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Abstract

We propose a novel SPH formulation for deformable solids. Key aspects of our method are implicit elastic forces and an adapted
SPH formulation for the deformation gradient that—in contrast to previous work—allows a rotation extraction directly from the
SPH deformation gradient. The proposed implicit concept is entirely based on linear formulations. As a linear strain tensor is
used, a rotation-aware computation of the deformation gradient is required. In contrast to existing work, the respective rotation
estimation is entirely realized within the SPH concept using a novel formulation with incorporated kernel gradient correction
for first-order consistency.
The proposed implicit formulation and the adapted rotation estimation allow for significantly larger time steps and higher stiff-
ness compared to explicit forms. Performance gain factors of up to one hundred are presented. Incompressibility of deformable
solids is accounted for with an ISPH pressure solver. This further allows for a pressure-based boundary handling and a unified
processing of deformables interacting with SPH fluids and rigids. Self-collisions are implicitly handled by the pressure solver.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation

1. Introduction

The Smoothed Particle Hydrodynamics (SPH) method [Mon92]
has evolved into one of the preferred choices for simulation in com-
puter graphics. Most commonly known for the simulation of flu-
ids [IOS∗14], its Lagrangian nature makes SPH attractive for the
simulation of other materials as well, with formulations proposed
for unified SPH frameworks [SSP07, LD09] and in particular, for
deformables [BIT09].

Whereas in the computational physics community, SPH for
deformables has been an ongoing research topic, e.g., [Mon12,
CPDH12, Gan15, GSMH16], in the computer graphics community
the focus for deformables was led to other concepts like the Fi-
nite Element Method (FEM) [KMBG09, JK09, DGW11, SB12b,
KBT17] and Position Based Dynamics (PBD) [BMO∗14]. How-
ever, the improvements made in SPH fluid simulations in the last
decade render the SPH concept an interesting alternative for the
simulation of deformables in computer graphics.

One of the challenging aspects in deformable modeling is the ro-
tation handling with SPH. If a nonlinear strain measure such as the
Green strain tensor is used, this is less of an issue, e.g. [Gan15]. If,
however, the linear infinitesimal strain tensor is used, rotations have
to be estimated and used in corotational formulations, e.g. [BIT09].

Figure 1: Particle view of NVIDIA’s highly detailed deformable
hairball model floating in a fluid.

As we aim at an implicit formulation, we use a corotational for-
mulation employing the linear strain tensor, which we exploit to
establish a linear relation between positions and elastic forces.

In the context of the rotation extraction, one difference of our
method to [BIT09] is the SPH approximation of the deformation
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gradient. As discussed in [BIT09], the SPH kernel gradient is not
first-order consistent, which manifests in an erroneous representa-
tion of the rotation in the SPH deformation gradient. Therefore,
we incorporate a correction of the kernel gradient for first-order
consistency which allows to directly extract a meaningful rotation
from the SPH deformation gradient. This is in contrast to [BIT09],
where the rotation is extracted from an additional transformation
matrix with the Moving Least Squares method (MLS) and also in
contrast to [SSP07] where rotations are not addressed. Thus, our
proposed solution is entirely based on the SPH concept.

Another difference to previous SPH methods for deformable ob-
jects is an implicit formulation that considers forces at the next
timestep in the velocity update. This generally improves the per-
formance compared to explicit formulations and we present perfor-
mance gain factors of up to one hundred. While the general con-
cept is very popular and well-established, e.g. [BW98, PICT15],
the particular SPH formulation for deformables is novel. Our elas-
tic forces are linear in the positions and we end up with a linear
system. We further combine the proposed solver for elastic forces
with an Incompressible SPH (ISPH) pressure solver [ICS∗14] to
gain the typical benefits such as incompressibility and pressure-
based boundary handling. This enables versatile effects as illus-
trated in Fig. 1 with complex deformable objects that interact with
fluids and rigids. Self-collisions are also implicitly handled by the
pressure solver and phase transitions, e.g. from deformable to fluid
or vice versa, can be easily simulated.

2. Related work

Particle-based formulations have a long history for the simula-
tion of deformable bodies in computer graphics. Among the ear-
liest and simplest models are mass-spring systems [TPF89,MP89],
which have predominately been used for 1D or 2D bodies like
cloths [BW98, BFA02], but also for fully 3D models [THMG04],
and have gotten new attention recently [SSF13,LBOK13]. They are
fast and easy to implement, but are difficult to map to the theoretical
background of elasticity in physics.

For being able to use the physical formulation of elasticity, the
gradient of the deformation map or alternatively, of the displace-
ment field needs to be evaluated. This requires a way to mea-
sure the displacement, as well as a method to compute the gra-
dient. The former is either done by using a stored reference con-
figuration or by incrementally updating the deformation measure.
The latter is done in particle-based simulations mainly using either
SPH [Mon92] or MLS [LS81]. As a physically motivated approach,
SPH is a popular particle-based simulation system. Mostly known
for the simulation of fluids [IOS∗14], with recent improvements
in volume preservation [ICS∗14, BK16, TL16], boundary handling
[AIA∗12, SB12a], multiphase simulation [SP08, RLY∗14] and vis-
cosity handling [PICT15,TDF∗15,BK16,PT17], its Lagrangian na-
ture makes it appealing for the simulation of deformable objects as
well, for which it has been used in computer graphics since the be-
ginning [DG96]. It allows to compute gradients by exploiting the
gradient of the smoothing kernel. However, in the standard formu-
lation, the SPH kernel gradient evaluation is not first-order con-
sistent, which means that it fails to capture rotational motions. As
a loophole, Müller et al. [MKN∗04] introduced MLS to the com-

puter graphics community, which computes gradients by fitting a
polynomial function. Using a linear basis, it is able to correctly
capture rotational motions. However, this comes with the cost of
inverting a matrix, which is tricky for colinear or coplanar parti-
cle arrangements [MKB∗10]. Nevertheless, MLS has been used in
a variety of works ranging from plastic deformation [JWJ∗14] to
fracturing [PKA∗05], using either a reference configuration, or up-
dating the deformation gradient incrementally [GBB09]. Zhou et
al. [ZLKW13] proposed an MLS-based implicit formulation, which
is similar to ours in the sense that rotation is assumed to be constant
during the simulation step in order to get a linear system to solve.
Their approach is, however, purely focused on elasto-plastic solids,
whereas our work is not only focused on elastic solids, but also
emphasizes the interplay with other material types by employing
beneficial SPH formulations.

Because of its simplicity and versatility, many works prefer SPH
for the simulation of deformable objects, as it fits well into a uni-
fied framework for the simulation of a wide range of materials.
Keiser et al. [KAG∗05] proposed a framework for the simulation
of deformable solids and fluids. An Eulerian formulation is em-
ployed, where the displacement field is evaluated in the current
configuration. An initial state, but no initial connectivity is stored.
They compute pressure and viscosity forces using the SPH formal-
ism. However, elastic forces are computed as in [MKN∗04], using
MLS to retrieve the gradient of the displacement field. Wicke et
al. [WHP∗06] proposed a modified MLS-based approach that goes
without initial state. Instead, they assume the particles to be aligned
in a lattice, and compute a transformation for the current state that
best matches the predefined lattice. Solenthaler et al. [SSP07] build
on [KAG∗05], but modify the approach in two ways. First, they
use a Lagrangian formulation where the displacement field is eval-
uated in a stored reference configuration. Second, they use SPH
for all computations. However, as the default SPH kernel gradi-
ent computation is not first-order consistent, they fail to correctly
capture rigid-body rotations of their deformable objects. Becker et
al. [BIT09] noted this and switched back to an MLS-SPH combined
approach, but in contrast to [KAG∗05], they use MLS just for ex-
tracting the rotational part of the deformation gradient, and further
use a corotated [MDM∗02] SPH formulation that incorporates the
obtained rotation information. In contrast to all those works, we
solely rely on SPH for capturing rotations. Furthermore, instead of
using explicit force computations, we propose an implicit formula-
tion that allows for significantly larger timesteps.

Apart from models with physical elasticity, SPH has also been
combined with simpler formulations like mass-spring systems for
the interaction with thin shells [LD08] or for viscoelastic flow
[CBP05]. As a simple model for elasticity, Dagenais et al. [DGP12]
proposed to use shape matching [MHTG05] to blend fluid and solid
motion in order to mimic deformable objects.

Since computing the gradient is a non-trivial task on a randomly-
arranged particle set, but comparatively easy on a regular grid, the
Material Point Method (MPM) uses an underlying grid for the force
computation and has been used for phase changes [SSJ∗14] and
dimension-reduced deformables [JGT17]. In each simulation step,
the required quantities are transferred from the particles to the grid,
where the forces are computed, and the resulting changes are trans-
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ferred back to the Lagrangian particles. As we employ a kernel cor-
rection, we are able to reliably compute all relevant quantities on a
randomly arranged particle set, and we do not need the additional
grid.

Another alternative for gradient computations with a particular
focus on discontinuities is proposed within the peridynamics con-
cept [Sil00]. This concept has also recently been used for the sim-
ulation of elastoplastic materials [HWW17]. Depending on the ap-
plication, there is a close relation between SPH and peridynamics.
If peridynamics is, e.g., applied to classical material models based
on the deformation gradient, Ganzenmüller et al. [GHM15] show
that the resulting forces exactly match a respective SPH discretiza-
tion.

Beside particle-based formulations, a great variety of methods
have been used to simulate deformable objects in computer graph-
ics, with FEM [SB12b] being one of the most common choices. We
refer the reader to [NMK∗06] for a slightly outdated, but still ex-
cellent overview of the different methods. Recently, position-based
dynamics [MHHR07, BMO∗14] and its generalization, the projec-
tive dynamics framework [BML∗14] got attention for the simula-
tion of a great variety of materials, from fluids [MM13, WKB16]
to solids [MC11] and a wide range of deformable materials,
e.g., [BKCW14, CMM16, MMC16, LBK16, NOB16, TDFN16]. Its
constrained-based nature makes it attractive for the unified sim-
ulation of objects with different material characteristics as well
[MMCK14].

3. Method

3.1. Background and notation

Using a continuum-mechanics framework, elastic materials are
characterized by an initial or reference configuration x0 and the
current configuration x. In this work, we will use the superscript
∗0 to denote quantities in the initial configuration. Elastic forces
act to bring an object from its current shape back to its initial
shape. The deformation function φ maps the initial configuration
to the current configuration x = φ(x0). The deformation gradient
F = ∇0

φ = ∂φ

∂x0 = ∂x
∂x0 states how the deformation changes spa-

tially. The displacement u = x−x0 is an alternative measure for it.
Its gradient is given by∇0u = F− I. For Cauchy elastic materials,
the stress tensor from which the elastic forces are computed solely
depends on F.

We generally employ the SPH concept for the spatial discretiza-
tion of all relevant equations. In SPH, a continuum volume is ap-
proximately represented by samples or particles. For the compu-
tation of a quantity Ai at position xi, a weighted average over
neighboring particles at positions x j is employed: Ai = ∑ j V jA jWi j.
The value V j represents the volume of the particle at x j and
Wi j = W (xi − x j) is the smoothing kernel. Similarly, the gradi-
ent can be computed, e.g., with ∇Ai = ∑ j V jA j∇Wi j with ∇Wi j =

∇W
(
xi−x j

)
being the gradient of the smoothing kernel.

3.2. Lagrangian SPH

The distinction between initial and current configuration rises the
question on which neighborhood to use for the SPH interpolation.

For fluids, that typically show no elastic behavior, the well-known
Eulerian SPH is used, where the neighborhood is evaluated using
the current particle positions. Here, the term Eulerian denotes the
characteristic that when looking at a single particle, other particles
enter and leave its influence sphere frequently. For deformables,
however, it has been shown that the Eulerian formulation leads to
the tensile instability problem and that a Lagrangian formulation
removes it [BGLX00, BK01]. In Lagrangian SPH, the initial posi-
tions are used for finding the neighborhood and therefore, the set
of particles interacting with each other is kept fixed. In the follow-
ing, all SPH interpolations regarding the elastic force use the initial
neighborhood. To reflect that in the formulas, we use the notation
∑

0
j to denote a sum over the particles in the initial neighborhood.

3.3. Overview

Algorithm 1 summarizes the general steps of the deformable up-
date procedure. The main novelties compared to previous works lie
in the computation of the deformation gradient as well as in the im-
plicit application of the resulting force, which will be explicated in
Section 3.4. In this section, each step of the update procedure will
be introduced in detail.

Algorithm 1 Deformable update
Extract rotation

compute deformation gradient F
extract rotational component R from F

Compute elastic force using the extracted rotation
compute corotated deformation gradient

???

F using R
compute strain tensor ε from

???

F
compute stress tensor P from ε

compute elastic force f from P

Deformation gradient

The proper computation of the deformation gradient F = ∂x
∂x0 is

the basis for implementing a deformable model. However, a triv-
ial implementation in SPH as Fi = ∑

0
j V 0

j x ji ⊗∇W
(

x0
i j

)
, with

x ji = x j−xi the distance vector, fails to capture rotational motion.
As pointed out by Bonet and Lok [BL99], this is due to the fact the
common SPH kernel gradient interpolation is not first-order con-
sistent. Therefore, rotations are misinterpreted as deformations. As
a consequence, the employed elastic forces are not rotationally in-
variant. Instead, forces are induced that rotate the object back to its
initial orientation.

The deformation gradient acts as a transformation matrix that
transforms an infinitesimal line element dx0 from an initial posi-
tion to the current position, as ∂x

∂x0 dx0 = dx. This opens up other
possibilities for computing the deformation gradient. Becker et al.
[BIT09] employed shape matching – an MLS approach – to com-
pute the deformation gradient for extracting rotation. In our work,
we adopt the corotational concept of [BIT09], but propose an alter-
native SPH approximation for the deformation gradient that allows
to extract the rotation directly from the SPH deformation gradient.
MLS is avoided and the entire procedure relies on SPH only.
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Rotation-aware kernel gradient

In order to correctly capture rotational motion with the SPH kernel
gradient, it has to be ensured that its computation is first-order con-
sistent. As shown by Bonet and Lok [BL99], for the kernel gradient
to be first-order consistent, the condition ∑

0
j V 0

j x0
ji⊗∇W

(
x0

i j

)
= I

has to be satisfied. For this sake, they propose a correction matrix

Li =

(
0

∑
j

V 0
j ∇W

(
x0

i j

)
⊗x0

ji

)−1

(1)

and compute the corrected kernel gradient as

˜∇Wi

(
x0

i j

)
= Li∇W

(
x0

i j

)
. (2)

This ensures first-order consistency, as ∑
0
j V 0

j x0
ji⊗ ˜∇Wi

(
x0

i j

)
= I

is satisfied by construction. In Lagrangian SPH, the correction ma-
trix is computed in the initial configuration and therefore, it has
to be computed only once at the beginning of the simulation. For
coplanar or collinear particle configurations, the matrix to invert in
Eq. (1) is singular. In such cases, we compute its Moore–Penrose
pseudoinverse, instead.

Rotation extraction

As the corrected kernel gradient is able to capture rotations, it is
straightforwardly possible to use a nonlinear strain measure such as
the Green strain tensor, given as E = 1

2
(
FT F− I

)
. However, with

the Green strain tensor, the elastic force is nonlinear in the posi-
tion. For an implicit formulation, this is unfavorable, as it requires
to solve a nonlinear system. In such a situation, one would prefer
to use the infinitesimal strain tensor, given as ε = 1

2
(
F+FT )− I,

as with it, the force linearly depends on position, and the implicit
formulation results in a more efficient linear system. Therefore, in-
spired by the corotational formulation of Becker et al. [BIT09], we
extract rotation – which is responsible for nonlinearity – before-
hand. Doing so, we are able to use a strain measure linear in posi-
tion. In contrast to Becker et al., using the corrected kernel gradi-
ent, rotation can be extracted directly from the deformation gradient
computed as

Fi =
0

∑
j

V 0
j x ji⊗ ˜∇Wi

(
x0

i j

)
. (3)

To extract the per-particle rotation Ri from Fi, we use the method
of Müller et al. [MBCM16] which is fast and stable.

Corotated deformation gradient

Similar to Becker et al. [BIT09], we use the extracted rotation
for computing a corotated deformation gradient that only contains
shear and expansion parts. Because of objectivity of Cauchy elas-
tic materials, the computed stress tensor, and therefore the elastic
force, is invariant to rotation. This allows us to compute all quan-
tities in an arbitrary rotational frame, as long as we make sure the
resulting forces are rotated back to the actual frame. Using the per-
particle rotation extracted above, Becker et al. propose to compute
the corotated deformation gradient by means of the displacement
field as F = I +∇0u = I +∇0(x− x0) and by further rotating
the current positions back to the initial positions which translates

to SPH as Fi = I+∑
0
j V 0

j

(
R−1

i x ji−x0
ji

)
⊗∇W

(
x0

i j

)
. We mod-

ify this computation in the following way. Instead of rotating the
current configuration back to the initial configuration, we rotate the
initial configuration to the current configuration. Doing so, we have
to rotate all initial quantities, which means that the corrected ker-
nel has to be evaluated in the current frame as well. For that, we
introduce the rotated kernel gradient as

???

∇Wi

(
x0

i j

)
= RiLi∇W

(
x0

i j

)
(4)

which rotates the corrected kernel gradient to the frame of the cur-
rent configuration. With these modifications, the deformation gra-
dient is finally computed as

???

Fi = I+
0

∑
j

V 0
j

(
x ji−Rix0

ji

)
⊗

???

∇Wi

(
x0

i j

)
. (5)

Note that in this computation of the deformation gradient, only dis-
placements in the initial configuration are prefactored by the ro-
tation matrix. This will turn advantageous when introducing the
implicit formulation, as those costly matrix-vector multiplications
have to be performed only once during the set-up of the system to
solve, reducing the cost of each solver iteration.

Linear elasticity

As a constitutive model, we use the linear elasticity material model.
Its linearity in position results in a linear system for our implicit for-
mulation, which greatly reduces the computational effort for solv-
ing the system.

Strain The strain tensor used in the linear elasticity model is the
infinitesimal strain tensor

εi =
1
2
( ???

Fi +
???

FT
i
)
− I (6)

In contrast to the Green strain tensor E = 1
2
(
FT F− I

)
, position

does not appear quadratically, but only linear.

Stress In the linear elasticity model, stress depends linearly on
strain. The first Piola-Kirchhoff stress tensor P is given as

Pi = 2µεi +λtr(εi)I (7)

with the Lamé parameters λ and µ. Alternatively, the stress tensor
can be decomposed into a volumetric and a deviatoric part,

Pi =2G
(
εi−

1
3

tr(εi)I
)
+Ktr(εi)I

=2Gεi +
(

K− 2
3

G
)

tr(εi)I (8)

with shear modulus G = µ and bulk modulus K = λ+ 2µ
3 . We pa-

rameterize the simulations in our experiments with those moduli.

Elastic force

We compute the elastic force from the divergence of the stress
tensor, which in the simplest case can be computed as fi =

∑
0
j V 0

i V 0
j
(
Pi +P j

)
∇W

(
x0

i j

)
. Note that in contrast to [BIT09], we

do not rotate the force, as we compute the deformation gradient in
the current frame already. However, as the rotated and corrected
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kernel depends on the particle of evaluation, to get a symmetric
force, each stress tensor has to be multiplied by the corresponding
kernel gradient separately [Gan15], resulting in

fi =
0

∑
j

V 0
i V 0

j

(
Pi

???

∇Wi

(
x0

i j

)
−P j

???

∇W j

(
x0

ji

))
. (9)

3.4. Implicit formulation

The previous section has explained all equations that are used in
our computation of the elastic force. Depending on the choice of
arguments, it translates to either an explicit or an implicit formu-
lation. When approximately assuming the extracted rotation to re-
main constant during the simulation step, the elastic force in Equa-
tion (9) can be regarded as a function f

(
d,d0) that linearly depends

on two position vectors d and d0. The function is given as

fi
(
d,d0)= 0

∑
j

V 0
i V 0

j

(
Pi
(
d,d0) ???

∇Wi

(
x0

i j

)
−

P j
(
d,d0) ???

∇W j

(
x0

ji

))
(10)

with stress, strain and the deformation gradient expressed similarly
as

Pi
(
d,d0)= 2Gεi

(
d,d0)+(K− 2

3
G
)

tr
(

εi
(
d,d0))I (11)

εi
(
d,d0)= 1

2
( ???

Fi
(
d,d0)+ ???

Fi
(
d,d0)T )− I (12)

???

Fi
(
d,d0)= I+

0

∑
j

V 0
j

(
d ji−Rid0

ji

)
⊗

???

∇Wi

(
x0

i j

)
. (13)

For the explicit formulation, the two parameters are given by the
position at the current timestep and the initial position, i.e., d = xt

and d0 = x0, respectively. The explicit velocity update can then be
written as

vt+∆t
exp = vt +∆t

f(xt ,x0)

m
(14)

with m denoting the particle mass. For an implicit formulation, the
position at the next timestep is used instead, such that d = xt+∆t ,
and the velocity update changes to

vt+∆t
imp = vt +∆t

f(xt+∆t ,x0)

m
. (15)

Using a backward difference for the position at the next timestep,
xt+∆t = xt +∆tvt+∆t , the implicit velocity update is given as

vt+∆t = vt +∆t
f(xt +∆tvt+∆t ,x0)

m
(16)

where the velocity subscript has been omitted for readability. As
we assume the rotation to remain constant during the update, the
elastic force linearly depends on the position, and the computation
of f can be split into f(xt +∆tvt+∆t ,x0) = f(xt ,x0)+ f(∆tvt+∆t ,0)
to get

vt+∆t −∆t
f(∆tvt+∆t ,0)

m
= vt +∆t

f(xt ,x0)

m
(17)

where 0 denotes the zero vector. This forms a linear system of the
form Avt+∆t = b for the unknown velocities at the next timestep.

Discussion In our implicit formulation, we use the simplifying as-
sumption that the rotations remain constant during each simulation
step. This allows to extract the rotations beforehand and therefore,
to derive corotated forces that are linear in positions. This largely
reduces the computational effort for solving the resulting system.
A similar assumption is taken in [ZLKW13]. With fixed rotations,
the simulation outcome will slightly differ compared to a nonlin-
earized formulation, as potential rotation changes are not consid-
ered. In practice, however these changes are rather small and the
simulations look plausible.

The system in Eq. (17) shares some similarities with the system
for implicit viscous forces in [TDF∗15], as both viscous and elastic
forces are computed from the divergence of a stress tensor. In fact,
the system in [TDF∗15] can be regarded a special case of our sys-
tem with no rotation handling and kernel correction employed. In
contrast to [TDF∗15], we do not pursue to extract the coefficients
of the system matrix, but we propose a more efficient matrix-free
implementation, instead.

4. Implementation

4.1. Initial configuration

In the course of the deformables update, no initial positions, but ini-
tial distance vectors are processed. Therefore, following [SSP07]
and [BIT09], we do not store the absolute initial position xi of a
particle, but the distance vectors to its neighbors x ji, instead. When-
ever new particles are inserted, a neighborhood search is performed
and the initial distance vectors for all particle-neighbor pairs are
stored. Furthermore, the kernel correction matrix is precomputed
using Eq. (1) and stored for each particle.

4.2. Solving the system

For our deformable formulation, the linear system in Eq. (17) needs
to be solved. We propose a matrix-free implementation to effi-
ciently achieve this using the conjugate gradient method. This is
accomplished in three steps. First, we precompute and store the ro-
tated kernel gradient for each particle-neighbor pair by evaluating
Eq. (4). Then, we compute the right-hand side of Eq. (17). Finally,
we solve the system iteratively.

Both the computation of the left-hand side and the right-hand
side require the evaluation of the elastic force function in Eq. (10).
It can be evaluated efficiently by iterating twice over all particles
and their neighbors, as outlined in Algorithm 2. In the first iteration,
we loop once over all neighbors to compute

???

F using Eq. (13), and
we hereupon compute ε and P using Eq. (12) and Eq. (11), respec-
tively. Finally, we store P. As it is symmetric, only six independent
components need to be stored. Then, in the second iteration, we
loop once again over all neighbors to compute the divergence of P
using Eq. (10).

Right-hand side The right-hand side of Eq. (17) just computes the
velocity update due to an explicit elastic force as in Eq. (14), which
can be computed by iterating twice over all particles and neighbors
as described above. Moreover, when using the corrected kernel gra-
dient, the computation of the corotated deformation gradient as in
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Algorithm 2 Computation of f(d,d0)

for all particle i do
???

Ftemp = I+∑
0
j V 0

j

(
d ji−Rid0

ji

)
⊗

???

∇Wi

(
x0

i j

)
εtemp =

1
2
( ???

Ftemp +(
???

Ftemp)
T )− I

Pi = 2Gεtemp +
(

K− 2
3 G
)

tr(εtemp)I

for all particle i do

fi = ∑
0
j V 0

i V 0
j

(
Pi

???

∇Wi

(
x0

i j

)
−P j

???

∇W j

(
x0

ji

))

Eq. (13) simplifies to

???

Fi(x,x0) =
0

∑
j

V 0
j x ji⊗

???

∇Wi

(
x0

i j

)
, (18)

as ∑
0
j V 0

j Rix0
ji ⊗

???

∇Wi

(
x0

i j

)
= I. Strain, stress and force are then

computed as usual using the respective Eqs. (10) to (12).

Solver iteration In each iteration, the matrix-vector product Ap,
with p the basis vector in case of the conjugate gradient method,
has to be computed. We do not build the matrix A explicitly, but
rather compute the product, which is given by the left-hand side of
Eq. (17) for each particle as

(Ap)i = pi−
∆t
m

fi(∆tp,0). (19)

The complexity lies in computing the elastic force f. However, as
shown above, this can be efficiently done by iterating twice over
all particles and neighbors. The first iteration in the procedure de-
scribed above, which consists in the computation of the deforma-
tion gradient and the strain and stress tensors, can further be slightly
optimized. We note that when computing the corotated deformation
gradient using Eq. (13) as

???

Fi (∆tp,0) = I+∆t
0

∑
j

V 0
j p ji⊗

???

∇Wi

(
x0

i j

)
, (20)

and strain using Eq. (12) as

εi (∆tp,0) = 1
2

(
???

Fi (∆tp,0)+
(

???

Fi (∆tp,0)
)T
)
− I (21)

the addition of I in the deformation gradient is canceled by its sub-
traction in the strain tensor. Therefore, following most computer
graphics papers, in lieu of the deformation gradient, we compute
the gradient of the displacement field as∇0u = F− I, resulting in

???

∇0ui (∆tp,0) = ∆t
0

∑
j

V 0
j p ji⊗

???

∇Wi

(
x0

i j

)
. (22)

Strain is then computed as

εi (∆tp,0) = 1
2

(
???

∇0ui (∆tp,0)+
(

???

∇0ui (∆tp,0)
)T
)
, (23)

and we can continue with the calculation of stress as usual.

4.3. Conjugate gradient method

In our implementation, we use the conjugate gradient method for
solving the linear system, which requires a symmetric system ma-
trix in order to converge. From Eqs. (10), (13) and (17) it follows
that this requires the same initial volume and the same mass for all
particles. Therefore, in addition to assigning all particles the same
mass m0 = h3

ρ0 with h denoting the particle spacing and ρ0 the
rest density, we initially distribute the particles homogeneously to
the given volume. Then, all particles have the same mass m0 and
roughly the same volume V 0

0 = m0
ρ0

. With these assumptions, the
system matrix is symmetric. As stopping criterion, we use the av-
erage absolute per-particle error of the system. In our experiments,
this error is set to 1×10−3. Furthermore, to improve convergence,
we perform a "warm start" by initializing the solver with the tem-
porary intermediate velocity vt +∆tca∗, as introduced in the next
section.

4.4. Embedding in the fluid solver

Our elastic solver is integrated into an IISPH framework as outlined
in Alg. 3. The IISPH pressure solver accounts for collision han-
dling and incompressibility. As correct collision handling is crucial
for the simulation, the pressure solver is executed as the last step
of the fluid update. However, the accelerations induced by elastic
forces may introduce high velocities that violate the CFL condition
and thus undermine collision handling. Therefore, our proposed up-
date procedure is as follows. First, we estimate a candidate timestep
∆tc from the current velocities. We compute intermediate accelera-
tions a∗ induced by gravity, viscosity and friction. We use the can-
didate timestep to integrate to a temporary intermediate velocity
vt +∆tca∗, for which the elastic system in Eq. (17) is solved. The
system to solve is

velast −∆tc
f(∆tcvelast ,0)

m
= vt +∆tc

(
a∗+ f(xt ,x0)

m

)
(24)

where compared to Eq. (17) the current velocity has been replaced
by the intermediate velocity, such that the right-hand side incorpo-
rates the velocity change induced by explicit forces. With the solu-
tion velocities velast , the timestep is reestimated in order to ensure
that the CFL condition is still satisfied. Pressure projection as well
as velocity and position integration is then done using the reesti-
mated timestep.

Algorithm 3 Deformable SPH fluid solver

estimate candidate timestep ∆tc from vt

compute gravity, viscosity and friction to get acceleration a∗

extract rotations using xt

solve velast −∆tc
f(∆tcvelast ,0)

m = vt +∆tc

(
a∗+ f(xt ,x0)

m

)
update acceleration: a∗∗← velast−vt

∆tc
estimate timestep ∆t from velast
compute press. and press. force using vt , a∗∗ and ∆t to get a∗∗∗

update velocity: vt+∆t ← vt +∆ta∗∗∗

update position: xt+∆t ← xt +∆tvt+∆t
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Figure 2: Momentum of a cube during and after 3 s within a rota-
tional force field. Our rotation handling is of similar accuracy com-
pared to the nonlinear Saint Venant-Kirchhoff model. Employing
XSPH viscosity damps rotation. Not employing the kernel correc-
tion suppresses rotation.

5. Results

This section illustrates the properties of our proposed SPH-based
deformables solver. Our solver is integrated into an IISPH frame-
work [ICS∗14]. As kernel, the quintic formulation of Wendland
(Wendland C2) is used [Wen95] with a support radius of twice the
particle spacing. From a theoretical perspective, this kernel avoids
the pairing instability [DA12]. In practice, however, we did not
experience differences to the commonly used Cubic spline kernel
which works as well in our setting. Boundary handling and two-
way coupling is done using particles [AIA∗12]. For multiphase
simulations, the number density approach is employed [SP08] with
an additional surface tension force based on [AAT13] for the wa-
ter phase. We further use a drag force for all phases [GBP∗17]
and employ XSPH viscosity [Mon89,SB12a] in the material space.
A viscosity force as in [MFZ97] is used to model friction at
the rigid interface. Particles for deformable objects are generated
with Poisson-disk sampling using a dart-throwing approach based
on [CJW∗09]. Our implementation is fully parallelized [IABT11],
and the experiments were run on a 16-core Intel Xeon CPU with
3.10 GHz. The scenes were rendered using Houdini’s physically
based Mantra renderer [Sid16] at 50 frames per second.

5.1. Rotation handling

We compare the rotation handling of our implicit formulation to a
Saint Venant–Kirchhoff model which uses the nonlinear, rotation
invariant Green strain tensor. We further compare to our formula-
tion without kernel correction and to our formulation with an addi-
tional small XSPH viscosity force. In the experiment, a deformable
cube is accelerated for 3 s in a rotational force field. The plot in
Fig. 2 shows the resulting total momentum. Our method shows the
same perfect rotation conservation as the Saint Venant–Kirchhoff
model. However, when further employing an XSPH viscosity force,
as it is typically done in practice, rotation is damped. Without ker-
nel correction, the cube is pulled back to its original orientation and
rotation is suppressed.

Figure 3: Two cuboids falling onto a plane. For the cuboid on the
right, kernel correction is disabled, which prevents it from rotating.

Figure 4: Comparison to Saint Venant-Kirchhoff. The nearest
cuboid is simulated with the Saint Venant-Kirchhoff model. The
cuboid in the middle is simulated with our method using the same
timestep. The farthest cuboid is simulated with our method using a
timestep that is five times larger.

This is further illustrated with the scene in Fig. 3, where two ini-
tially slightly rotated cuboids fall onto a plane. Whereas the cuboid
with kernel correction is able to rotate freely and to adjust its ori-
entation to match the plane orientation, the cuboid without kernel
correction is pulled back to its initial orientation and is hindered
from adjusting to the plane orientation.

5.2. Comparison to Saint Venant-Kirchhoff

In the scene shown in Fig. 4, we compare our method to the non-
linear Saint Venant–Kirchhoff model in a more complex scenario.
When both simulations run with the same timestep, our method
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(a) Our implicit formulation

(b) Becker et al.

Figure 5: Comparison of our implicit formulation to the method of
Becker et al. [BIT09]. The overall simulation behavior is compara-
ble. The method of Becker et al. is unstable for high shear and bulk
moduli. In this scenario, the performance gain factor of our method
compared to Becker et al. is more than one hundred.

shows comparable behavior. We also note that our method shows
smaller local oscillations compared to Saint Venant-Kirchhoff.
When the timestep of our method is increased, the behavior slightly
diverges. This is not only due to our linear approximation in time,
but also due to the pressure solver and the viscous force, whose
behavior is timestep dependent.

5.3. Comparison to Becker et al. [BIT09]

The experiment shown in Fig. 5 consists of a bunny whose shear
and bulk modulus are first decreased gradually and then increased
again. We did the same experiment replacing our implicit formlua-
tion by the method of Becker et al. [BIT09]. The overall behavior of
the bunny is comparable for both methods. Nevertheless, although
a timestep smaller by a factor of two hundred was chosen, the sim-
ulation using the method of Becker et al. is unstable for high shear
and bulk moduli. These instabilities could only be removed by in-
creasing viscosity or by reducing the timestep further. Therefore,
with the method of Becker et al. we were not able to get a stable
simulation while preserving small-scale details. Furthermore, with
the given parameters, the method of Becker et al. was 108 times
slower compared to our implicit formulation.

(a) Fixed shear modulus and varying bulk modulus

(b) Varying shear modulus and fixed bulk modulus

(c) Matching shear and bulk modulus

Figure 6: Illustration of the influence of bulk and shear modulus.

5.4. Parameter evaluation

The scenario in Fig. 6 illustrates the influence of shear and bulk
modulus. It consists of three parts, and in each part three armadillos
with different parameters fall onto a plane. In the first experiment,
the shear modulus is equal for all armadillos, while the bulk mod-
ulus varies. In the second experiment, the bulk modulus is equal
and the shear modulus varies. In the third experiment, shear and
bulk modulus are set to the same magnitude for each armadillo, but
vary amongst the armadillos. Table 1 summarizes the set-up and
the results. The images and timings indicate that matching the bulk
modulus to the shear modulus gives convincing results at a fair cost.
Therefore, in the following experiments, we will typically set both
moduli to match.

5.5. Phase transition

Figure 7 shows a scenario where a bunny dissolves into liquid with
shear and bulk modulus set to zero. After that, it is reassembled
as shear and bulk modulus are increased. Our implicit formulation
is able to cope with large particle displacements that result from
the dissolution. This is further illustrated with the scenario in Fig-
ure 8, where four armardillos in a box dissolve into fluid and are
hereupon reassembled sequentially. Whereas the iteration count in
Table 1 reveals that for most other scenarios the pressure solver is
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Figure 7: A bunny dissolves into a liquid and is reassembled there-
after.

Figure 8: Four armadillos in a box dissolve into liquid and are then
reassembled sequentially.

not challenged, it needs an increased number of iterations in the
present scenario, as it is responsible for separating the armadillos.
This is further aggravated by the fact that the armadillos cannot
fully unfold to their rest shape due to the limited space available in
the closed box.

5.6. Self-collision

With the scenario in Figure 9, the capability of detecting and re-
solving self-collisions is illustrated with a cloth-like object falling
onto a solid sphere. The object consists of one layer of particles
only. To get a stable simulation, an additional zero-energy mode
suppression force [Gan15] is applied. As for cloth-like materials,

Figure 9: A piece of cloth slides over a sphere and falls to the
ground. This employs various self-collision, which are handled by
the pressure solver.

Figure 10: A deformable bunny is shot by a rigid capsule. The in-
teraction is accomplished by the pressure solver.

bending is desired whereas stretching is not, the bulk modulus is
set to a higher value than the shear modulus in this scene as stated
in Table 1.

5.7. Two-way coupling

The scenario in Figure 10 illustrates two-way coupling of our de-
formables formulation with solid objects of different densities. A
deformable bunny with a density of 1000 kg/m3 is hit by a fast-
moving capsule-shaped object. The scenario is simulated three
times with the density of the capsule set to 200 kg/m3, 2000 kg/m3

and 20 000 kg/m3, respectively. As shown in Table 1, the perfor-
mance is comparable for all three simulations. Interestingly, in
contrast to multiphase simulations, the pressure solver is not chal-
lenged in this scenario. This is probably due to the short time span
the capsule and the bunny are in direct contact. To prevent the
capsule from penetrating the bunny, the bulk modulus is increased
compared to the shear modulus in this scenario.

5.8. Multiphase

Figure 11 shows a scenario where deformable objects with dif-
ferent shear and bulk moduli interact. Furthermore, they interact
with a water-like phase, where both shear and bulk modulus are
set to zero. The water phase has a density of 1000 kg/m3. The
white-colored phase has the moduli set to G = K = 3×104 Pa
and a density of 333 kg/m3, whereas for the yellow-colored phase,
G = K = 1×106 Pa, and the density is 666 kg/m3. Apart from
showing the interaction between the phases, the scenario also il-
lustrates the rotation handling of our approach. In contrast to the
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Figure 11: Multiple deformable armadillos, bunnies and spheres
slide, roll and fall into a pool of water. The interaction between
the different objects, as well as the interaction with the water, is
accomplished by the pressure solver.

Figure 12: A deformable hairball is flooded with water. The hairball
is sampled from a complex geometry that includes channels and
cavities. The scenarios consists of up to 5.6M particles.

previous scenarios with one phase, the pressure solver is more chal-
lenged, as it has to separate the phases.

5.9. Large scale

The scenario in Fig. 12 consists of a deformable hairball [McG11]
with a density of 300 kg/m3 that is sampled with 1M particles. It in-
teracts with up to 4.6M fluid particles with a density of 1000 kg/m3.
As revealed by Table 1, simulating one frame of this scenario took
less than two minutes. Furthermore, the scenario shows the ability
to efficiently represent deformable objects with complex geometry.

6. Conclusion

We have presented a novel SPH formulation for elastic solids. In
contrast to previous work, kernel-gradient correction is employed
to enable the rotation extraction from an SPH deformation gradi-
ent. Comparisons with the nonlinear Saint Venant-Kirchhoff model
indicate the accuracy of the proposed rotation handling. We have
further introduced an implicit formulation for the velocity update

that significantly improves the performance compared to [BIT09],
a previous SPH formulation for elastic solids. The embedding of
our approach into an ISPH fluid solver [ICS∗14] elegantly accounts
for boundary handling, self-collisions, phase transitions and multi-
phase fluids.

Although we have achieved an efficiency gain factor of up to one
hundred compared to [BIT09], there are still limiting factors for the
timestep that could be addressed. In particular, our implementation
employs rather large explicit friction forces at the rigid interface
that limit the overall performance. Another limiting factor is the
maximum density ratio between different phases. Here, we only
work with small ratios of one order of magnitude not to negatively
affect the performance.
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a v e r a g e

iterations

scene figure particles spacing [m] G [Pa] K [Pa] ∆∆∆ttt [ms] def. press. time
/

frame [s]

comparison StVK
our method
our method

Fig. 4 1k 0.05
[
1×104] 1.0 - 1 0.033

1.0 1 1 0.041
5.0 3 3.6 0.014

comparison Becker et al.
our method

Fig. 5 15k 0.04
[
5×102−5×105] 0.01 – 1 40.1

2.0 18 1.4 0.37

parameter evaluation Fig. 6 129k 0.05

2×105
2×103

1.0
3

1 8.32×105 7
2×107 80

2×103

2×105 1.0
5

1 6.42×105 7
2×107 59

2×103 2×103

1.0
1

1 8.42×105 2×105 7
2×107 2×107 89

phase trans. bunny
armadillos

Fig. 7 15k 0.04
[
0−5×104] 2.0 6 1.2 0.22

Fig. 8 123k 0.03
[
0−2×105] 1.4 10 17 4.3

self-collision Fig. 9 58k 0.0125 5×102 5×103 1.0 3 1 0.87

coupling 2×102 kg/m3

2×103 kg/m3

2×104 kg/m3
Fig. 10 11k 0.05 2×105 2×106 1.0

13.6 1.0 0.57
13.5 1.0 0.58
14.1 1.1 0.61

multiphase Fig. 11 135k + 278k 0.05
[
3×104−1×106] 2.0 34 6 3.9

large scale Fig. 12 1M + 4.6M 0.025
[
2×104] 1.0 43 8 112

Table 1: Scene parameters and performance data of the simulated scenarios. Two readings in the "particles" column indicate the number
of deformable and water particles, respectively. Square brackets in the "G" and "K" column indicate matching shear and bulk moduli. The
timings given in the last column represent the total time for computing one frame, i.e. the time needed to advance the simulation by 20 ms.
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