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Abstract

Computing the forces acting from a surrounding air phase onto a particle-based fluid or rigid object is challenging. Simulating the
air phase and modeling the interactions using a multiphase approach is computationally expensive. Furthermore, stability issues
may arise in such multiphase simulations. In contrast, the effects from the air can be approximated efficiently by employing a drag
equation. Here, for plausible effects, the parameterization is important but challenging. We present a drag force discretization based
on the drag equation that acts on each particle separately. It is used to compute the effects of air onto particle-based fluids and rigid
objects. Our presented approach calculates the exposed surface area and drag coefficient of each particle. For fluid particles, we
approximate their deformation to improve the drag coefficient estimation. The resulting effects are validated by comparing them to
the results of multiphase SPH simulations. We further show the practicality of our approach by combining it with different types of
SPH fluid solvers and by simulating multiple, complex scenes.
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1. Introduction

Since air is normally invisible, liquids tend to look like
single-phase, free-surface flows. It is intuitive to assume that
liquids like water do not interact with any other phase, as these
interactions are often not directly visible. However, the sur-
rounding air influences the behavior of liquids significantly.
Rain drops, for example, reach a terminal velocity or otherwise
they would hurt a lot.

Although the interactions of liquids with their surrounding
air are important, in the Computer Graphics community, single-
phase approaches are often preferred. One of the main rea-
sons is that a single-phase liquid simulation is computationally
cheaper. Of the two major approaches used to simulate fluids,
the Eulerian and the Lagrangian one, the Lagrangian approach
is especially well-suited to simulate free-surface, single-phase
flows. This is due to its meshless discretization of the fluid
volume with moving sample points, which implicitly track the
fluid surface. The Lagrangian Smoothed Particle Hydrodynam-
ics (SPH) method is a popular choice (cf. [1]) which we also
use in this work. Additionally, we use the Bullet physics li-
brary [2] to simulate dynamic rigid objects and the boundary
handling scheme proposed by Akinci et al. [3] which samples
rigid objects with particles to simulate fluid-rigid interactions.

In the context of SPH, there exist multiple approaches to cap-
ture the effects coming from the interaction between the simu-
lated liquid and the surrounding air. Fully simulating the air
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phase is possible and logically allows to capture all occurring
effects. However, the computation of such multiphase simula-
tions is very expensive since a large volume needs to be sampled
with air particles to enclose the liquid. Furthermore, stability
problems may occur due to the high density ratio between air
and liquid.

To prevent the cost of simulating the air phase, approaches
have been implemented that try to reproduce the observed in-
teraction effects without the need for a fully simulated second
phase. Some approaches sample air particles only in regions of
interest [4] to capture the behavior of bubbles [5, 6] or spray
and foam [7]. These approaches require careful placement and
deletion strategies for the air particles and do not model the ef-
fects of air acting as a drag force on the surface of the liquid.
Simple drag forces are already employed in particle-based fluid
simulations, for example in [8]. Accurate parameter estimation
is normally not done.

Contribution
This paper is an extended version of [9]. In [9], a drag equa-

tion is used to model drag forces acting from an air phase with
predefined velocities onto a free-surface SPH fluid. The drag
equation is employed to compute one-way coupled forces act-
ing onto the fluid surface. The surface of each fluid particle is
calculated and its deformation is modeled to accurately estimate
the parameters needed to compute the drag force.

Using the drag equation to model the air-fluid interactions
has several advantages. It means that the forces are mainly
based on the velocity difference between air and fluid. Accord-
ingly, since explicit pressure values are not computed for the
interaction between the phases, typical instabilities that occur
due to high density ratios are prevented. Furthermore, the com-
putational cost of the simulation is reduced since the air is not
sampled with particles. It is shown that the presented approach
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(a) Single phase simulation. (b) Single phase simulation with drag force. (c) Multiphase simulation.

Figure 1: Comparison of a single phase simulation without drag force, one with our proposed drag force and a multiphase simulation. Employing our drag force
yields a similar result as the multiphase simulation.

produces results that are similar to a full multiphase simulation
(see Fig. 1). Realistic scenarios are shown which demonstrate
that employing the proposed drag force improves the plausibil-
ity of the fluid behavior (see Figs. 2 and 9). Finally, the pro-
posed drag force is combined with different types of SPH fluid
solvers.

Since the air volume is not represented by particles, the ap-
proach is unable to reproduce effects coming from entrapped air
like rising air bubbles. Furthermore, as the air is not simulated
and the force is only one-way coupled, effects based on the fluid
influencing the air cannot be modeled.

As an extension to [9], we additionally derive an alternative
computation of the deformation of a fluid particle and compare
both approaches. We show that our approximation results in
the same deformation for a single falling fluid particle while
requiring less memory. Furthermore, we extend our proposed
drag force to also act on rigid objects that are represented by
particles. This allows to model the effects of air and wind on
rigid bodies. Again, since we do not simulate the air phase, we
are unable to reproduce turbulent behavior or lift effects as for
example needed to simulate a flying airplane.

Organization
In the next section, we will first discuss related work regard-

ing the proposed drag force. We give a short introduction to the
basics of an SPH fluid solver and our used boundary handling
in Section 3. In Section 4, we present our method to model the
air effects acting on the fluid. This section includes an explana-
tion of the drag equation and detailed sections how we model
the droplet deformation and compute the surface area of a par-
ticle. In Section 5, we explain the extension of the drag force to
air interactions with rigid bodies. In Section 6, we show sim-
ulations employing our proposed force. We demonstrate the
improvements when using our model by comparing it to simu-
lations without it and to a full multiphase simulation. Finally,
we summarize our work and give suggestions for future work
in Section 7.

2. Related work

For the simulation of single-phase, free surface liquids, SPH
was first introduced to the Computer Graphics community by
Müller et al. [10]. Since then, a lot of research has been done
to improve the performance and extend the possible effects that
can be simulated with SPH. There exist multiple overviews
regarding SPH [11] and its use for fluid simulation [1].

There are extensions for SPH to simulate multiple phases and
their interaction. In the Computer Graphics community, Müller
et al. [5] stress the importance of modeling the interaction be-
tween a liquid phase and the surrounding air and first proposed
an SPH multiphase formulation. However, due to density dis-
continuities across the interface, spurious tension effects and
large gaps occur between phases. Replacing the usage of den-
sity in the SPH formulation with the number density reduces
this problem [12, 13]. Nevertheless, using a full multiphase
simulation to model the effects between air and liquid is chal-
lenging. For a multiphase simulation, a large domain surround-
ing the liquid has to be sampled with air particles. This is com-
putationally expensive. Furthermore, the high density ratio be-
tween air and liquid leads to high accelerations of the air phase.
To get a stable simulation, small time steps are needed. Addi-
tionally, as detailed in [13, 14], SPH particles order themselves
in stable lattice structures. This damps the buoyancy of single
particles submerged inside another phase [6].

Instead of fully simulating the second phase, approaches ex-
ist that only generate air particles in regions of interest. Most
of the work deals with simulating entrapped air bubbles. For
example, in [5], air particles are generated at the liquid-air in-
terface and deleted if they do not interact with liquid anymore.
The interactions between the air and liquid particles are com-
puted with a multiphase SPH model. When the air particles are
generated, their velocity is set to the velocity of the surrounding
liquid particles. This means that no strong pressure or friction
forces occur between the phases. To prevent stability problems,
Müller et al. [5] increase the density of air particles to reduce the
density ratio between the phases. Additionally, they introduce
an artificial buoyancy force such that the entrapped air parti-
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cles behave plausible. Similarly, Ihmsen et al. [6] generate air
particles on the fly to model bubbles. Instead of using a multi-
phase SPH model like in [5], all interaction forces are computed
based on velocity differences between the phases. This brings
improvements when dealing with high density ratios. Similarly,
our approach also only relies on the velocity difference between
the phases to compute the interaction forces. One of the cou-
pling forces used in [6] is a drag force. It scales linearly in the
velocity difference and is used to model friction forces between
the phases. Rising bubbles are also modeled in [15, 16]. Here,
a drag force is used to couple the bubbles with the surrounding
liquid, too. Both the Stokes law and the drag equation are used
in [15] to compute the drag force based on the Reynolds number
of the bubble. In contrast to our work, in [15], the drag coeffi-
cient needed for the drag equation is set to a constant value and
the deformation of single particles is not modeled. In [4], simi-
lar to [5], air particles are only generated near the liquid-air in-
terface. However, in [4], this is not done to model entrapped air.
Instead, the air particles are used to improve the SPH density es-
timation of particles at the surface of the fluid. No pressure or
viscosity forces are evaluated between the phases. In contrast to
the aforementioned approaches, which either improve the den-
sity estimation or model entrapped air, our approach tries to
model the drag effects of air acting on a liquid’s surface. Also,
our approach does not generate any air particles. Our used drag
equation is similar to the one in [15]. We do, however, take spe-
cial care to compute the drag coefficient and to model particle
deformation.

Drag forces acting from the air onto the surface of another
material are often used in animation to improve cloth simula-
tions. Bhat et al. [17] combine a linear relationship between ve-
locity differences and forces for tangential areas and a quadratic
one for areas exposed in normal direction to the air. They state
that the quadratic term is needed in order to capture more real-
istic effects. Wilson et al. [18] also use a drag equation to model
the effects of air on clothes. In their work, the drag coefficient
is controlled by the artist using their simulation tool. In their
unified, position-based simulation framework [8], Müller et al.
also model drag effects on clothes. They employ the aerody-
namic forces proposed in [19]. These approaches compute the
drag force on the triangles of the respective mesh whereas we
compute the drag force on its boundary particles. Müller et al.
[8] also use a simple drag force to model the interaction of air
with smoke, which is discretized with particles. As a condition
when to apply the drag force they use a simple density-based
approach, assuming that surface particles have a lower density
than internal particles. Their drag force is linear in the velocity
difference, modeling friction forces. In order to scale the effect
of the force, they use a user-defined parameter. In contrast to
their work, we use a drag term that is quadratic in the velocity
difference and we take special care to automatically compute all
necessary parameters in order to keep user input to a minimum.

3. SPH-based fluid solver

A common approach for SPH-based fluid solvers is to solve
the Navier-Stokes equation in order to compute an acceleration

for each fluid particle i:

Dvi

Dt
= −

1
ρi
∇ pi + ν∇2 vi +

Fexternal
i

mi
. (1)

SPH is used to discretize the spatial derivatives in Eq. (1). In or-
der to calculate these derivatives, SPH requires the neighboring
particles of each particle.

To compute the pressure gradient and – following – the ac-
celeration due to pressure, the pressure value must be computed
for all particles. The pressure acceleration should prevent com-
pression of the fluid. Accordingly, the pressure depends on the
density, which is also computed using SPH. Using this den-
sity, the pressure can be calculated using an equation of state
(EOS) as it is done, for example, for WCSPH [20]. Iterative
EOS solvers allow to use larger time steps [21, 22]. Finally, a
splitting scheme can be employed, leading to a pressure Pois-
son equation (PPE). The PPE is solved to get the pressure value.
IISPH [23] is an example for this type of pressure solver.

There are also several possibilities for evaluating the acceler-
ation due to viscosity. One way is to compute it explicitly. In
this case, there exist various options for discretizing the Lapla-
cian with SPH. In [24], for example, a combination of a finite
difference and the kernel gradient is used to improve its robust-
ness with regard to particle disorder. Alternatively, the viscosity
acceleration can also be solved using an implicit scheme, exam-
ples are [25, 26, 22].

Finally, Eq. (1) contains the external forces Fexternal
i which —

for example — consist of the gravity. For fluids, we add our
proposed drag force to these external forces. This allows us to
easily integrate our force into different types of SPH solvers.

For boundary handling, we use the approach by Akinci et al.
[3] which samples rigid objects with boundary particles. This
allows to compute pressure forces between fluid and bound-
aries. Rigid-rigid interactions are handled with the Bullet
physics library [2]. We apply our proposed drag force for rigid
objects on the same boundary particles which are created for
the fluid-boundary interactions.

4. Fluid-air interactions

We want to model the forces acting from the surrounding air
onto a free-surface liquid. These interactions are defined by
pressure, friction and adhesion forces. We do not model the
effects of adhesion as it can be approximated by adjusting the
surface tension parameters of the liquid. For low relative veloc-
ities between air and liquid, drag effects can be modeled using a
linear relationship between the relative velocity and the acting
forces. The corresponding formula is called the Stokes’ law.
For higher velocities, a quadratic relationship between relative
velocity and force is needed. We focus on modeling the drag
effects using this quadratic relationship. The drag equation is
a general formula to model these forces acting on an object i
moving through the air [27]:

Fdrag
i =

1
2
ρav2

i,relCD,iAi . (2)
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ρa is the density of the air. v2
i,rel is a vector pointing in the di-

rection of the relative velocity difference between air and the
object i, while its length is given as the squared length of this
velocity difference. It is computed as follows:

v2
i,rel = |va − vi|

2 va − vi

|va − vi|
= |va − vi| (va − vi) .

vi is the velocity of particle i and va is the air velocity. In our
work, the air velocity is predefined for every position in space.
The drag coefficient CD,i and the exposed cross-sectional area
Ai vary for each object. They allow to tune the model for differ-
ently shaped objects.

Eq. (2) is normally used to compute the aerodynamic drag of
rigid objects such as airplanes or cars. It builds upon the dy-
namic pressure q = 1

2ρ |v|
2 and models the molecules of the air

phase hitting the object and being stopped in the process. When
assuming that all air molecules come to a complete stop when
hitting the surface, the drag coefficient CD,i should be chosen
as 1. Depending on the shape of the surface, however, not all
molecules of the air come to a stop. Accordingly, the drag coef-
ficient varies depending on the shape of the considered object.

Due to its general nature, the drag equation can also be used
to compute the drag force acting onto a liquid like water. As
an additional complexity compared to rigid objects, a liquid
changes its shape continuously. To compute the drag forces
acting on an SPH liquid, we compute Eq. (2) independently for
each particle. Accordingly, we need to estimate their drag co-
efficient CD,i and their exposed cross-sectional surface area Ai.

A single particle is the smallest discretized element in an
SPH simulation. To more accurately estimate the surface area,
we additionally model the deformation of particles. This de-
formation influences the drag coefficient as well as the cross-
sectional area of a particle. To explain the different parts lead-
ing to the final computation of Eq. (2), this section is structured
as follows: First, as the other parts depend on it, we explain
how we model the deformation of a particle. Then, in Subsec-
tion 4.2, we use this deformation to compute the drag coefficient
for each particle. The exposed cross-sectional area of a particle
depends on two parts. First, the unoccluded area of the parti-
cle in the direction of the air, explained in Subsection 4.3, and
second, the occlusion of a particle by other liquid particles or a
rigid boundary. We present our occlusion computation method
in Subsection 4.4. Finally, in Subsection 4.5, we summarize the
subsections and combine all formulas to compute the drag force
acting on a particle.

4.1. Particle deformation
We want to compute the deformation of a fluid particle due to

the drag forces from the surrounding air. If a droplet consists of
multiple SPH particles, its overall deformation is represented by
the position of the particles with respect to each other. There-
fore, we consider every particle on its own and do not try to
change or model the overall structure of multiple fluid particles
that are clustered together.

4.1.1. Theory
To model the deformation of a particle, we follow the Taylor-

Analogy-Breakup (TAB) model that was initially proposed in

[28] to model engine spray droplet breakup. A fluid droplet
in the air oscillates with time t [29, 30]. The TAB model is
based on the Taylor analogy [31] which relates this oscillation
to a mass-spring system. In [28], the deformation of a droplet
is described by the formula of a damped harmonic oscillator.
The external force, the spring force and the damping force are
dependent on the phase of the droplet and the surrounding air
phase. Constants CF , Cd and Cd are introduced to scale these
external, spring and damping forces. An additional constant Cb

is used to convert the displacement to a dimensionless deforma-
tion yi. This current deformation yi of a particle i is then a value
between 0 and 1. A value of 0 means there is no deformation
(droplet is a sphere) and a value of 1 corresponds to a deformed
droplet (droplet is a disk). Accordingly, in [28], the change of
yi over time is described by the following second order ordinary
differential equation (ODE):

d2yi

d2t
=

CF

Cb

ρa

ρl

∣∣∣v2
i,rel

∣∣∣
L2 −

Ckσ

ρlL3 yi −
Cdµl

ρlL2

dyi

dt
. (3)

ρa and ρl are the rest densities of the air and the liquid. σ is the
surface tension coefficient of the liquid and µl is the dynamic
viscosity of the liquid. By default, we set these values according
to literature to ρa = 1.2041, ρl = 1000, σ = 0.0724 and µl =

0.00102. For the constants CF , Ck and Cd, we adopt the values
proposed in [28] which are CF = 1

3 , Ck = 8, Cd = 5. Cb is set to
1
2 . Finally, L is the radius of the droplet. Since we consider each
particle on its own, we take the radius of a sphere corresponding
to the volume h3 of a particle. It is calculated as:

h3 =
4
3
πL3

⇐⇒ L =
3

√
3

4π
h . (4)

4.1.2. Implementation
We want to compute the deformation of each particle at each

point in time during the simulation based on Eq. (3). There are
multiple options for this. In the following, we first show a direct
discretization of the ODE with a semi-implicit update scheme.
Then, as an alternative, we show an approximate discretization
which does not require to store additional values and thus re-
quires less memory. The results of both methods are compared
in Subsection 6.2.

Direct discretization
We discretize Eq. (3) directly by integrating it in time. We

first introduce the change of yi as vy,i. Equation (3) reads then

dvy,i

dt
=

CF

Cb

ρa

ρl

∣∣∣v2
i,rel

∣∣∣
L2 −

Ckσ

ρlL3 yi −
Cdµl

ρlL2 vy,i . (5)

We discretize Eq. (5) with a simple forward difference. By em-
ploying a semi-implicit update scheme, this results in the fol-
lowing two formulas for computing yi and vy,i:

vt+∆t
y,i =vt

y,i + ∆t

CF

Cb

ρa

ρl

∣∣∣v2
i,rel

∣∣∣
L2 −

Ckσ

ρlL3 yt
i −

Cdµl

ρlL2 vt
y,i

 ,
yt+∆t

i =yt
i + ∆tvt+∆t

y,i .

(6)
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Figure 2: A wheel rotating with a speed corresponding to 20 km h−1. When not using our drag force (left), the particles are sprayed very far. Applying our drag
force (right), the particles reach a terminal velocity and the spray distance matches real-world experiments.

Using Eq. (6) to compute the deformation of particles accord-
ingly requires to store two additional scalar values per particle.

Approximate discretization
To prevent the memory overhead of the direct discretiza-

tion shown above and to simplify the implementation, we make
the simplifying assumption that the deformation of the droplet
does not oscillate. Instead, we assume that the particle is im-
mediately completely deformed based on the current relative
velocity. With this assumption, the ODE in Eq. (3) simplifies as
follows:

d2yi

d2t︸︷︷︸
=0

=
CF

Cb

ρa

ρl

∣∣∣v2
i,rel

∣∣∣
L2 −

Ckσ

ρlL3 yi −
Cdµl

ρlL2

dyi

dt︸    ︷︷    ︸
=0

(3 revisited)

=⇒ 0 =
CF

Cb

ρa

ρl

∣∣∣v2
i,rel

∣∣∣
L2 −

Ckσ

ρlL3 yapprox
i . (7)

In Eq. (7), everything apart from the relative velocity is inde-
pendent of the specific particle i. We therefore combine these
variables:

yapprox
i =

∣∣∣v2
i,rel

∣∣∣ CF

CkCb

ρaL
σ︸      ︷︷      ︸

ycoeff

=
∣∣∣v2

i,rel

∣∣∣ ycoeff . (8)

By pre-computing ycoeff, the current deformation of each par-
ticle is calculated using a simple multiplication. The deforma-
tion computed by Eq. (8) corresponds to the converged defor-
mation value of Eq. (3). For a constant relative velocity, Eq. (3)
converges to this value due to the viscosity which dampens the
oscillation.

In [28], if a droplet reaches a deformation of 1, it is assumed
to break up into multiple smaller droplets. Since one particle
is the smallest discretization unit in our SPH simulation, we
clamp values larger than 1:

yapprox
i = min

(
1,

∣∣∣v2
i,rel

∣∣∣ ycoeff

)
(9)

4.2. Drag coefficient
Based on the deformation formula in [28], Liu et al. [32] pro-

pose a model to compute the drag coefficient of a droplet. The

idea is to use the deformation y to linearly interpolate the drag
coefficient between the value of a sphere and the value of a disk.
We adapt the formula from [32] to use our calculated approx-
imated deformation yapprox

i instead of the current deformation
yi(t). The drag coefficient is then computed as:

CLiu
D,i =Csphere

D,i

(
1 + 2.632yapprox

i

)
, (10)

where Csphere
D,i is the drag coefficient of a sphere. It is calculated

as:

Csphere
D,i =

 24
Rei

(
1 + 1

6 Re
2
3
i

)
, Rei ≤ 1000

0.424, Rei > 1000
(11)

Rei is the Reynolds number for particle i, which is computed as:

Rei =2
ρa

∣∣∣vi,rel
∣∣∣ L

µa
. (12)

We choose the value of the dynamic viscosity of the air as µa =

0.00001845.
Finally, as we want a fluid particle which is part of a larger

cluster of particles to have a drag coefficient of 1, we linearly
interpolate between Eq. (10) and 1 based on the number of fluid
neighbors n:

CD,i =

1 − min
(

2
3 nfull, n

)
2
3 nfull

CLiu
D,i +

min
(

2
3 nfull, n

)
2
3 nfull

. (13)

nfull is the number of neighbors a particle with a full neighbor-
hood has. In our simulations, we choose nfull = 38. If a particle
has 2

3 nfull or more neighbors, we assume it is part of a larger sur-
face. In this case, its drag coefficient is 1. With no neighbors,
the drag coefficient CLiu

D,i from Eq. (10) is used.

4.3. Particle area

In this subsection, we explain how we compute the cross-
sectional area of a deformed particle. Together with the occlu-
sion detailed in the next subsection, this results in the area Ai

used in the drag equation.
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L

vi,rel xi

Figure 3: Illustration of the deformation of a single particle. When the relative
velocity vi,rel between air and particle is zero (left), the particle is assumed to
be spherical. When vi,rel increases, the particle deforms to a disk (right).

In SPH, the volume of a single particle is normally computed
as the cube of the spacing h: Vi = h3. This suggest to use the
squared spacing as cross-sectional area of a particle:

Asquare
i =h2 . (14)

This assumption works well for fluid particles that are part of
larger, closed surface of the fluid. In this case, the pressure force
results in equally-spaced particles on the surface, meaning that
Eq. (14) results in an approximately correct surface area. When
a fluid particle has no or only a few neighboring particles, this
approximation is bad. A single fluid droplet forms a sphere as
long as no external forces act on it. This is due to the surface
tension. If a surface force like the drag force acts on a droplet,
the droplet deforms and more resembles a disk than a sphere
(see Fig. 3). To compute the correct cross-sectional area for
these particles, we again use the deformation value yapprox

i com-
puted in Subsection 4.1.

The cross-sectional area of a spherical droplet with radius
L is computed as Asphere = πL2. Following [32], the radius
increase of a deformed droplet is calculated as:

yapprox
i =

xi

CbL
=⇒ xi =CbLyapprox

i . (15)

The radius of the deformed droplet is then L + CbLyapprox
i . This

results in the following cross-sectional area of the disk-like
droplet:

Adroplet
i =π

(
L + CbLyapprox

i

)2
. (16)

Finally, we linearly interpolate between Eq. (14) and Eq. (16)
based on the number of neighbors n. Similar to Eq. (13), with
2
3 nfull neighbors, the area corresponds to the square area, while
with no neighbors we use Adroplet

i . This results in the cross-
sectional area of a particle:

Aunoccluded
i =

1 − min
(

2
3 nfull, n

)
2
3 nfull

 Adroplet
i +

min
(

2
3 nfull, n

)
2
3 nfull

h2 .

(17)

We marked the area as unoccluded since we get the final area
Ai used in Eq. (2) by combining Eq. (17) with a scaling based
on the occlusion of the particle. This is explained in the next
subsection.

4.4. Particle occlusion

The drag forces should only act on particles that are exposed
to the air, i.e., particles that are on the surface of the liquid. Ad-
ditionally, only particles with a surface area facing toward vi,rel
should be influenced. To compute the occluded surface area of
a particle, we first calculate the unoccluded area Aunoccluded

i as
detailed in Subsection 4.3. This area is then weighted with an
occlusion value wi. The value is between 0 and 1 and states the
fraction of the particle area that is occluded,

Ai =wiAunoccluded
i . (18)

A surface detection algorithm is needed to compute wi. One
common approach to detect surface particles of an SPH fluid is
to compute a color field [33, 10]. Surface particles are detected
based on the magnitude of the gradient of this color field, which
can be interpreted as the normal of the fluid. We noticed that
this approach works well to simply detect surface particles. In
our case, we want to additionally compute the ratio of exposed
surface area of a single particle in the direction of the relative
velocity between the particle and the air. This allows us to par-
tially apply the drag force on these particles. Using the fluid
color gradient for this proved to be difficult. For droplets with
only a few particles the normal direction tends to vary strongly
depending on the particle configuration. Therefore, we use a
more geometrically inspired approach to compute the surface
particles and their occlusion. Our method is similar to the idea
used in [34] and [35].

i

j

vi,rel

xi j

Figure 4: Computation of the occlusion is based on the angle between vi,rel and
the direction to neighboring particles xi j.

The algorithm in [34] and [35] computes a cover vector bi

and checks if there is a neighboring particle in a cone in the
direction of this vector. If not, the particle is marked as being on
the surface. We are interested in the occlusion in the direction of
vi,rel and therefore use this direction instead of the cover vector.

Furthermore, we do not declare a particle as fully covered or
uncovered if it has a neighbor inside the scan cone. Instead, we
use the cosine of the angle between vi,rel and the neighbor direc-
tion xi j (Fig. 4). For multiple neighbors, we use the maximum
of this value. This results in a value between 0 and 1 which
indicates the amount of occlusion of the particle. To get a value
of 1 if the particles is not occluded at all, the occlusion value wi

for Eq. (18) is computed as shown below. We clamp the value
to prevent values larger than 1 or smaller than 0.

wi = max

0,min

1, 1 −max
j

 vi,rel∣∣∣vi,rel
∣∣∣ xi j∣∣∣xi j

∣∣∣
 . (19)
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4.5. Summary

Using the values from the previous subsections allows to
compute Eq. (2). Algorithm 1 gives an overview over the or-
der of steps.

The drag force is computed in the beginning of a simulation
step since the drag force is added as external force. We require
neighbor information for each particle to exist. Since these are
necessary anyway for an SPH solver, this imposes no additional
computational cost.

Algorithm 1 Drag force computation.
compute ycoeff using Eq. (8)
for all particle i do

compute deformation: yapprox
i = min

(
1,

∣∣∣v2
i,rel

∣∣∣ ycoeff

)
(cf. Eq. (9))

compute drag coefficient CD,i using Eq. (13)
compute unoccluded area Aunoccluded

i using Eq. (17)
compute occlusion wi using Eq. (19)
compute exposed area: Ai = wiAunoccluded

i using Eq. (18)
compute drag force: Fdrag

i = 1
2ρav2

i,relCD,iAi using Eq. (2)

The only parameters required by the formulas in the algo-
rithm are the surface tension and viscosity of the liquid as well
as the rest density of the air and the liquid. These values can
be taken from literature. We use the values shown in Subsec-
tion 4.1.1.

5. Rigid-air interactions

In the previous section, we explain how to compute the drag
coefficient and exposed area of a deforming fluid particle in or-
der to calculate the acting drag force. In this section, we ex-
tend our proposed drag force to also act on rigid bodies. In
our SPH framework, interactions between rigid bodies are sim-
ulated with the Bullet physics library [2]. For fluid-boundary
interactions, the rigid bodies are sampled with a single layer of
particles as proposed by Akinci et al. [3]. We use these exist-
ing boundary particles to compute the drag force acting on a
rigid body. Accordingly, the drag force we apply to a single
boundary particle i reads the same as for a fluid particle:

Fdrag
i =

1
2
ρav2

i,relCD,iAi . (2 revisited)

The two unknown variables in Eq. (2) are again the drag coeffi-
cient CD,i and the exposed area Ai. Boundary particles do — in
contrast to fluid particles — not deform. Therefore, we do not
need to compute a deformation. Since a boundary particle is
always part of a larger surface area, we set the drag coefficient
to 1. This is a simplification that disregards the fact that for
example a simple cuboid has a drag coefficient different from 1
because of air turbulence. This is a limitation of our approach
which is challenging to fix since we do not compute the air flow
but use predefined air velocities. This leaves only the surface
area Ai of a single boundary particle i to be computed. Similar
as for fluid particles, we compute the area of the particle and
its occlusion in direction of the relative velocity vi,rel. The two
steps are explained in the following two sections.

5.1. Particle area

As long as the rigid object is uniformly sampled with bound-
ary particles, the surface area of a particle can be assumed to
be the squared spacing Ai = h2. However, one of the benefits
of using the boundary handling approach by Akinci et al. [3]
is that it also works with non-uniformly sampled meshes. This
simplifies the boundary particle generation process and allows
for overlapping geometries. When a rigid object is sampled
non-uniformly, some areas may be oversampled compared to
others. Similar as in [3], we compute a scalar value indicat-
ing the oversampling of a boundary region which allows us to
scale the surface area of a particle. First, the number density of
boundary particle i is computed as

δi =
∑

b

Wib , (20)

where b are the boundary neighbors of i. This value is larger
for oversampled areas of the boundary. By taking the inverse,
we get the scaling factor ψi = 1

δi
. Since we used a three-

dimensional kernel to compute the scaling factor but the surface
of the rigid is only sampled in two dimensions, we additionally
multiply this value by 0.7 as motivated in [36]. The reason is
that only 70% of the three-dimensional kernel volume is filled
by a two dimensional sampling but it should result in a scaling
value of 1. Summarized, we compute the unoccluded area of a
boundary particle as:

Aunoccluded
i = min (1, 0.7ψi) h2 . (21)

Before using this area in Eq. (2), the occlusion of the particle
must be computed as detailed in the next section.

5.2. Particle occlusion

Similar as for fluid particles, we estimate how much of the
surface area of a boundary particle is affected by the drag force
by approximating its occlusion. Additionally to using the angle
with respect to its neighbors as done for fluid particles (cf. Sub-
section 4.4), we use the mesh normal ni at the corresponding
location. This results in the following formula:

wi =

 max
(
0,min

(
1, 1 −max j

(
vi,rel

|vi,rel|

xi j

|xi j|

)))
, ni · vi,rel < 0

0, else
(22)

The additional condition based on the outwards-pointing mesh
normal is needed since we only sample a single layer of bound-
ary particles on the surface of a rigid object. Accordingly, with-
out the additional check, exposed surface would be detected on
the inside of a rigid object.

6. Results

In this section, we show the properties of our drag force ap-
proach and demonstrate its effects on fluid behavior and on rigid
objects. In the presented experiments, we combine our force
with different types of SPH solvers. Independent of the type
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of solver, we employ a cubic spline kernel [11] with an influ-
ence radius of twice the particle spacing. Boundary handling
between liquid and rigid objects with one-way and two-way
coupling is implemented according to [3]. Surface tension is
modeled with [37].

The scenes are simulated on a 16-core Intel Xeon workstation
with 3.1 GHz and 128 GB of RAM. Apart from the multiphase
comparison, the wiper scene and the pendulum scene which are
rendered in our own SPH framework, the images are ray-traced
with Houdini [38]. If not noted otherwise, we use the drag force
parameters shown in Section 4 and a constant air velocity of
zero.

6.1. Comparison with multiphase simulation

Figure 1 shows the scenario we use to compare the visual
effects resulting from our approach with a single-phase simula-
tion without our approach and a full multiphase simulation. For
all three simulations, IISPH [23] is used as a pressure solver.
To improve the multiphase interactions, we employ a number-
density-based formulation [13]. We set the density for the gas
phase to 50 kg m−3 and for the liquid phase to 1000 kg m−3. The
particle spacing is 1 cm. A circular source with a diameter of
19 cm continuously emits the liquid with an inflow velocity of
4 m s−1. During the simulation, up to 100k liquid particles are
created. For the multiphase simulation, we filled a box of size
(1, 2, 1.4) m with air particles surrounding the source. We chose
the box extents as small as possible such that the boundary of
the box did not directly influence the liquid behavior. Filling
the box required 2.7M air particles.

Comparing the simulations illustrates that with our approach
a behavior similar to the multiphase simulation is achieved. The
front of the liquid buckles outwards in the drag-force-based and
the multiphase simulation. In contrast to the single-phase simu-
lation, the front of the liquid is slowed down resulting in a sim-
ilar location of the liquid front in both simulations. Still, there
are differences between the simulation using our drag force and
the multiphase simulation. In the multiphase simulation, the air
surrounding the liquid starts to spin. This turbulence in the air
also affects the liquid leading to a more irregular sampling of
the particles. Furthermore, larger air vortices form behind the
front of the liquid. The width of the liquid column shrinks as
a result of this. In contrast, our drag force does not simulate
the air phase or its turbulence. The sampling of the particles
of the liquid phase therefore looks more regular. The com-
putation of the simulation with our drag force is significantly
cheaper than the multiphase simulation since no air particles
are needed. Simulating 350 frames with one frame correspond-
ing to 0.0001 s took 30 min for the multiphase simulation. Both
single-phase simulations took 22 s.

6.2. Reaching of terminal velocity

Single particle drop
For comparing the direct and approximate discretization of

the deformation ODE (Eq. (3)) and to verify that a droplet
reaches a correct terminal velocity, we simulate a single liq-
uid particle. The diameter of the liquid particle is 5 mm. It is
accelerating downward due to a gravity of 9.81 m s−2. Pressure,

viscosity and cohesion forces are not acting on the particle since
it has no neighboring particles.
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Figure 5: Velocity profile of a single particle with a diameter of 5 mm being
accelerated due to gravity. When employing our drag force, the particle reaches
a terminal velocity which matches the expected one.

Figure 5 shows a graph of the velocity profile of the parti-
cle. When only affected by the gravity, the particle acceler-
ates indefinitely. Applying our proposed drag force, the particle
reaches a terminal velocity when the gravity and drag force can-
cel each other out. The terminal velocity of the particle affected
by our drag force matches the values measured for falling rain-
drops of the same size [39, 40]. Fig. 6 shows the deformation
of the liquid particle over time. It shows that our approximate
computation of the deformation results in the same values as
the direct discretization of Eq. (3). Accordingly, it is also clear
that the velocities in Fig. 5 for the approximate discretization
and direct discretization are the same.

Note, that both discretizations only result in the same defor-
mation value as long as the relative velocity vi,rel is only chang-
ing slowly. In contrast to the approximate discretization, the
direct discretization is able to capture the oscillation of the de-
formation of a particle. This means, that if the relative velocity
for a single particle suddenly and rapidly changes, the com-
puted deformation values may vary initially.

Tire testing
The results of simulations are closer to reality when par-

ticles reach their correct terminal velocity. Figure 2 shows a
tire testing setup: A wheel rotates on a large cylinder and wa-
ter is flowing in with 33.36 L min−1 from the right side. The
rotation speed of the wheel corresponds to 20 km h−1. Due to
friction and adhesion between the water and the tire, the wa-
ter is sprayed away from the tire. In this scene, the water is
simulated with WCSPH [20] and the particle spacing is set to
1 mm. During the 8 s of simulated time, up to 3.2M particles are
generated. Without our drag force, the particles do not reach a
terminal velocity. In contrast, using our proposed drag force,
the particles reach a terminal velocity and the spray distance is
more plausible.
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Figure 6: Deformation value of a single falling particle over time.

6.3. Combination with Different SPH Solvers
Since our force is added as an external force, it can be com-

bined with different types of SPH solvers. Regarding fluids,
we integrated our force into WCSPH [20] for the simulation of
Fig. 2. The simulations in Figs. 1 and 9 use IISPH [23]. We also
added our drag force to a viscous fluid SPH solver and an SPH
solver for deformable objects as described in the following.

Viscous SPH
For the simulation of the viscous fluid, we employ the imple-

mentation described by Peer et al. [26]. The scene is shown in
Fig. 7. A bunny is shot with a cannon ball made out of viscous
fluid. The cannon ball consists of 800k particles with a particle
spacing of 1 mm. It is shot with a speed of 10 m s−1. The vis-
cosity parameter is set to ξ = 0.9 and the time step is 0.25 ms
resulting in 8 simulation steps per frame for a frame rate of 500
frames/s. The cannon ball deforms due to the drag forces acting
on it. Since we compute an occlusion for each particle, the drag
force only acts on the front of the cannon ball.

Deformable SPH
We also combined our drag force with an SPH solver ca-

pable of simulating deformable objects. For the solver im-
plementation, we followed the method by Ganzenmüller [41].
The approaches by Becker et al. [42] or Solenthaler et al. [43]
would also be possible choices. We simulated a deformable Ar-
madillo. You can see the scene in Fig. 8. The Armadillo is
volumetrically sampled with particles which have a diameter of
1 cm. Wind is blowing upward with a speed of 80 m s−1. To pre-
vent the Armadillo from leaving the plane, we fixed the lowest
particle layer. We used a time step of 0.2 ms and deformation
parameters µ = 5000 and λ = 75000.

As shown in Fig. 8, it is possible to produce interesting ef-
fects, although it is hard to verify the realism of the results.

6.4. Coupling with precomputed air flow
Figure 9 shows a wiper simulation. The scene contains a lot

of animated, complex-shaped geometry. The liquid is simulated
with IISPH [23] with a particle spacing of 1.25 mm. Up to 1.9M
particles are simulated. Instead of assuming a constant air ve-
locity everywhere, a grid of air velocities is imported from a

Figure 7: The Stanford Bunny being shot with a viscous cannon ball. The
cannon ball consists of 800k fluid particles and deforms due to the drag force.
The cannon model is courtesy of dberube4 on www.blendswap.com.

Figure 8: Armadillo dancing in the wind. The Armadillo is simulated as de-
formable object and consists of 230k SPH particles. The air velocity points
upward.
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previous aerodynamic simulation done with [44]. This allows
to take the air flow at the windshield apron and inside the mo-
tor compartment into account, which also influences the liquid
flow. A comparison between the simulation with imported air
velocities and a constant air velocity is shown in the accompa-
nying video. It demonstrates that the air has a strong influence
on the overall liquid behavior.

Figure 9: Wiper simulation. The air velocities used for the drag force have
been precomputed with an aerodynamic simulation. This allows to consider
complex air flows.

6.5. Basic air-rigid interaction

As a simple example for the air-rigid interaction forces, we
let a pendulum fall due to a gravity of 9.81 m s−2. The pendu-
lum has a length of 12 cm, a density of 50 kg m−3 and is falling
from a height of 8 m. The spacing of the boundary particles is
1 mm. We use a frame rate of 500 frames/s and do one simula-
tion step per frame resulting in a time step of 2 ms. As seen in
the accompanying video and Fig. 10, our drag force results in
the initially sideways lying pendulum swinging back and forth.

Figure 10: Falling pendulum. Due to the drag force acting on the sides of the
pendulum it starts swinging back and forth.

6.6. Two-way coupled rigid object

To demonstrate the possibility to simulate a two-way coupled
rigid object that is influenced by the surrounding wind as well
as by a liquid, we simulated a sailing ship. In this scene, the
drag force acts on the fluid as well as on the ship. The ship sails
on a wavy sea which we generated with a moving plane on the
right. The particle size is 2 cm and the wind blows with 10 m s−1

to the right. The ship as well as the water have a density of

1000 kg m−3. All other settings are default as described at the
start of this section. For comparison, we also simulated the
scene with no drag force. In Fig. 11 the wind blows the ship
to the right. Additionally to moving the sailing ship, the drag
force also influences the waves. Since it acts on the front of the
waves, the wave breaks later as seen in Fig. 12.

Figure 11: In the scene with no drag force (top) the sailing ship stays on the
left. When the wind is blowing into its sail the ship slowly moves to the right
(bottom).

Figure 12: The drag force blowing against the waves results in them breaking
later (bottom) compared to the scene with no drag forces (top).

6.7. Air-rigid interaction: comparison to SPH simulation
We want to compare the behavior of rigids influenced by our

drag force to a simulation where the air is simulated with SPH.
For this, we followed an experiment detailed in [45]. A simple
channel is set up with a height and depth of 0.3 m and a length of
1 m. The air is flowing from left to right with an inflow velocity
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of 1 m s−1. A small block is located 0.32 m to the right of the
inflow with a height of 0.04 m and a length of 0.01 m. Three
boxes with a density of 10 kg m−3 are placed on the left side.
The gravity is set to 0 m s−2. Figure 13 shows the scene. We
simulated this setup with our drag force approach as well as
with an IISPH simulation used for the air. We set the frame rate
to 500 frames per second and simulated 650 frames resulting
in a simulated time of 1.3 s. The time step is 0.4 ms. For the
IISPH simulation, we additionally simulated 500 frames before
releasing the three cuboids in order to let the channel fully fill
up with particles. The particle spacing is set to 2 mm. For our
drag force, we used a precomputed air velocity field which we
calculated using IISPH. Although the behavior of the cuboids
differs when using the drag force instead of the full simulation
of the air phase, it looks plausible. In the accompanying video
you can see both movement sequences side by side. The drag
force simulation took only 40 s in comparison to 13.5 min for
the SPH simulation.

Figure 13: Our proposed drag force acts on the colored boxes and moves them
from left to right.

7. Conclusion

We presented a drag force formulation and discretization to
model the effects of air onto a particle-based simulation. We
combined the drag force with SPH-based free-surface liquids
and a rigid body simulation. Our proposed force takes the ex-
posed surface area of each particle into account. For liquid
particles, it additionally approximates their deformation to im-
prove the parameter estimation.

We have shown that our force allows to capture effects acting
from a second phase onto a liquid. We compared a simula-
tion with our drag force to a multiphase simulation and showed
matching results. With our approach the surrounding air does
not need to be sampled with particles and is computationally
cheaper than a multiphase simulation. Since we add our drag
force as an explicit force, it can be combined with different
types of SPH solvers. We combine our force with different SPH
pressure solvers and also with solvers for different materials.
Multiple scenes have been simulated to show the effects of our
drag force on liquids. We also demonstrated that our proposed
drag force results in plausible effects when applied to rigid ob-
jects. It allows to model interesting effects like for example a
sailing ship. Summarized, our proposed drag force is a simple
and computationally cheap method to improve the plausibility
of particle-based simulations.

7.1. Limitations and future work

Depending on the resolution of the fluid, i.e., the size of a
single particle, the terminal velocity of the particle varies. This
can be problematic when the particle spacing is larger than a
fluid droplet would be in reality. Furthermore, the radius used
for the neighborhood search influences which neighboring par-
ticles contribute to the occlusion of a particle. Since we set the
neighborhood search radius depending on the particle spacing,
this also varies with simulation resolution. This problem could
be fixed by decoupling the neighborhood search radius for the
occlusion computation from the SPH neighborhood. However,
this may require more memory and computational effort.

With our approach, we cannot simulate entrapped air inside a
liquid since we do not represent the air with particles. It would
probably be feasible to combine it with approaches that model
these effects. Furthermore, since we do not simulate the dynam-
ics of the air phase, it is hard to produce effects that come from
this fluid behavior of the air. This includes simulating falling
leaves to achieve results similar to the ones shown in [46]. An
interesting future topic could be to try simulating the air phase
with a different method than SPH, e.g., with an Eulerian ap-
proach. The grid cells could probably be chosen coarser than
the SPH resolution which would result in a computationally
cheaper simulation compared to a full SPH multiphase simula-
tion. Both simulations could then be coupled with our proposed
drag force.
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