Liquid Boundaries for Implicit Incompressible SPH

Jens Cornelis, Markus Ihmsen, Andreas Peer, Matthias Teschner

Department of Computer Science, University of Freiburg, Germany

Abstract

We propose a novel unified particle representation for fluids and solid boundaries in Implicit Incompressible SPH (IISPH). In
contrast to existing particle representations, the proposed concept does not require a separate processing of fluid and boundary
particles. On one hand, this results in a simplified solver implementation with improved efficiency. On the other hand, the unified
fluid and boundary representation adds flexibility to IISPH which enables versatile effects. In particular, particles can now dynami-
cally interchange their role between fluid and boundary which we therefore refer to as liquid boundary. The paper mainly focuses
on the description of the unified representation and on the application of the concept to visual effects such as solidification and
liquefaction. To support the realization of these effects, the concept of unified fluid and liquid boundary particles is extended to a

third particle type, so-called candidate particles that are used in a transition phase between fluid and liquid boundaries.

Keywords: computer animation, fluid animation, physically-based simulation

1. Introduction

Boundary handling in fluid simulations based on Smoothed
Particle Hydrodynamics (SPH) is a challenging topic and nu-
merous approaches have been developed, e.g., [1,2,3,4,5,6,7,
8]. Although there exist various ways to represent solid bound-
aries, particle representations seem to be preferred in SPH flu-
ids. E.g., in the context of the state-of-the-art pressure solver
IISPH, boundary particles are incorporated into the proposed
Jacobi solver to handle the interaction between fluid and rigid
objects [2, 8, 9]. The introduced boundary particles, however,
require a specific processing and in general, fluid and boundary
particles are not easily interchangeable.

We address this issue and propose to use only one unified
particle type to represent fluid and solid boundaries. This sim-
plifies the solver implementation which is also accompanied
by some performance gain especially in parallelized settings.
The main benefit, however, is the introduction of additional
degrees of freedom in terms of animation effects. Fluid and
liquid boundary particles are now dynamically interchangeable
which enables visual effects such as solidification and liquefac-
tion. The unified particles can stably change their role between
fluid and liquid boundary instantly at any time during a sim-
ulation. Stabilization schemes for the IISPH pressure solver
are not required. In order to allow for additional animation ef-
fects, a third particle role, so-called candidates, are introduced
that can be used in the transition phase between fluid and liquid
boundary. Candidates are not required for stability purposes,
but might be used to guide solidification processes, e.g., when a
fluid volume is supposed to take a prescribed shape that should
act as liquid boundary (see Figure 1).

In order to be able to switch between particle roles at any
time, the density errors at fluid, candidate and liquid boundary
particles have to be manageable by the IISPH pressure solver

Preprint submitted to Computers & Graphics

in a stable way. For fluid particles, this is naturally the case.
For candidates and liquid boundaries, however, the respective
properties have to be implemented on condition that the density
error does not negatively influence the stability of IISPH if the
particle role changes. L.e., liquid boundary particles should act
as boundary for fluid particles, but it should also be guaranteed
that a role change from liquid boundary to fluid does not af-
fect the stability of IISPH. Therefore, we propose to use a grid
with cell sizes that correspond to the particle size and to align
liquid boundary particles to the grid as indicated in Figure 4.
This guarantees that liquid boundary particles are appropriately
sampled and that a transition to fluid particles would not be haz-
ardous to the stability of the simulation. For candidate particles,
the situation is similar. On one hand, they should move to pre-
scribed sample positions where they are typically transformed
to liquid boundary particles. On the other hand, it should also
be possible to transform them to fluid particles at any time. This
is realized by incorporating candidates into the IISPH pressure
solver where the standard computation of velocity differences
from non-pressure forces is replaced by an animated velocity
to a target position. This guarantees that the computed pres-
sure forces do not only preserve an appropriate density at fluid
particles, but also at candidates.

The paper mainly focuses on the description how to combine
fluid, candidate and liquid boundary particles in a unified way
within IISPH. It particularly shows how to realize the function-
ality of candidate and liquid boundary particles in a way that
enables arbitrary role changes at any time in a stable way. Ex-
periments illustrate some of the animation effects that can be
realized with the proposed concept of unified particles.

December 23, 2016

Figure 1: Fluid volume taking the shape of a rigid and serving as liquid boundary. Yellow particles: candidate particles animated towards their positions on the

liquid boundary. Green particles: liquid boundary particles.

2. Related Work

SPH has developed into a popular approach for Lagrangian
simulations, e.g. [1, 10, 3]. Nowadays, boundary handling is
one of the main research foci to realize fluid-solid interactions
in a stable and efficient way. While some approaches compute
distance-based penalty forces, e.g. [4, 5], the majority of re-
cent techniques relies on density-based pressure forces where
the density computation at fluid particles considers contribu-
tions from particles that sample the boundary. Boundary parti-
cles are either generated by constraining fluid particles to static
positions [6] or by mirroring particles across the boundary [7],
which generally addresses time step restrictions of distance-
based penalty forces. When particles are constrained to static
positions as frozen particles, either more than one layer of
boundary particle is used [11] or the positions of particles that
intersect the rigid are corrected [9]. The concept has also been
used for fluid-air interfaces in [12], where a layer of ghost par-
ticles is not only generated for solids, but also to represent air at
the free surface. In [13], ghost particles at the free surface are
avoided. Instead, approximate forces are efficiently computed
to account for ghost particles [13].

Our unified particle approach is based on IISPH [2] which
uses a boundary handling that has been introduced in [8]. Solid
boundaries are sampled with particles and density-based hydro-
dynamic forces are computed to handle the interaction of fluid
particles with adjacent boundary particles. Although IISPH
uses particles for the fluid and for solid boundaries, they are
processed in different ways and it is not possible to, e.g., pro-
cess or consider a boundary particle as a fluid particle. We ad-
dress this issue by proposing unified particles for the fluid and
for solid boundaries. We extend the concept to animated candi-
date particles and illustrate the utility of the concept with visual
effects that could not be realized with standard IISPH.

Using unified particles in different roles as fluid, candidate
or liquid boundary enables us to dynamically change the role
of a particle which can be used in versatile animation effects.
Therefore, our approach is closely related to recent research
that addresses fluid control. In this context, [14] introduced
three levels of embedded controllers in order to apply scalar
pressure fields on a grid-based fluid. An alternative technique
to animate the fluid flow based on control particles has been pre-
sented in [15]. Additionally, a low-pass filter is applied on the

velocity field in order to separate fine-scale detail and preserve
small-scale fluid motion. Recently, position-based fluids [16]
have been used for fluid control by [17]. Increasing the artistic
freedom in fluid control has been addressed in [18], where the
animator can specify the desired fluid pose. Here, the simula-
tion result is modified by solving a small-scale linear optimiza-
tion problem. Different from that, [19] applies a divergence-
free force field which represents the gradient field of a potential
function defined by the shape of a target. While our paper fo-
cuses on unified particles for IISPH, the utility of the concept is
shown with techniques for fluid control that shares similarities
with [19]. Instead of applying a force field, however, we adapt
the velocity of candidate particles in order to direct them to-
wards a desired position. The subsequent IISPH pressure solve
ensures that the final velocity field is divergence-free.

Freezing SPH fluid particles to form solid objects or melting
them back to a liquid state has been discussed in various publi-
cations, e.g. [20, 21]. In these works, particles are arranged in
a locally defined lattice using elastic restoration forces. Later,
[22] proposed to simulate solids with SPH. Liquefaction and
solidification effects have been presented. In contrast, our pa-
per does not focus on a physically based simulation of solids.
Instead, we focus on a stable and efficient fluid-solid interaction
with unified particles. Nevertheless, our concept also allows to
realize liquefaction and solidification effects.

In the context of position-based dynamics [23], a unified par-
ticle physics framework has been presented in [24]. The con-
cept can be used to simulate gases, liquids, deformable solids
and rigid bodies with particles by employing various position-
based constraint formulations. In contrast, our concept is based
on the IISPH pressure solver. Further, the role of a particle can
be changed instantly during a simulation without introducing
stability issues to the pressure solver. A divergence-free ve-
locity field is computed for all particles independent from their
current role.

3. Concept

Our method considers different roles for particles. Fluid par-
ticles f represent the fluid body. Liquid boundary particles |
represent boundaries which can be the surface or the volume of
a solid shape. Candidate particles ¢ are animated particles that
obey the density constraint of the fluid body. They are typically

Fluid P Candidate

Liquid
Boundary

Figure 2: Roles and role transitions that are considered in our implementation.

used in the transition phase from fluid to liquid boundary when
former fluid particles should move to valid sample positions of
liquid boundary particles. When generating a liquid boundary,
candidates are typically chosen as the nearest neighbor from
the fluid body for each sample position at the rigid object. Al-
though arbitrary role transitions are possible, we focus on the
transitions depicted in Figure 2 as they have been used in the
presented scenarios.

In the following, we explain the assignment of roles to par-
ticles with a focus on candidates and liquid boundaries that
we introduce to IISPH. We further describe the transitions be-
tween different roles and finally discuss implementation details
in IISPH.

3.1. Role assignment

Liquid boundaries. Rigid objects are discretized into uniform
grid cells. These grid cells are potential sample positions X,giq
for liquid boundary particles.

Candidates. This particle role supports the transition of a par-
ticle from fluid to liquid boundary. If a rigid object should be
sampled with liquid boundary particles, we search the nearest
fluid particle for each sample position x,;gs and update its role
to a candidate particle. The search is accelerated with a k-d
tree [25] and restricted to a user-defined axis-aligned bounding
box. After changing the role of a particle from fluid to can-
didate and assigning the particle to the sample position in the
rigid body, it is not considered in the search for the next sam-
ple point. Thus, a candidate is assigned to exactly one liquid
boundary position. If there is a sufficient number of fluid parti-
cles, each liquid boundary sample has one candidate. Candidate
particles are characterized by a velocity of user-defined magni-
tude towards the assigned sample position x,e4. If the distance
of a candidate to its assigned position is below a threshold, the
candidate turns to a liquid boundary particle.

3.2. Role transition

The main issue in role transitions is the density at a particle.
This is due to the fact that IISPH computes pressure forces that
counteract density deviations. Thus, density deviations nega-
tively affect the stability of the simulation and the simulation
timestep, i.e. the efficiency. As pressure forces are computed

at fluid particles, and candidates or liquid boundaries can tran-
sition to fluid particles at any time, it is essential to minimize
density deviations at all particles to prevent unstable accelera-
tions in case of a role transition.

Candidates. The density deviation at candidates is handled by
the IISPH pressure solver. However, in contrast to fluid par-
ticles, the effect of non-pressure forces on the velocity is not
considered. Instead, the animated velocity towards the sample
position in the liquid boundary is taken to initialize the pressure
solve.

Liquid boundaries. In general, the boundary sampling has to
fulfill two requirements. First, the sampling has to be suf-
ficiently dense to avoid fluid leakage. Second, oversampled
boundaries should be avoided for performance reasons. As
discussed in [26], a sampling is appropriate, if the boundary
particle number density J;, is within the range from 3.6I'(%) to
10I°(h), where I'(h) = h% In our context, oversampling is not
acceptable as the pressure solver would not be able to handle
candidates with large density deviations when they are close to
their sampling position in the boundary. Further, liquid bound-
aries could not be transformed to fluid particles without serious
stability issues. Therefore, we propose a uniform grid with a
cell size that corresponds to the particle diameter. The grid is
implemented as a list using spatial hashing as described in [27].
The grid avoids over- and undersampling of the boundary and
allows the stable transition of liquid boundaries to fluid parti-
cles. An example scenario that compares an appropriate and an
oversampled liquid boundary is shown in Figure 3.

The employed uniform grid is computed once for each rigid
object in a scenario. Rigid-body transformations, i.e. trans-
lation and rotation, are just applied to the grid. Deformable
solids are not considered. This significantly reduces the com-
putational cost of the liquid boundary computation. If the lig-
uid boundary is fully sampled with particles, the computational
costs of the liquid boundary handling correspond to the IISPH
implementation with standard boundary particles.

In order to populate the grid, the rigid surface is sampled with
[26]. However, instead of generating boundary particles at the
respective sample positions, we mark the cells as liquid bound-
ary cells as visualized in Figure 4. Alternative techniques such
as ray casting could also be applied. For volumetric shapes,
the fluid volume that represents the object should match the re-
spective volume of the object. Thus, it is not sufficient to only
represent the surface of the object with liquid boundary cells,
but also the interior of the object. In order to determine the
cells that are inside the object, we propose to use the voting
algorithm in [28].

4. Implementation

In the following, we give an overview of IISPH. It is shown
how to compute the intermediate velocities for all particle roles.
It is further explained, how to compute the density for all par-
ticle roles. Finally, the modified pressure force computation is
explained.

Figure 3: Liquid boundary sampling. The first image shows the transition of a
liquid boundary to fluid particles with an appropriate sampling using the pro-
posed uniform grid. The second image shows the instabilites that occur in the
transition of oversampled liquid boundaries to fluid particles.

4.1. lISPH

The original IISPH formulation can be derived from a dis-
cretization of the continuity equation % = —pVv at time 7. The
time derivative is approximated with W, where p;(t) is
the density of particle i at time ¢. The spatial derivative is ap-
proximated with SPH as Vv; = —[%i Zj mj(vi(t + At) — v;(t +
A1))VW;;, where m; denotes the mass of the neighboring parti-
cle j. Wi;(t) = W(x;(#) — x;(?)) is a kernel function with finite
support. This results in the following discretized form of the
continuity equation:

B =P S v+ A = v,0 + ATW (0.

At A
J
ey
The unknown velocities in (1) can be replaced by unknown
pressure forces F/(1) by using vi(t + Ar) = V"d‘ + = () , Where
the intermediate velocities V“d” can be computed as
udv t
v = vi() + prlins 2

i

Applying the intermediate velocities results in intermediate
densities:

”me+Mmem;ﬂwmm. 3)

T

4
7

LT

Figure 4: The surface of the object is represented on a grid. Cells that repre-
sent boundary are marked as boundary cells. Afterwards, internal cells can be
marked as boundary cells using scanline voting.

Assuming that the desired density of the fluid is the rest den-
sity, i.e. p;(t + At) = po , leads to

P FF
AR Z [F o F;®

4 pi(®)) ..
Given that F; (t) = —m; }.;m ’(;>2(r> pé(t) YVW;;(t), this is a

linear system with unknown pressure value p;(¢) per particle. In
the following, we extend this linear system to different particle
roles.

)vmﬂwmopw

J

4.2. Intermediate velocities

In order to incorporate different particle roles f, ¢, and / into
IISPH, we apply the splitting concept to all particle roles by first
computing velocities v*/" without pressure forces. We further
compute the respective intermediate densities p“?. This step
corresponds to Eq. (2) in standard IISPH.

Candidate particles ¢ are given an animation velocity towards
their assigned sample position X,eiq as

ani _ Al(Xrigid(t + At) - Xc(t))
¢ IXrigia(t + AL) = Xc(D|

\% @
where (8 is a user-defined parameter. This can be seen as ap-
plying a spring force to a candidate into the direction of the
assigned liquid boundary position. Instead of just using S as
a constant value, it is also possible to apply a distance-based
easing function. In this case, particles will not move towards
the liquid boundary with linear speed which will make the an-
imation look more organic. Following the IISPH concept, the
intermediate velocity of a candidate is computed as

V4 = (1 - a)v: + av™ 6))

with v = v () + At v(l). It is crucial, that candidates are
incorporated into the subsequent pressure solve to guarantee
low density deviations at these particles. Otherwise, unstable
pressure forces might occur in case of a role transition. Large
density deviations would also be perceived as volume loss and
reduce the plausibility of the animation.

The velocity of liquid boundaries / is computed from the lin-

ear and angular velocity of the rigid body. For fluid particles f,
uzh ()

mg

the intermediate velocity is computed as V‘;d" =ve(t)+ At

4.3. Density computation

The advection of particles with v*” contributes to the density

deviation that is minimized by the subsequent pressure solve.
We extend Eq. (3) and predict the intermediate density for both
fluid particles f and candidate particles ¢ with respect to all
neighboring fluid particles j, liquid boundary particles / and
candidate particles c as

ot = Z mWpj+ D mWpe+ Y miW
+]At >om ,v;ﬁivwf ; |
+ At Zj: meVi VW
+ At Z my (VI = vi(t + AD) VW, (6)
1

This predicted density error is resolved by IISPH.

4.4. Pressure forces

Finally, pressure forces are derived from the pressure that has
been computed by IISPH. The displacement of a fluid particle
f and a candidate particle ¢ considering neighboring fluid par-
ticles j, candidate particles ¢ and liquid boundary particles / is
computed as

FP

2 f 2 M 2 Me
At e > - Wi + > A = Wieper
J J c ¢
2 N M 2\
(=A2 Y VW = AP Y — Wy
7 Pr T Pr
me
AP ;wac)pf.
c f

The pressure force of a candidate ¢ is computed accordingly.
The resulting pressure forces are used for updating velocities
and positions of fluid particles f and candidate c¢. In terms of
liquid boundaries /, the velocities have been previously com-
puted according to the velocity of the rigid object which leads
to updated positions in the integration step.

The algorithm is outlined in Algorithm 1.

5. Results

5.1. Implementation

The proposed concept is an extension of IISPH [2] and of the
boundary handling presented in [8]. The neighborhood search
is realized with the data structures proposed in [29]. [30] is used
for surface tension. The implementation is fully parallelized
[29]. For the surface reconstruction, we apply [31]. The ren-
dering of the final images and videos is performed with Houdini
and Mantra [32]. All scenes have been computed on a 16-core
3.46 GHz Intel i7. For our simulations, we choose @ = 0.5 and
we use a non-linear easing curve for 8. We use a threshold of
0.3% for the average density error in our simulations.

Algorithm 1 I[ISPH with liquid boundary using relaxed Jacobi.
[indicates the iteration.
procedure ROLE ASSIGNMENT
for all particle i do
test candidate / liquid boundary (see Section 3.1)

procedure CompuTE DENSITY
for all particle i do
if particle i € fluid particles V candidates then
compute p;(t) = 3 ;m;W;;(t)
procedure CoMPUTE INTERMEDIATE VELOCITY
for all particle i do
if particle i € fluid particles then
predict vi* = vi(1) + A (2)
else if particle i € candidates then
compute v¥" (4)

e Fe (1)
predict v; = v;(?) + AtT)

V?"V = (1 —)v; + avi (5)
else if particle i € liquid boundary then
vi(t+ At) = Vr,'g,'d(t + At, x;)
procedure CoMPUTE INTERMEDIATE DENSITY
for all particle i do
if particle € fluid particles V candidates then
compute pfdv (6)
procedure PrRessURE soLvE wiTH IISPH
procedure INTEGRATION
for all particle i € fluid particles V candidates do
Vit + Af) = Vi + AR (1) [m;
X;(t + Ar) = x;(t) + Atvi(t + Ar)
for all particle i € liquid boundary do
X;(t + Ar) = x;(t) + Arvi(t + Ar)

5.2. Parameter discussion

We introduced two parameters: § is the animation velocity
of candidate particles that move towards their assigned position
on the liquid boundary, whereas « is a blending parameter for
the linear combination of the previous particle velocity with the
animation velocity.

In our test scenarios, we chose § in such way, that it does
not negatively affect the CFL number of the simulation. This
means, that 8 is chosen such that the velocity of candidate par-
ticles does not exceed the maximum velocity of fluid particles.
Smaller time steps will be necessary for larger values of S.
However, since 8 can be seen as a spring force, the value of 8
also determines, how long it takes for particles to move towards
the rigid object shape.

We used the bunny scene with 500k particles and tested dif-
ferent values of @. Since @ blends between a previous particle
velocity and the desired animation velocity, this parameter is
crucial for the simulation. We chose different values for testing
the behavior of a. For @ = 1.0, the particle velocity is com-
pletely overwritten by the animation velocity. When we apply
a = 0.75 and @ = 0.5, the animation velocity is introduced less
aggressive. Please note, that the animation takes slightly longer
for smaller values of a, since the animation speed of candidates

is damped by this parameter. However, the visual difference of
the simulation is imperceptible.

Since candidates are incorporated into the regular IISPH up-
date, their velocity is corrected such that the density error stays
below the given threshold of 0.3%. The density for @ = 1.0 is
1002.108 on average, while it is 1002.074 for & = 0.5. Since the
applied animation velocity field is not divergence free, more it-
erations are necessary for resolving the density error introduced
by large a values. IISPH solves for the estimated density error
that is introduced by velocities due to advection. This error
is additionally increased when a divergent velocity field is ap-
plied. While on average only 18 iterations were necessary for
a = 0.5, the IISPH solver took 62 iterations for resolving the
density error in case of @ = 1.0. We choose @ = 0.5 for our
simulations, since it provides a stable trade-off between perfor-
mance and simulation stability. Even smaller values of @ do not
positively affect the simulation, but significantly slow down the
liquid boundary assembly.

5.3. Application examples

The cup scene as depicted in Figure 5 shows a fluid that
morphs to the shape of a cup. The fluid-solid interface built
upon liquid boundary particles prevents fluid particles from
penetrating the cup shape. Thus, the cup can be filled with
fluid. Transformations of the rigid object are reflected by the
liquid boundary interface. Finally, the disassembly of the liquid
boundary with a vortex force is shown. The scene is simulated
with 1.3 million particles. The time step is 0.005 seconds for
a particle spacing of 0.025 meters. The computation time is 20
seconds per frame. We compute 50 frames per movie second.

The ship scene demonstrates the performance of the method
with a large-scale scene that consists of 12 million particles in
average. The interior of the ship is sampled with liquid bound-
ary cells and represented with liquid boundary particles in order
to have a volumetric representation. The time step for the sim-
ulation of this scene is 0.01 seconds with a particle spacing of
0.05 meters. One frame is computed in 190 seconds. An illus-
tration of the scene can be seen in Figure 6

6. Conclusion and Limitations

We have shown how to incorporate unified particles with var-
ious roles into IISPH [2]. We use candidates that are animated
by applying a fictitious animation velocity in order to take the
shape of a rigid. The fluid-solid interface is resolved with lig-
uid boundaries that prevent fluid particles from penetrating the
rigid shape.

When assigning a new role to a particle, certain requirements
have to be fulfilled. In SPH, this is typically a low density de-
viation as large density errors negatively affect the stability and
efficiency of a simulation. While the density of a candidate is
resolved by the pressure solve, liquid boundaries have to be pro-
cessed in a different way. We have proposed to position liquid
boundaries on a uniform grid that discretizes the solid objects
boundary. This avoids density error due to an over- or under-
sampling of the boundary.

Figure 5: Cup scene: Fluid is animated to take the shape of a cup. The liquid
boundary can be used for fluid-solid interaction and the shape can be animated.
The liquid boundary shape is filled with fluid without any leakage. The simula-
tion consists of 1.3 million particles.

Figure 6: Ship scene: Large-scale scene with 12 million particles that shows a
ship rising from a fluid stream and tumbling back to fluid state again.

The liquid boundary avoids fluid leakage and thus, it is pos-
sible to form solid shapes that contain fluid bulk even when a
rigid object is animated. We have shown the strength and sta-
bility of our approach with various applications.

Although the uniform grid data structure prevents density
errors at the liquid boundary, it introduces undesired aliasing
patterns in terms of the surface reconstruction. Thus, different
grid patterns could be analyzed. The same holds for the nearest
neighbor search using a k-d tree [25]. In our simulations, only
one search was necessary since all liquid boundary cells could
be provided with a candidate particle in just one step. More ad-
vanced techniques could be investigated for other scene setups.

Currently, only one fluid particle is assigned to one sample
position in the liquid boundary. Although using an easing curve
makes the animation look less artificial, more impressive meth-
ods for animating the fluid in order to take the rigid shape could
be investigated. In some scenarios, it might be even better to
assign multiple candidates per liquid boundary sample in order
to show fluid rinsing from the rigid object boundary.

Lastly, only rigid objects are considered. Deformable shapes
require additional considerations that were not within the scope
of this paper.

References

[1] Monaghan J. Smoothed particle hydrodynamics. Ann Rev Astron Astro-
phys 1992;30:543-74.

[2] Thmsen M, Cornelis J, Solenthaler B, Horvath C, Teschner M. Implicit
incompressible SPH. IEEE Transactions on Visualization and Computer
Graphics 2014;20(3):426-35.

[3] Thmsen M, Orthmann J, Solenthaler B, Kolb A, Teschner M. SPH Fluids
in Computer Graphics. In: Eurographics 2014 - State of the Art Reports.
The Eurographics Association; 2014, p. 21-42.

[4] Miiller M, Schirm S, Teschner M, Heidelberger B, Gross M. Interaction
of fluids with deformable solids. Computer Animation and Virtual Worlds
2004;15:159-71.

[5S] Monaghan J, Kajtar J. SPH particle boundary handling for arbitrary
boundaries. Computer Physics Communications 2009;180(10):1811-20.

[6] Libersky L, Petschek A. Smoothed Particle Hydrodynamics with strength
of materials. Advances in the Free-Lagrange Method Including Contri-
butions on Adaptive Gridding and the Smoothed Particle Hydrodynamics
Method 1991;395:248-57.

[7] Hu X, Adams N. A multi-phase SPH method for macroscopic and meso-
scopic flows. Journal of Computational Physics 2006;213:844—61.

[8] Akinci N, Thmsen M, Akinci G, Solenthaler B, Teschner M. Versa-
tile rigid-fluid coupling for incompressible SPH. ACM Trans Graph
2012;31(4):062:1-062:12.

[9] Thmsen M, Akinci N, Gissler M, Teschner M. Boundary handling and
adaptive time-stepping for PCISPH. In: Proceedings VRIPHYS. 2010, p.
79-88.

[10] Desbrun M, Cani MP. Smoothed particles: A new paradigm for animat-
ing highly deformable bodies. In: Eurographics Workshop on Computer
Animation and Simulation (EGCAS). Springer-Verlag; 1996, p. 61-76.
Published under the name Marie-Paule Gascuel.

[11] Dalrymple R, Knio O. SPH modeling of water waves. In: Coastal Dy-
namics. 2001, p. 779-87.

[12] Schechter H, Bridson R. Ghost sph for animating water. ACM Transac-
tions on Graphics (Proceedings of SIGGRAPH 2012) 2012;31(4).

[13] Ren B, Yan X, Yang T, Li Cf, Lin M, Hu Sm. Fast SPH simulation for
gaseous fluids. The Visual Computer 2015;:1-12.

[14] Foster N, Metaxas D. Controlling fluid animation. In: Computer Graphics
International, 1997. Proceedings. 1997, p. 178-88.

[15] Thiirey N, Keiser R, Pauly M, Riide U. Detail-preserving fluid
control. Graphical Models 2009;71(6):221-8. 2006 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA 2006).

[16]

(17]

(18]

[19]

(20]

[21]

[22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

Macklin M, Miiller M. Position based fluids. ACM Transactions on
Graphics (SIGGRAPH 2013) 2013;32(4):104:1-104:12.

Zhang S, Yang X, Wu Z, Liu H. Position-based fluid control. In: Pro-
ceedings of the 19th Symposium on Interactive 3D Graphics and Games.
i3D ’15; New York, NY, USA: ACM; 2015, p. 61-8.

Pan Z, Huang J, Tong Y, Zheng C, Bao H. Interactive localized liquid
motion editing. ACM Trans Graph 2013;32(6):184:1-184:10.

Shi L, Yu'Y. Taming liquids for rapidly changing targets. In: Proceedings
of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. SCA ’05; 2005, p. 229-36.

Miiller M, Keiser R, Nealen A, Pauly M, Gross M, Alexa M. Point based
animation of elastic, plastic and melting objects. In: ACM SIGGRAPH /
Eurographics Symposium on Computer Animation. 2004, p. 141-151.
Wicke M, Hatt P, Pauly M, Mueller M, Gross M. Versatile virtual mate-
rials using implicit connectivity. In: Eurographics Symposium on Point-
Based Graphics. 2006, p. 137-44.

Solenthaler B, Schlafli J, Pajarola R. A unifed particle model for fuid-
solid interactions. Computer Animation and Virtual Worlds 2007;18:69—
82.

Bender J, Miiller M, Otaduy M, Teschner M, Macklin M. A survey
on position-based simulation methods in computer graphics. Computer
Graphics Forum 2014;33(6).

Macklin M, Miiller M, Chentanez N, Kim TY. Unified particle physics
for real-time applications. ~ACM Transactions on Graphics (TOG)
2014;33(4):153:1-153:12.

Bentley JL. Multidimensional binary search trees used for associative
searching. Commun ACM 1975;18(9):509-17.

Akinci N, Cornelis J, Akinci G, Teschner M. Coupling elastic solids with
smoothed particle hydrodynamics fluids. Computer Animation and Vir-
tual Worlds 2013;24:195-203.

Teschner M, Heidelberger B, Miiller M, Pomeranets D, Gross M. Op-
timized Spatial Hashing for Collision Detection of Deformable Objects.
VMYV 2003 2003;:47-54.

Nooruddin FS, Turk G. Simplification and repair of polygonal models
using volumetric techniques. IEEE Transactions on Visualization and
Computer Graphics 2003;9:191-205.

Thmsen M, Akinci N, Becker M, Teschner M. A parallel SPH implemen-
tation on multi-core CPUs. Computer Graphics Forum 2011;30(1):99—
112.

Becker M, Teschner M. Weakly compressible SPH for free surface flows.
Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation 2007;:209-17.

Ju T, Losasso F, Schaefer S, Warren J. Dual contouring of hermite data.
In: Proceedings of the 29th Annual Conference on Computer Graphics
and Interactive Techniques. SIGGRAPH *02; ACM; 2002, p. 339-46.
Side Effects Software . Houdini [software]. http://wwwsidefxcom/
2013;URL http://www.sidefx.com/.

