state L r , the coarse-parent state is L r − 1 and the fine-child
state is L r + 1 . The coarsest state, L 0 , has a user-specified particle
radius, r 0 , and each subsequent refined state’s particles are always
half the radius of the previous, coarser state’s, thus r r = 0.5r r − 1 .
This restriction on the refinement ratio, which is not applied by
the two-scale method in [Solenthaler and Gross 2011], reduces the
implementation complexity considerably.

At the coarsest state, the simulation environment is defined by a
static domain bound, a fluid initial state volume, static and mov-
ing collision volumes, fluid sources, and fluid sinks. Each subse-
quent refined state is additionally defined by a refinement volume,
which is user-defined and may be dynamically changing. Refine-
ment volumes can be designed by the user to represent, for exam-
ple, frustums of visibility relative to an observer or areasof interest
around a particular collision object, as illustrated in Figure 4. Each
of therefined statesother than thecoarsest areonly defined insideof
their respective refinement volumes, and are furthermore restricted
to only a relatively shallow depth beneath the surface of the fluid
interface, as illustrated in Figure 2, which significantly decreases
the particle count.

As in the two-scale method, the particles of state L r can be clas-
sified at a specific time according to the refinement volume of the
fine-children state L r + 1 . Particles which are inside the refinement
volume and sufficiently close to thefluid surface are marked asac-
tive. Particleswhich arenot marked active, but arewithin adistance
of 4r of any neighboring active particle, are marked as fboundary,
and theremaining particlesaremarked inactive. Following thetwo-
scaleapproach, each refined particlehasasingleparticle in thenext
coarser statethat it iscoupled to, called thecoarse-parent. Wemark
each refined particle according to the classification of its coarse-
parent aspActive, pFboundary, or pInactive. Weadditionally allow
for refined particles to have no coarse-parent if they’re sufficiently

Speed-up:
[Adams07, Solenthaler11]: 3-7x
[Horvath13]: 3-12x
All previous work: less memory

[Horvath13]

Topics / Research Challenges

 SPH fluid solver

 Neighborhood query

 Incompressibility / pressure computation

 Boundary handling

 Multiple phases

 Multi-resolution

 Surface reconstruction and rendering

Motivation

 Smooth Surfaces

 Efficient Reconstruction

 Combined Volume Rendering

Outlook

 Scalar field functions

 Polygonalization and particle skinning

 Explicit surface tracking

 Direct surface rendering

 Volume rendering

Adopted from [Adams07]

Scalar Field Functions

 General approach: Surface = Iso-surface of scalar field function

 Metaballs [Blinn82]: Superimposed potential function located at particles  yields
blobby surfaces

 Color field [Müller03]:

 Color field ≈ 1 in bulk and 0 in air

 Surface normal as color field gradient

 Disadvantage: Bumpy surface

 Distance to center of mass [Zhu05]:

 Define level set function

 Center of mass
using larger radius

 This approach yields smoother results

Particle-to-Surface Distance

[Adams07] (100K ptcl; several sec on Intel Pentium D)

 Improved particle-to-surface distance function [Adams07]:
 Level set function with varying distance

 Average distance to surface (from prior step):

 Surface projection using approximate particle-to-surface distances
 Binary search along gradient

 Surface particle, if surface within radius ri

Errors in concave regions [Solenthaler07]

Scalar Field Functions: Comparison & Problems

 Comparison:
 Metaballs [Blinn82]

 Constant distance
R [Zhu05]

 Particle-to-surface
distance d(x) [Adams07]

• Issues with the center of mass in concave regions :
 Erroneously parts outside of the fluid volume

 Very sensitive to changes of the query point

coarsening

refining

[Adams07]

Decay function [Solenthaler07]

Scalar Field Function: Removal of Artifacts

 Analysis of gradient of mass center [Solenthaler07]

 Observation: Strong variation of center of mass at artifacts

 Solution: Weight distance function according to eigenvalue of

 Alternative approach [Onderik13]:

 Use normalized iso-density instead of EV

Transfer function [Ondrik13]
Comparison of [Solenthaler07] (left) and

[Onderik13] (right) (14k ptcl, < 1 sec, Intel Core 2 Duo)

Scalar Field Functions: Anisotropic Kernels

 Goal: Smooth and feature preserving surface reconstruction

 Anisotropic kernels based on covariance matrix over local particle
neighborhoods [Yu10].

 Scalar field defined via using

in order to define anisotropic kernel

Anisotropic kernel [Yu13] Particle and surface rendering [Yu13]
(24K ptcl; <10 sec on Intel Core 2 Duo)

Marching Cubes Reconstruction

 Polygonal iso-surfaces w.r.t. scalar function using Marching Cubes

 Idea: Optimization of Marching Cubes on GPU [Akinci12a, Akinci12b]

 Store grid nodes in a narrow band at surface reduces complexity to O(n²)
[Akinci12a]

 Specific handling of “double layers”

 Post-processing [Akinci12b]:

 Decimation: QEM mesh reduction

 Refinement: Loop subdivision scheme

Decimation & Subdivision [Akinci12b]

Initial surface [Solenthaler07] (left), after decimation (middle)
and subdivision (right) [Akinci12b] (60k ptcl, 3.3 sec, Intel Xeon X5680)

Surface Vertex

Extraction

Scalar Field

Computation

Marching

Cubes

Decimation &

Subdivision

Particle Skinning with Energy Minimization

Amarillo with 0, 20 and 100 iterations [Bhattacharya11]

 Idea: Find minimal thin plate energy surface between minimal and maximal
surface [Bhattacharya11].

 Sample potential function of particles onto regular grid

 Constrained thin plate optimization with initial

 Constraint:

Constrained surface
(red) between

and

Explicit Surface Tracking

 Idea: Attach & track an explicit mesh at the fluid surface [Yu12]

 Initial mesh using anisotropic kernels [Yu10] and MC reconstruction

 Mesh advection: Normalized velocities at mesh vertices vi

 Mesh refinement using standard split-merge approach

 Mesh vertices are projected onto iso surface [Adams07]

 If projection fails, i.e.
 Topological merge if vi interior () and split else ()

[Yu12] (29k ptls, 41s surface tracking, 24s surface reconstruktion, 2x Intel Xeon E5620)

Mesh

Initialization

Mesh

Advection

Mesh

Refinement

Mesh

Projection

Topological

Changes

Direct Rendering

 Idea: Project surface particles onto grid and use iso-surface
raycasting [Goswami10]

 Extraction of surface particles similar [Zhu05] (distance to center of
mass), but only masses w/o kernel weighting

 Scalar field computation uses 3D splatting in
grid
 Transfer function defines relevant distance

values

 Per grid vertex scalar value

 Raycasting with normals computed on grid

Isosurface raycasting

Surface Particle

Extraction

Scalar Field

Computation

Isosurface

Raycasting

PovRay rendered results [Goswami10] (250k pctl)

Distance computation on small
band around surface particles

Screen-Space Rendering

 Idea: Splat particles as spheres onto image plane apply depth map
smoothing [van der Laan09]

 Render particles and store screen-space depth and normal values

 Screen-space smoothing (“curvature flow”)
 Evolve depth according to mean curvature using

 Apply smoothing iteratively

 Final rendering using compositing

[Macklin13]

Depth Map

Rendering

Screen Space

Smoothing

Compositing

& Lighting

Gaussian smoothing (left) vs. curvature
flow (right) [van der Laan09]

(64k pctl, 18.1 ms (bilateral), 50 ms (curvature flow 100 it), GF8800 GTS 512)

Volume Rendering

Particle SlicingPerspective Mapping

 Idea: Additionally visualize quantity distribution within bulk

 Approaches for SPH volume rendering
 Texture slicing based on a view-aligned perspective grid [Fraedrich10]

 Raycasting on a object aligned octree hierarchy [Orthmann10]

 Texture slicing on perspective grids [Fraedrich10]:
 Perspective mapping ensures a quasi regular sampling along rays

 Particle hierarchy allows for “particle size approx. cell size”

 Particle slicing samples particle contributions onto grid

 Final rendering via standard texture slicing using front-to-back slabs

Perspective

Mapping

Particle

Slicing

Surface

Rendering

Combined Volume Rendering

 Raycasting on a object aligned octree hierarchy [Orthmann10]
 Particle-to-cell mapping & hierarchy building per frame

 Efficient traversal of OA octree using various caches

[Fraedrich10]
(2.5M pctl, 152 ms @ 512² res, 676 ms @ 1024² res,

Intel Core 2 Duo 2.4 GHz + NV GTX 280)

Particle-to-Cell

Mapping

Volume

Sampling

Surface

Rendering

Similar to [Orthmann10]
(2.4M pctl, 1024² res, 2s object space hierarchy,

870 ms perspective grid, Nvidia GTX Titan

