SPH Fluids in Computer Graphics

Markus lhmsen
Jens Orthmann
Barbara Solenthaler
Andreas Kolb
Matthias Teschner

University of Freiburg
University of Siegen
ETH Zirich

University of Siegen
University of Freiburg

Topics / Research Challenges

= SPH fluid solver

= Neighborhood query

= |[ncompressibility / pressure computation
= Boundary handling

= Multiple phases

= Multi-resolution

= Surface reconstruction and rendering

s{.vo\sbnufg 2014

Lagrangian Approach

7 o 7 o — o o
VAV P A
VAR R fff-’
! 7 7 7 A

v(x,y,z,1) vz + At -u,y+ At -v, z+ At - w, t + At)

= flow properties are considered at irregular positions x;
= particles have volume V;, mass m;, density p;, pressure p;
= particles move with their velocity v;

Momentum Equation

= Navier-Stokes

DV’L 1 9 thher
Dt — —Esz + vV VvV, + m,
N~

time rate of change
of the velocity of a
moving fluid element

= Lagrangian form with advected fluid samples / particles x;

DV,,; - dV@‘ dx?; — V.
Dt — dt dt 1

= Eulerian form with fixed fluid samples x;

Dv; ov; Accounts for the missing
P — —t L V., * VV
o DVt ot T Vi ' movement of the sample

Strasbourg 2014

Momentum Equation

= Navier-Stokes

s 1) Fc_)ther
vV, {
Dvi - a, = ——Vp, + Vv o+
N~~~ Pi N—— m;
acceleration SN——— viscosity force ~—
of a particle pressure force per particle mass other forces

per particle mass per particle mass
= Pressure
= Acceleration due to pressure differences
= Preserves the fluid volume / density
= \iscosity
= Acceleration due to friction between particles with different velocities
= Other

= Gravity
= Acceleration due to boundary handling

Vi
Strasbourg 2014

Smoothed Particle Hydrodynamics SPH

= |nterpolation method

= Proposed by Gingold and Monaghan (1977) and Lucy (1977)
= Can be used for sets of arbitrary samples to

= |nterpolate quantities

= Approximate spatial derivatives
= SPH in a Lagrangian fluid simulation

= Fluid is represented with a set of particles / samples

= SPH is used to discretize a; = —éVpi + Vv, +¢g

Interpolation with SPH

= Quantity A; at arbitrary position x; is approximately computed
with a set of known quantities A; at x, sample positions

Ai =32 ViAW =32, LA W

J Py
= X; is not necessarily a sample position
= |f X; isasample position, it contributes to the sum

= W;,; is a kernel function that weights the contributions
of sample positions x; according to their distance to x;

Wiy =W (Igd)

= h isthe so-called smoothing length

= £ is not necessarily the particle distance
or the size of the compact support of W

Kernel Function

= Close to a Gaussian, but with compact support

= Number of neighboring particles considered in the interpolation
= Depends on dimensionality, kernel support, particle spacing / mass
= |n 3D, 30-40 neighboring particles are recommended
= E.g., cubicspline, support 2k, particle spacing h
= Trade-off between performance and interpolation accuracy

Spatial Derivatives with SPH

= QOriginal approximations
VA=), =1 A VW
V2A; = > ZL A VAW,

J P

= Currently preferred approximations
Preserves linear and

. (A4 A y
VA@ — p’l, ZJ mj (p?’ —I_ p?) VW?’J angular momentum

V- A, = —% Zj m;iA;; VW, Sampling independent
24 _ mj o4 X VWi More robust as it avoids
Vid; =2 Zj Pj A"’J X;;%;;+0.01h% the second derivative of W

Aij:Az’_Aj Aij:Ai_Aj Xij:X,,;—Xj

Momentum Equation — SPH Discretization

= Navier-Stokes

1 Fc_)the'r
a; = — Vp?, —+ VVQVZ' —+ L
acceleration S——— viscosity force ~—
of a particle pressure force per particle mass other forces
per particle mass per particle mass
= Density Pi = Zj m; Wi
i _Vpi _ _ (Piog Py g
= Pressure acceleration = DMy (p? p?) VWi,

Xij VWM
'V. .
tJ XijXij +001h2

= Viscosity acceleration vV?v; =2v3", -1
J

Simple SPH Fluid Solver

Find all neighbors j of particle ¢
Compute density p;

Compute pressure p;

Compute accelerations

Update velocity and position

Topics / Research Challenges

= SPH fluid solver

= Neighborhood query

= |[ncompressibility / pressure computation
= Boundary handling

= Multiple phases

= Multi-resolution

= Surface reconstruction and rendering

Neighbor Search

= For the computation of SPH sums, each particle needs to know
30-40 neighbors in each simulation step

= Current scenarios
= Up to 100 million fluid particles
= Up to 3 billion neighbors per simulation step

= Efficient construction and processing of dynamically changing
neighbor sets is essential

Characteristics

= SPH computes sums
= Dynamically changing sets of neighboring particles
= Temporal coherence
= Spatial data structures accelerate the neighbor search
= Fast query
= Fast generation - each simulation step
= sparsely, non-uniformly filled simulation domain
= Similarities to collision detection and intersection tests in
raytracing
= However, cells adjacent to the cell of a particle have to be accessed

Characteristics

= Uniform grid
= E.g., [Mueller03, Harada07, Green08, Goswamill, Ihmsen11, Macklin13]
= Generally preferred - construction in O(n), access in O(1)
= Hierarchical data structures
= E.g., [Vermuri98, Keiser06, Adams07]
= Less efficient - construction in O(n log n), access in O(log n)
= Verlet lists
= E.g., [Verlet67, Hieber07]
= Potential neighbors computed within larger distance than actual support
= Potential neighbors updated every n-th simulation step
= Memory-intensive and slow

Index Sort — Uniform Grid

= Cellindexc=k+1|:-K+m:-K-Liscomputed for a particle
= Kand L denote the number of cells in x and y direction

= Particles are sorted with respect to their cell index
= e.g., radix sort, O(n)

= Each grid cell (k, |, m) stores a reference to the first particle in the
sorted list

0 1 20314|5|6|7]|8 uniform grid

sorted particles with
their cell indices

Index Sort — Query

= Sorted particle array is queried
= Particles in the same cell are queried

= References to particles of adjacent cells are obtained from the
references stored in the uniform grid

= Cache-hit rate
= Particles in the same cell are close in memory
= Particles of neighboring cells are not necessarily close in memory

Z-Index Sort

= Particles are sorted with 5 E 2 w m
respect to z-curve index ‘\oﬂn ;m o e

= |mproved cache-hit rate M \3
= Particles in adjacent cells % m
are close in memory % \{:\._.

= Efficient computation of w

z-curve indices possible

Z-curve

Z-Index Sort - Reordering

Particles colored according Spatial compactness is
to their location in memory enforced using a z-curve

S"Vd\sbonvg 2014

Topics / Research Challenges

= SPH fluid solver

= Neighborhood query

= Incompressibility / pressure computation
= Boundary handling

= Multiple phases

= Multi-resolution

= Surface reconstruction and rendering

Pressure Computation

= Role of pressure forces
= Counteracts volume compression
= Acceleration due to pressure differences

= |[ncompressibility
= |s essential for a realistic fluid behavior
= |nappropriate compression leads, e.g., to oscillations at the free surface
= |s computationally expensive:

= Simple computations require small time steps
= Large time steps require complex computations

S{’vo\sbvulg 2014

Pressure Computation - Models

= Non-iterative state-equation-based
= Compressible [Miller03]
= Weakly-compressible [Becker07]

= |terative state-equation based
= PCISPH [SolenthalerQ9]
= Local Poisson SPH [He12]
= PBF [Macklin13]

= Pressure projection
= Divergence free [Cummins99]
= Density invariant [Shao03]
= |ISPH [Ihmsen13]

State Equations (EOS, SESPH)

= Pressure is locally computed from density, e.g.,
= Compressible SPH Pi = k(% —1)
= Weakly compressible SPH pi = k1((%)k2 —1)

= Stiffness constants k£ are user-defined

= Penalty approach
= Current density fluctuations result in density gradients
= Density gradients result in pressure gradients
= Pressure gradients result in pressure force from high to low pressure

= Properties
= Fast computation, but small time steps
= Stiffness constant govern compressibility
e = Stiffness restricts the time step (scenario dependent)

Non-iterative EOS Solver (SESPH)

for all particle © do
find neighbors j

for all particle © do

pi = ;m;Wi;

compute p; from p; with a state equation

for all particle © do

pressure m;
Fi - P; Vpi

2
— miyV V;
Fz(t) _ Fgressur@ 4+ F?iscosity 4+ thher

(]

viscosity
Fi th

other
Fi

for all particle » do
V; (t —+ At) = Vz'(t) -+ Ath (t)/mz

SESPH with Splitting

= Compute pressure after advecting particles with non-pressure forces
= Splitting concept
= Compute all non-pressure forces F;°"?(t)
= Compute intermediate velocity v = v;(t) + At—
= Compute intermediate position x} = x;(t) + Atv}
= Compute intermediate density pf (x})
= Compute pressure p; from intermediate density p;using an EOS

= Compute final velocity

= Motivation
= Consider competing forces v;(t + At) = v} — AtéVp@-
= Take (positive or negative) effects of non-pressure forces
into account when computing the pressure forces

SESPH with Splitting

for all particle v do
find neighbors j

for all particle v do
F;nscoszy _ m/,;VVQVq;
ther __
Foer = m;g
viscosity_FF;)ther

vi=v;(t) + AtZ

(]

mg
for all particle © do
- follows from the continuity equation
= . (v — v
Pi ZJ m; WZ] T . L ZJ(¢ J)VW” - avoids neighbor search
compute p; using p;

for all particle © do
FPT'GSS’LLT'E m

- = p,:} VPZ

for all particle © do
vi(t + At) = vi 4+ AtFY°C /my;

Iterative SESPH with Splitting

= Pressure forces are iteratively accumulated and refined

= Concept
= Compute non-pressure forces, intermediate velocity and position

= |teratively
= Compute intermediate density from intermediate position
= Compute pressure from intermediate density
= Compute pressure forces
= Update intermediate velocity and position
= Motivation
= Parameterized by a desired density error, not by a stiffness constant
= Provides a fluid state with a guaranteed density error

S{’vo\sbvulg 2014

Iterative SESPH with Splitting

for all particle 1 do
find neighbors j

for all particle © do

viscosit
vzscoszty Fc_)the'r‘

V’f‘zvz()—kAt ‘

’

ther __
Fother = mg

xI = x;(t) + Atv}

my
repeat
for all particle © do
compute p; using x;
compute p; using pj, e.g. p; = k(p; — po)
compute per-, €.g. average or maximum
for all particle » do]
ppressure

FUTesstre = —2EVpy Vi = Vit Al —— X] =X R AYAES

m; 7 m;

Fpressu'r'e

until Perr <- 7] gser—deﬂned density error
for all particle ¢ do

S{'ﬂ\sbvulg 2014

Iterative SESPH - Variants

= Different quantities are accumulated
= Pressure forces (local Poisson SPH)
= Pressure (predictive-corrective SPH, PCISPH)

= Distances (position-based fluids, PBF)
= AX; = —p—lo Zj(% + g—j)VWij B is a pre-computed constant

= Different EOS and stiffness constants are used

* 2
; . — _PiTy
= Local Poisson SPH: k = 5 i35
2p2 292
= PCISPH: k = . = 7
m2 A2 (3, VWO -5 VWO (VWO -YWO)) — m7-At23 (VW) -VWD)

= PBF: k=1 (p; =2 —1)

Pi
PO

Iterative SESPH - Performance

= Typically 3-5 iterations for density errors between 0.1% and 1%
= Typical speed-up over non-iterative SESPH: 50
= More computations per time step compared to SESPH
= Significantly larger time step than in SESPH
= EOS and stiffness constant influence the number of
required iterations to get a desired density error
= Rarely analyzed
= Non-linear relation between time step and iterations

= largest possible time step does not necessarily lead to an optimal overall
performance

Projection Schemes

= Compute pressure with a pressure-Poisson equation

2. Pi) *__L(Pf_,oa;)
Vopi = AV -V, = A A

= v;: predicted velocity considering all non-pressure forces
= pf:predicted density with respect to v}, e.g.,
* dpi *
p; = pi + At<G = pi — AtpV - v;

= Source terms:
o % : divergence-free condition, e.g., [Cummins99]

. W : density invariance condition, e.g., [Shao03, [ISPH]

lISPH - Method

= Continuity equation

dp; __
i =-piV-v;

= SPH discretization

ol 800D — ™ i (vi(t + At) — v;(t+ AL)) VIV ()

= Constrain pi(t + At) to reference density po
= Velocities are unknown

lISPH - Method

= Split velocity
vi(t + At) = v (t + At) + At
= |ntermediate velocities without pressure force
ved (¢ At) = vi(t) + At 0
= Discretization

F7 (1)

ot — 37 (v (¢ 4 At) + At (S - 200 v (¢)

p FP?(t
po—(pi(D)+AE S, myved (t+ADTWi (1)) = A2 S my (522 — 2 ww; (1)

A -
T

predicted density
pi@? (t 4 At)

lISPH — Pressure Force

= Momentum preserving formulation

5 J

= Linear system with unknown pressure values
po—pg”d'” = At? Zj m; |:ZJ m; (ﬁ—% + };—%) VWij_Zk mi (i—% + f)—%) VWJk] VWij

= Properties
= A particle has up to 40 neighbors
= Approximately 40*40 non-zero coefficients per equation

lISPH - Implementation

= Relaxed Jacobi
= Matrix-free implementation
= |mplicit computation of non-diagonal entries
= Seven scalar values per particle are stored
= Two loops over set of particles per iteration
= Fully parallelized
= Fast convergence

lISPH - Properties

= Efficiency

= Low number of iterations, typically between 5-15

= |terations are cheap to compute

> Pressure solver outperforms previous schemes by factor 7
= Plausibility

= Enforces compression of less than 0.1%
= Robustness

= Handles larger time steps than previous schemes

= Adaptive time-stepping is easy

Comparison of Iterative Methods

= Avergage number of iterations to enforce volume preservation with
an error of 0.1%

PCISPH ——
ISPH ——
200 r ISPH ——

150

100 r

avq. iterations

50

L

0 0.001 0.002 0.003 0.004 0.005
At

Topics / Research Challenges

= SPH fluid solver

= Neighborhood query

= |[ncompressibility / pressure computation
= Boundary handling

= Multiple phases

= Multi-resolution

= Surface reconstruction and rendering

SPH Approximation at the Boundary

= Particle deficiency at the interface
= Results in discontinuities
= large pressure gradients

= Solution:
= Sample boundaries with particles to
approximate field variables

Strategies

= Sampling
= Pre-sampling, e.g., [Keiser06,
Solenthaler07, Akincil2, Schechter12]
= Online sampling, e.g., [HUO6]

= Field approximation of boundary particle

= |nterpolate, e.g., [Solenthaler07, Ihmsen10]
= Mirror, e.g., [Akincil2, Schechter12]

= Force computation
Penalty forces, e.g., [Muller04, Lenaerts08]
Direct forcing, e.g., [BeckerQ9]

Pressure-based, e.g.,
[Solenthaler07,Akinci12]

Strasbourg 2014

Sampling of Arbitrary Meshes

= Uniform sampling not always possible
= Particle spacing must not be larger than smoothing length h

= Correct particle volumes in oversampled boundary regions

P _omy m - 1
[Akinci12] V. = pbl; == szik = s,

= Mirror fluid particle’s rest density onto rigid particle to get mass
contribution

= Example: adapted density computation

Pfi = Zj myg, Wij + Zk Po Ve, Wik

Sampling - Mass Contribution

P,
AT

7

haNBERY

i

.

Rl A

P

B

W
T
gt

! P2
. P
S A P
B o R
T s"'p’:.“‘ R A A
o e P il P
g g v WA
S P G RS PR

T s
7 ARG Y
e

- S

o SIS
e

£

Y
e
> \“‘

SV

v

Strasbourg 2014

Topics / Research Challenges

= SPH fluid solver

= Neighborhood query

= |[ncompressibility / pressure computation
= Boundary handling

= Multiple phases

= Multi-resolution

= Surface reconstruction and rendering

Multiphase Fluids

= Particles offer the advantage that the free surface and the interface
between two fluids is sharply defined

= [Muller 05, TartakovskyO5, HuO6, Solenthaler08, Schechter12]

Liquid-liquid interface Liquid-air interface

[Solenthaler08]

S{'ﬂ\shonvg 2014

Particle Attributes

= Particles carry attributes individually
= Mass
= Rest density
= Viscosity coefficient
= Color attributes
= Temperature
= Buoyancy emerges from individual rest
densities Vifluidl — ijluidz

= Diffusion of concentration, temperature [Mdller05]

a7

S{'ﬂ\sbvulg 2014

High Density Ratios

[Solenthaler08]

High Density Ratios

= Adapted SPH

= Stable simulations despite high density ratios
= We need full control over behavior

= Standard SPH

= Cannot handle discontinuities at interfaces

= Results in spurious and unphysical interface
tension

= Large density differences lead to instability
problems

[Solenthaler08]

Interface Problems

SPH density feld

Particle density

8 =Y W(r;,h)
J
Adapted density

Pi =mi& =m;) W(r;j,h)
J
Apply the same idea to all forces! “\o

S{'ﬂ\shonvg 2014

(@) (b) (c)

p desired p P
Fluid 1
£,=1000
hI \
Fluid 2
P,=100
S S S

1000
1000

Problems near
interfaces where rest
densities and masses
vary

Falsified smoothed
quantities

No Artificial Tension Forces

[Solenthaler08]

Liquid-air Interface

= Density deficiency at the free surface due to lack of neighbors
-> Surface tension artifacts, clustering in spray

[Schechter12]

= Air particles solve these problems, at the cost of higher memory
consumption and computation costs

Strasbourg 2014

Liquid-air Interface

[Schechter12]

= Air particles solve these problems, at the cost of higher memory
consumption and computation costs

Strasbourg 2014

Trapped Air

= Similar to [Schechter12], [MUller05]
dynamically sample parts of the free
surface with air particles -> trapped air

= High density ratios are challenging;
simulate phases separately [Ihmsen11]
and couple them via drag force

SN S

Strasbourg 2014

[lThmsen11]

Topics / Research Challenges

= SPH fluid solver

= Neighborhood query

= |[ncompressibility / pressure computation
= Boundary handling

= Multiple phases

= Multi-resolution

= Surface reconstruction and rendering

Motivation for Adaptive Spatial Discretization

= Many particles are needed to get the desired visual quality
= Computational cost depends linearly on the particle number

|dea: Allocate computing resources to interesting regions

e 5

3K particles 3M particles 30M particles
P [Miller03] [SolenthalerQ9] [lhmsen13]

Strasbourg 2014

Criteria

= High resolution in regions of interest and low resolution otherwise
Near the surface ’ Near the interface Object interaction

LEEELE
IEEEE

- 4 X
<

>4

[Horvath13] [Solenthaler11] [Solenthaler11]

Distance to Camera | View frustum

Strasbourg 2014

[Horvath13] [Solenthaler11]

Approaches

Dynamic particle refinement Multi-scale methods
[Desbrun99, Adams07, Orthmann12] [Solenthaler1l, Horvath13]

[Adams07] [Solenthaler11]

1 simulation with 2 (or multiple) coupled simulations,
differently sized particles each with equally sized particles

Dynamic Particle Refinement

= Dynamically split and merge particles

P

Reproduce field quantities

PR]

Symmetric visibility

[Desbrun99]

W T ee e Smooth size transition

Dynamic Particle Refinement

= Dynamically split and merge particles

| ead™
@ '

[Adams07]

Field Discontinuities

= Supporting incompressibility increases the problems of field
discontinuities

-> shocks, smaller time steps
= Non-continuous sampling over time introduces large errors

[Orthmannl12]

Field Discontinuities

= Supporting incompressibility increases the problems of field
discontinuities
-> shocks, smaller time steps

= Non-continuous sampling over time introduces large errors
= Smooth temporal blending of resolution levels [Orthmann12]

blend operator

[Orthmannl12]

Field Discontinuities

= Supporting incompressibility increases the problems of field
discontinuities
-> shocks, smaller time steps

= Non-continuous sampling over time introduces large errors

= Smooth temporal blending of resolution levels [Othmann12]
Temporal blending Reference solution

Resolution
difference is

Strasbourg 2014

[Orthmannl12]

Resolution Differences

Base resolution

2x resolution
-> 8x more particles

4x resolution
-> 64x more particles

Strasbourg 2014

Multi-scale Methods

= Allow larger resolution differences
= Avoid splitting / merging and thus field discontinuities

= Use separate but coupled simulations for each level -> m'evel hlevel const
= Two-scale approach [Solenthaler11]

Low-resolution input User-defined regions

e D (R (R
L Land H merged

E \r |

: T . e L =

: —
H apas ' Complete neighborhoods

Particles advected

! Particlesadded / deleted

High-resolution region Boundary region

[Solenthaler11]

S{'ﬂ\sbvulg 2014

Multi-scale Methods — View Frustum

} .\'A" -
= = "‘ N
- x \1
=X
=
1 ~

[Solenthaler11]

Extended to Multi-scale

= Multiple resolution levels
= Combined criteria

"[Horvath13]
K \f W/\/\R\\//\”X\Jﬁ |

09|

08|

Mass Conservation

0.7 Two-Scale
—— Multi-Scale

I |
0 20 40 60 80 100

e [Horvath13]

Speed-up:

[Adams07, Solenthaler11]: 3-7x
[Horvath13]: 3-12x

All previous work: less memory

Topics / Research Challenges

= SPH fluid solver

= Neighborhood query

= |[ncompressibility / pressure computation
= Boundary handling

= Multiple phases

= Multi-resolution

= Surface reconstruction and rendering

Motivation

= Smooth Surfaces
= Efficient Reconstruction
= Combined Volume Rendering

Strasbourg 2014

Scalar field functions

Polygonalization and particle skinning

Explicit surface tracking

Direct surface rendering

Volume rendering

Scalar Field Functions

= General approach: Surface = Iso-surface of scalar field function

= Metaballs [Blinn82]: Superimposed potential function located at particles = vields
blobby surfaces

= Color field [MUller03]: M
_ j
- Color field = 1in bulk and 0 in air ¢(X) = Z ?Wj (x)
— Pj
j
= Surface normal as color field gradient Ve(x) = ni(x) ‘
X
= Disadvantage: Bumpy surface ’ :
1] Jaw
= Distance to center of mass [Zhu05]: ¢(x) = R — |x — X| \Xi - !
= Define level set function S o X - g

""'-.-..-l

= Center of mass
using larger radius X = > . xW;(x)/ >, W;(x)
§ This approach yields smoother results

Adopted from [Adams07]

Particle-to-Surface Distance

= |Improved particle-to-surface distance function [Adams07]:

= Level set function with varying distance ¢(x) — Ix — x|
= Average distance to surface (from prior step):

d(x) =2, d;W;i(x)/ >_; W;(x)
= Surface projection using approximate particle-to-surface distances
= Binary search along gradient x; + s - Vo(x;)

= Surface particle, if surface within radius r;

Strasbowrg 2014 § [AdamsO7] (100K ptcl; several sec on Intel Pentium D)

Scalar Field Functions: Comparison & Problems

= Comparison:

= Metaballs [Blinn82] '(a) .
= Constant distance = \Coarsemng

R [Zhu05] 7z - TN
= Particle-to-surface .

distance d(x) [Adams07 refining
o lhcamstl e

d
[Adams07]
- Issues with the center of mass in concave regions :
= Erroneously parts outside of the fluid volume
= \ery sensitive to changes of the query point X

Errors in concave regions [SolenthalerQ7]

Scalar Field Function: Removal of Artifacts

= Analysis of gradient of mass center [Solenthaler07]
= Observation: Strong variation of center of mass X at artifacts
= Solution: Weight distance function according to eigenvalue of Vx)_c(x)
¢(x) = [(EVinaz) - d(x) — [x — X|
= Alternative approach [Onderik13]:
= Use normalized iso-density instead of EV

w(®) =) (Wj(x)/ZWk(pg‘)) ,
j ?

o
n
tlow

thlgh

Wl Comparison of [Solenthaler07] (left) and .
[Onderik13] (right) (14k ptcl, < 1 sec, Intel Core 2 Duo) Transfer function [Ondrik13]

Scalar Field Functions: Anisotropic Kernels

= Goal: Smooth and feature preserving surface reconstruction

= Anisotropic kernels based on covariance matrix over local particle
neighborhoods [Yul0].

Ci = Z Wi(xq) - (x5 — Xi(xq)) - (x5 — fi(Xz'))T/Z Wx)=Ri—. .,

. | 1
« Scalar field defined via ¢(x) = Z %Wfﬂ (x) using G; = -
j J

in order to define anisotropic kernel W7 (x) = det(C;)W (G;(x — x;))

R,XT'RY

Anisotropic kernel [Yul3] Particle and surface rendering [Yul3]
(24K ptcl; <10 sec on Intel Core 2 Duo)

Strasbourg 2014

Marching Citihas Racanctriiction
SurfaceVertex Scalar Field Marching » Decimation &

Extraction Computation Cubes Subdivision

= Polygonal iso-surfaces w.r.t. scalar function using Marching Cubes
= |dea: Optimization of Marching Cubes on GPU [Akincil2a, Akincil2b]
= Store grid nodes in a narrow band at surface reduces complexity to O(n

e ...

= Specific handling of “double layers”
= Post-processing [Akincil2b]:
Decimation & Subdivision [Akincil2b]

= Decimation: QEM mesh reduction
= Refinement: Loop subdivision scheme

Initial surface [Solenthaler07] (left), after decimation (middle)
and subdivision (right) [Akincil2b] (60k ptcl, 3.3 sec, Intel Xeon X5680)

S{'ﬂ\sbvulg 2014

Particle Skinning with Energy Minimization

= |dea: Find minimal thin plate energy surface between minimal and me
surface [Bhattacharyall].

= Sample potential function of particles onto regular grid
[

quin(xklm) — IIlJlIl |Xklm - Xj| — 'min ’

Smaz (Xkim) = mjm [Xkim = Xj| = Tmax Constrained surface

= Constrained thin plate optimization with initial (red) between
1
QbO (Xk:lm) - §(¢min(xklm + quaw(xklm) and q)max

- Constraint: @i (Xkim) € |Omin(Xkim + Pmaz (Xkim]

Strasbourg 2014

Amarillo with 0, 20 and 100 iterations [Bhattacharyall]

Exp“cit Surface Trackino
Mesh . Mesh . Mesh . Mesh Topological
Initialization Advection Refinement Projection Changes

= |dea: Attach & track an explicit mesh at the fluid surface [Yul2]
= |nitial mesh using anisotropic kernels [Yul0] and MC reconstruction
= Mesh advection: Normalized velocities at mesh vertices v;

v(vi) = Z’%Wj (vi)/ Z W;(x)

= Mesh refinement using standard split-merge approach
= Mesh vertices are projected onto iso surface [Adams07]
= |f projection fails, i.e. ¢(v;i)-d(vi+h-Vo(vy)) >0
= Topological merge if v; interior (¢(v;) > 0) and split else (¢(v;) < 0)

S*'Vo\sbouvg 2014 8

[Yul2] (29k ptls, 41s surface tracking, 24s surface reconstruktion, 2x Intel Xeon E5620)

Direct Rendering

Surface Particle . Scalar Field » Isosurface
Extraction Computation Raycasting

= |dea: Project surface particles onto grid and use iso-surface
raycasting [GoswamilO]

= Extraction of surface particles similar [Zhu05] (distance to center of
mass), but only masses w/o kernel weighting e

= Scalar field computation uses 3D splatting in iops s

g r I d egi < bubble

= Transfer function defines relevant distance
values [Tmin; Tmaa:] splash
= Per grid vertex scalar value Isosurface raycasting
P(Xkim) = mjiﬂ(|xklm — X;)

= Raycasting with normals computed on grid

band of relevant values

voxel value

Distance computation on small
band around surface particles

. 1 = = 5 -
N N o i S S LSS

PovRay rendered results [Goswamil0] (250k pctl)

S{'ﬂ\sbm\fg 2014

Screen-Space Rendering

Depth Map Screen Space Compositing
Rendering Smoothing & Lighting

= |dea: Splat particles as spheres onto image plane apply depth map
smoothing [van der Laan09]

= Render particles and store screen-space depth gnd normial values
H (o 7 z —
= Screen-space smoothing (“curvature flow”) — =H = SV

ot
= Evolve depth according to mean curvature using
= Apply smoothing iteratively

= Final rendering using compositing

Gaussian smoothing (left) vs. curvature [Macklin13]

Shsburg 20 8 flow (right) [van der Laan09]
: 64k pctl, 18.1 ms (bilateral), 50 ms (curvature flow 100 it), GF8800 GTS 512)

Volume Rendering

Perspective Particle . Surface
Mapping Slicing Rendering

= |dea: Additionally visualize quantity distribution within bulk
= Approaches for SPH volume rendering
= Texture slicing based on a view-aligned perspective grid [Fraedrich10]
= Raycasting on a object aligned octree hierarchy [Orthmann10]
= Texture slicing on perspective grids [Fraedrich10]:
= Perspective mapping ensures a quasi regular sampling along rays
= Particle hierarchy allows for “particle size approx. cell size”
= Particle slicing samples particle contributions onto grid
= Final rendering via standard texture slicing using front—to—beck slabs

3D Texture Space ~ View Space
Y, e S z A !
- x N, :E\ I
X' N I y a';;:%t t‘hg SE N §;;~‘~§§ wu.‘ﬁg
‘\\ g .\QK k N @% \"'Q
\\ Sy . X §%‘\\-
m — __EI_-_ —n f \

Perspective Mapping Smin particle Slicing Smax

Combined Volume Rendering
Particle-to-CeIIVqume . Surface
Mapping Sampling Rendering
= Raycasting on a object aligned octree hierarchy [Orthmann10]

= Particle-to-cell mapping & hierarchy building per frame
= Efficient traversal of OA octree using various caches

[Fraedrich10] Similar to [Orthmann10]
(2.5M pctl, 152 ms @ 512% res, 676 ms @ 10242 res, (2.4M pctl, 10242 res, 2s object space hierarchy,

Intel Core 2 Duo 2.4 GHz + NV GTX 280) 870 ms perspective grid, Nvidia GTX Titan

\7'.,{_74
Strasbourg 2014

