
MLS Pressure Boundaries for Divergence-Free and Viscous SPH Fluids

Stefan Banda,∗, Christoph Gisslera,b, Andreas Peera, Matthias Teschnera

aUniversity of Freiburg, Germany
bFIFTY2 Technology GmbH

Abstract

In this paper we present a novel method to predict pressure values at boundary particles in incompressible divergence-free
SPH simulations (DFSPH). Our approach employs Moving Least Squares (MLS) to predict the pressure at boundary particles.
Therefore, MLS computes hyperplanes that approximate the pressure field at the interface between fluid and boundary particles.
We compare this approach with three previous techniques. One previous technique mirrors the pressure from fluid to boundary
particles. Another one extrapolates the pressure from fluid to boundary particles, but uses a gradient that is computed with Smoothed
Particle Hydrodynamics (SPH). The third one solves a pressure Poisson equation (PPE) for boundary particles. In our experiments,
we indicate artifacts in the three previous approaches. We show that these artifacts are significantly reduced with our approach
resulting in simulation steps that can be twice as large. We motivate that gradient-based extrapolation is more accurate than mirroring.
We further motivate that, due to particle deficiency at the boundary, the SPH gradient is error prone. This is less the case for our
proposed MLS gradient. Moreover, our approach is computationally less expensive as solving a PPE for the boundary particles. We
present challenging and complex scenarios to illustrate the capabilities of our method. In addition, we demonstrate that the proposed
boundary handling is applicable to highly viscous fluids.

Keywords: physically-based animation, fluid simulation, Smoothed Particle Hydrodynamics, Moving Least Squares, boundary
handling

This is the authors version of a work that was accepted for
publication in Computers & Graphics. Changes resulting from
the publishing process, such as peer review, editing, corrections,
structural formatting, and other quality control mechanisms may
not be reflected in this document. Changes may have been
made to this work since it was submitted for publication. A
definitive version was subsequently published in Computers &
Graphics (Volume 76, November 2018, Pages 37-46) https:
//doi.org/10.1016/j.cag.2018.08.001

1. Introduction

Iterative pressure solvers such as PCISPH [1], IISPH [2] or
DFSPH [3] compute a pressure field p and apply pressure ac-
celerations of the form ap

i = − 1
ρi
∇pi = −

∑
j m j

(pi

ρ2
i

+
p j

ρ2
j

)
∇W i j

to particles i. The sum considers all neighboring particles j of
particle i. The variables m, ρ,∇W denote mass, density and the
gradient of the SPH kernel function W, respectively. There exist
minor variations, but the solvers follow the same concept (see
Section 4).

∗Corresponding author.
Email addresses: bands@informatik.uni-freiburg.de (Stefan

Band), gisslerc@informatik.uni-freiburg.de (Christoph Gissler),
peera@informatik.uni-freiburg.de (Andreas Peer),
teschner@informatik.uni-freiburg.de (Matthias Teschner)

Iterative solvers typically compute pressure p f only at fluid
particles f . Pressure pb at boundary particles b is not computed,
but approximated if needed. This is, e.g., the case in the compu-
tation of the pressure acceleration ap

f at fluid particles f close
to the boundary. Here, the respective SPH sum iterates over
fluid neighbors with known pressure, but also over boundary
neighbors with unknown pressure. I.e.,

ap
f = −

∑
f f

m f f

 p f

ρ2
f

+
p f f

ρ2
f f

∇W f f f −
∑

fb

m fb

 p f

ρ2
f

+
p fb

ρ2
fb

∇W f fb

(1)
with f f and fb denoting fluid and boundary neighbors of fluid par-
ticle f , respectively. Equation (1) requires a notion of mass mb,
density ρb, and pressure pb at boundary particles b. The den-
sity ρb is typically set to the rest density of the adjacent fluid and
the mass mb can be geometrically motivated from the boundary
particle volume, see e.g. [4].

In terms of the pressure pb, there exist different options. E.g.,
Akinci et al. [4] propose to mirror known pressure from fluid
particles to adjacent rigid particles. Alternatively, Adami et al.
[5] propose to extrapolate pressure from the fluid to boundary
particles using an SPH approximation of the pressure gradient.
Furthermore, Band et al. [6] propose to solve a pressure Poisson
equation (PPE) for boundary particles.

Preprint submitted to Computers & Graphics September 12, 2018

https://doi.org/10.1016/j.cag.2018.08.001
https://doi.org/10.1016/j.cag.2018.08.001

g

p
∇p

(a) Mirrored pressure at boundary particles.

g

p
∇p

(b) Extrapolated pressure at boundary particles.

Figure 1: Mirroring pressure from fluid to boundary particles results in erro-
neous pressure gradients at fluid particles near the boundary. Extrapolating the
pressure instead improves the gradient computation.

Our contribution. This paper is an extended version of [7]. We
propose a novel variant to predict unknown pressure pb at bound-
ary particles b. In contrast to Akinci et al. [4], we compute one
unique pressure value per boundary particle. We further extrapo-
late the pressure using the pressure gradient instead of copying
pressure from the fluid to the boundary. This improves the qual-
ity of the pressure gradient of fluid particles near the boundary as
illustrated in Fig. 1. In contrast to Adami et al. [5], where pres-
sure is extrapolated using SPH, we propose to use MLS [8, 9].
MLS is more accurate than SPH in case of particle deficiency
which can particularly be the case near the boundary. We illus-
trate artifacts when using the boundary handling of Akinci et al.
[4], Adami et al. [5] and Band et al. [6]. We further show that
these artifacts can be reduced with the proposed MLS extrapo-
lation of pressure values. We have implemented our boundary
handling in a DFSPH framework. In contrast to our workshop
paper [7], we propose to resolve the divergence error with pre-
conditioned Conjugate Gradient (PCG) instead of relaxed Jacobi.
To our best knowlege, PCG has never been used in an ISPH
solver. All closely related solvers such as Local Poisson SPH
(LPSPH) [10], IISPH [2], Position Based Fluids (PBF) [11] or
DFSPH [3] employ Jacobi-style iterations. Capabilities of the
approach are illustrated for scenarios with challenging boundary
setups. We particularly show performance gain factors of up to
two compared to [4]. Moreover, we show that our boundary han-
dling approach is not only applicable to divergence-free fluids
but can also be used in simulations with highly viscous fluids.

Organization. The remainder of this paper is organized as fol-
lows. The following Section 2 describes existing approaches
related to SPH fluid simulation and the handling of solid bound-

aries. In Sections 3 and 5, we discuss the proposed pressure
extrapolation concept whereas implementation details are de-
scribed in Section 4. In Section 6, we show simulations em-
ploying our method and compare it to the boundary handling
schemes of Akinci et al. [4], Adami et al. [5] and Band et al. [6].
Finally, we conclude in Section 7.

2. Related Work

SPH is a popular choice for Lagrangian simulations in com-
puter graphics [12]. First used by Stam and Fiume [13] to simu-
late gaseous phenomena and by Desbrun and Gascuel [14] for
deformable objects, Müller et al. [15] employed SPH to simulate
compressible fluids. From that time on, research has focused on
practical formulations of incompressible fluids with recent im-
provements in volume preservation [2, 3, 16], multiphase simula-
tion [17, 18, 19, 20], highly viscous fluids [3, 21, 22, 23, 24, 25]
and deformable objects [26, 27, 28]. Incompressibility can be
enforced in various ways. Unlike non-iterative state equation
solvers, e.g. [29, 15, 30, 31], iterative SPH pressure solvers,
such as PCISPH [1], IISPH [2] and DFSPH [3], compute a
pressure field p by solving a PPE of the form ∇2 p = s, c.f. [32].
Thereby, s is a source term that either encodes a predicted density
deviation [33, 1, 2], the divergence of a velocity field [34, 35] or
a combination of both [36, 3]. Computing the pressure field from
a global formulation seems to improve the stability of the simu-
lation. Rather large time steps can typically be used compared
to the aforementioned non-iterative state equation solvers.

This paper focuses on the optimization of the boundary han-
dling. Therefore, we briefly discuss related works regarding the
modeling of solid boundaries in the next section.

Boundary Handling in SPH. As particle-based representations
are very flexible and can handle arbitrarily shaped geometries,
representing solid boundaries with particles is a popular choice
for SPH fluid simulations, e.g. [37, 38, 2, 3, 16]. One popular
technique for handling fluid-boundary contact is to apply penalty
forces between two particles as soon as they are within a certain
distance, e.g. [37, 39, 40]. Penalty forces should prevent fluid
particles from penetrating the boundary. Therefore, the magni-
tude of the penalty force is determined based on a penetration
measure between the particles. As the results are sensitive to
the stiffness parameter of the penalty force, small time steps are
typically required to produce a smooth pressure field.

In order to achieve larger time steps, the direct forcing method
of Becker et al. [41] uses a predictor-corrector scheme to com-
pute control forces and velocities. This method guarantees non-
penetration. However, due to an incomplete support domain at
the boundary, stacking of fluid particles can occur.

Another technique to treat boundaries are ghost particles [42,
43, 44]. For fluid particles that are located at a certain distance
to the boundary, a narrow layer of ghost particle is generated.
Those ghost particles mirror the hydrodynamic quantities of
their associated fluid particle, i.e. they have the same viscosity,
mass, density and pressure. However, for complex geometries,

2

generating such ghost particles is challenging. Furthermore,
ghost particles have to be re-generated per simulation step.

Using only one layer of pre-generated boundary particles, Ak-
inci et al. [4] treat irregular samplings by computing volume
contributions, c.f. [45, 18], and by mirroring the quantities of a
fluid particle onto its neighboring boundary particles. While ad-
hering to the SPH concept, this approach is efficient to compute
and allows a versatile coupling of fluids and solid objects [46].
Band et al. [47] proposed an extension of the boundary handling
scheme of Akinci et al. [4] by employing MLS. To improve
the accuracy of the density estimate and normal computation in
planar regions, they locally reconstruct the surface of the true
boundary by fitting boundary particles to a plane. This approach
results in a smooth representation of the boundary. However, it
is only applicable to planar boundaries. Furthermore, Band et al.
[47] do neither compute unique pressure values nor perform
any pressure extrapolation at boundary particles. Instead, they
use the mirroring scheme of Akinci et al. [4]. Yet, MLS tech-
niques have been successfully applied in many research areas,
e.g. [48, 49, 50, 51].

Instead of mirroring fluid particle quantities onto the boundary,
Adami et al. [5] propose to use pre-generated dummy boundary
particles. Thereby, fluid particles at the boundary interact with
dummy particles according to the overlap of the kernel function.
This has the advantage that, even for complex geometries, the
boundary is well-described through-out the simulation. Further-
more, by extrapolating the pressure of boundary particles from
the surrounding fluid particles, this method allows an accurate
approximation of a fluid particle’s pressure gradient near the
boundary.

To realize physically meaningful pressure and pressure gra-
dients at the boundary, Band et al. [6] derived an extended PPE
discretization at fluid and boundary particles. In contrast to pre-
vious approaches, their PPE does not only consider unknown
pressure at fluid particles, but also at boundary particles. This led
to reduced pressure oscillations, improved solver convergence
and larger time steps.

As an alternative to particles, boundaries are also repre-
sentable with triangle meshes [52, 53]. Yet, as stated in [4],
handling discontinuous surface normals and non-manifold struc-
tures that cause spatial and temporal discontinuities of the fluid
properties is challenging for triangulated boundaries. Another
alternative is an implicit representation of the boundary as pro-
posed by Koschier and Bender [54]. Based on a pre-computed
density map, this approach allows to efficiently evaluate the
density and pressure gradient of fluid particles at the boundary.

3. Method

We first discuss the previous concepts of Akinci et al. [4]
in Section 3.1, Adami et al. [5] in Section 3.2 and Band et al.
[6] in Section 3.3. Our approach is introduced in Section 3.4.
This section focuses on the concepts. The combination of the
boundary handling with DFSPH is described in Section 4.

3.1. Pressure mirroring
Pressure mirroring is motivated by its simple and efficient

implementation. When a pressure acceleration is computed at
a fluid particle f that has a boundary particle fb with unknown
pressure in its neighborhood, the pressure at the boundary parti-
cle is simply set to the pressure of the fluid particle, i.e. p fb = p f .
The computation in Eq. (1) slightly changes to

ap
f = −

∑
f f

m f f

 p f

ρ2
f

+
p f f

ρ2
f f

∇W f f f

−
∑

fb

ρ0
f V fb

 p f

ρ2
f

+
p f(
ρ0

f
)2

∇W f fb . (2)

Compared to Eq. (1), the mass of a boundary neighbor m fb , i.e.
its contribution in the SPH sum, is computed as m fb = ρ0

f V fb and
the density of a boundary neighbor is set to ρ fb = ρ0

f . Please
refer to [4] for a motivation of these choices and for a discussion
how to compute the volume V fb .

While density and mass in Eq. (2) play an important role
for the accurate weighting of a boundary particle in the SPH
sum, the employed pressure approximation p fb = p f negatively
affects the accuracy of the pressure gradient computation, i.e.
the computation of the pressure acceleration. As illustrated in
Fig. 1, it would be more appropriate to extrapolate the pressure
from the fluid to the boundary.

Pressure mirroring does not require to iterate over boundary
particles or to store pressure values at boundary particles. If a
boundary pressure is required, it is simply set to the pressure of
the currently processed fluid particle. While this efficiency is
positive, it results in inconsistent pressure values at boundary
particles. If two fluid particles f 1 and f 2 with different pres-
sure values p f 1 and p f 2 share the same boundary particle b, the
gradient computations at both fluid particles work with differ-
ent pressure values. Fluid particle f 1 works with pb = p f 1 in
Eq. (2), while the other fluid particle f 2 uses pb = p f 2 at the
same boundary particle b.

3.2. Pressure extrapolation with SPH
Pressure extrapolation can be motivated by Pascal’s law for

hydrostatic pressure which states that the pressure difference at
two fluid points is proportional to their height difference. For
a boundary particle b and an adjacent fluid particle b f , this can
be written as pb = pb f + ρb f g · xbb f with gravity g and dis-
tance xbb f = xb − xb f . In order to handle the interaction of
one boundary particle with several neighboring fluid particles,
the respective contributions are weighted with the kernel func-
tion Wbb f , summed up and normalized as proposed by Adami
et al. [5]:

pb =

∑
b f

pb f Wbb f + g ·
∑

b f
ρb f xbb f Wbb f∑

b f
Wbb f

. (3)

In contrast to the pressure mirroring in [4], this approach re-
quires an additional loop over boundary particles to compute
the pressure which is also stored at boundary particles. On the

3

other hand, boundary pressures are not inconsistent as in [4].
Instead, each boundary particle is attributed a unique pressure
value. If the pressure pb is computed for all boundary particles b,
Eq. (1) can be used to compute the pressure acceleration at fluid
particles.

Although the computation in Eq. (3) is normalized, it never-
theless suffers from the typical SPH particle deficiency issue.
The neighborhood of a boundary particle is only partially filled
with fluid neighbors which falsifies the pressure computation.

3.3. Pressure Boundaries

Here, we first describe the general idea of ISPH [34], followed
by the specific PPE discretization of Pressure Boundaries [6].

ISPH computes the pressure field p by solving a PPE of the
form ∇2 p = s with s being a source term, e.g. [34, 33, 35,
36, 1, 2, 3]. Compared to state-equation based solvers, e.g.
[29, 17, 30], this can positively affect the stability. Which in
turn allows iterative solvers to use a larger time step size and
therefore results in faster simulations. To solve the PPE, different
discretizations of ∇2 p can be used. Moreover, the source term s
can also be computed in different ways [55].

Pressure Boundaries [6] employs the IISPH [2] discretization
of ∇2 p, i.e. 〈∇ · 〈∇p〉〉 is computed rather than 〈∇2 p〉. However,
in contrast to IISPH, not only unknown pressure values at fluid
particles are considered, but also at boundary particles. This
is motivated by the various assumptions that are made in the
boundary handling of IISPH. Since IISPH uses the boundary
handling of Akinci et al. [4], it assumes inconsistent pressure
values at the boundary, as explained in Section 3.1. However,
if the PPE is extended by unique pressure values for boundary
particles (which might be similar to pressure extrapolation), the
robustness of the boundary handling is improved. This allows
the usage of larger time steps.

The resulting linear system of Pressure Boundaries consists of
one equation per unknown pressure value for fluid particles and
one equation per unknown pressure value for boundary particles.
At fluid particles f , the equation is given by∑

f f

m f f

ρ f f

(
ap

f − ap
f f

)
· ∇W f f f +

∑
fb

m fb

ρ fb
ap

f · ∇W f fb

=
1

∆t2

1 − ρ0
f

ρ f

 +
1
∆t
∇ · v?f . (4)

As computing the pressure acceleration at boundary particles is
more involved, Pressure Boundaries assumes that ap

b = 0. With
this simplification, the equation at boundary particles b can be
derived as

−
∑
b f

mb f

ρb f

ap
b f
· ∇Wbb f =

1
∆t2

1 − ρ0
b

ρb

 +
1
∆t
∇ · v?b . (5)

To compute the source term of boundary particles (the right-
hand-side of Eq. (5)), the ratio of rest density ρ0

b and density ρb

has to be determined. Since ρ = m/V , Band et al. [6] fol-
low the concept of volume elements, c.f. [18, 56], to rewrite

b

p
(αb, βb, γb, δb)

Figure 2: MLS hyperplane fitting to compute pressure at a boundary particle
b (grey). The plane parameters αb, βb, γb and δb are estimated from pressure
values at adjacent fluid particles (blue).

ρ0
b/ρb = Vb/V0

b . I.e. a special treatment of the density compu-
tation at the interface can be avoided by using volumes instead.
Thereby, the rest volume V0

b is computed as

V0
b =

γ∑
bb

Wbbb

. (6)

The coefficient γ accounts for an incomplete neighborhood (as
only one layer of boundary particles is used to represent the
surface of the boundary [4]). The actual volume Vb of a boundary
particle b is computed as

Vb =
V0

b∑
b f

h3Wbb f + γ + β
, (7)

with h being the initial particle spacing and β another coefficient
to account for incomplete neighborhoods.

The left-hand-side of Eqs. (5) and (4) corresponds to the dis-
cretization of ∇2 p. Accordingly, the right-hand-side of Eqs. (5)
and (4) corresponds to the discretized source term s. To solve
this linear system of equations, Band et al. [6] employ relaxed
Jacobi. Thereby, the pressure values of fluid and boundary parti-
cles i are iteratively updated with

pl+1
i = max

(
0, pl

i + ωi
si − ∇

2 pi

λi

)
, (8)

where l denotes the iteration number, λi the diagonal element and
ωi the relaxation factor. As Band et al. [6] reported convergence
issues in case of large volume ratios between fluid and boundary
particles, they used different relaxation factors for fluid (ω f =

0.5) and boundary particles (ωb = 0.5 V0
b/h

3).
Although Pressure Boundaries provides consistent pressure

values and pressure gradients at boundary particles and tries to
account for the particle deficiency issue, it has the drawback of
solving a larger PPE compared to, e.g., IISPH [2] or DFSPH
[3]. Therefore, it uses more memory and might require more
computation time.

3.4. Pressure Extrapolation with MLS
We propose to resolve the particle deficiency issue by using

MLS instead of SPH for the pressure computation at boundary
particles. Therefore, we fit hyperplanes that approximate the
pressure field as illustrated in Fig. 2. This is conceptually differ-
ent to Band et al. [47] where MLS is used to fit planes through

4

boundary sample positions. In our case, MLS is performed
from the perspective of a boundary particle b. It employs all
known pressure values pb f of fluid neighbors b f adjacent to this
boundary particle b to fit a hyperplane through the pressure field.

Problem Formulation. We wish to obtain a function p̃b(x) that
approximates the given pressure values pb f of b’s fluid neighbors
b f in a least-squares sense. Thus, we have to

minimize
∑
b f

(
p̃b

(
xb f

)
− pb f

)2
Vb f Wbb f . (9)

The function p̃b can be written as p̃b(x) = b(x) · cb, c.f.
[9], where b(x) is the polynomial basis vector and
cb = (αb, βb, γb, δb)T is the vector of unknown coefficients that
describe b’s hyperplane. To obtain a first order accurate ap-
proximation scheme, we use the linear basis b(x) = (1, x, y, z)T.
Considering the fact that the partial derivatives of Eq. (9) with
respect to the hyperplane parameters should be zero at the mini-
mum, we get the following system that has to be solved:∑

b f

b
(
xb f

) (
b
(
xb f

)
· cb − pb f

)
Vb f Wbb f = 0 . (10)

In order to solve for the unknown hyperplane parameters cb, we
rewrite Eq. (10) as∑

b f

(
b
(
xb f

)
⊗ b

(
xb f

))
cbVb f Wbb f =

∑
b f

b
(
xb f

)
pb f Vb f Wbb f

(11)
which corresponds to

∑
b f

1 xb f yb f zb f

xb f x2
b f

xb f yb f xb f zb f

yb f xb f yb f y2
b f

yb f zb f

zb f xb f zb f yb f zb f z2
b f

 Vb f Wbb f

αb

βb

γb

δb

=

∑
b f

1

xb f

yb f

zb f

 pb f Vb f Wbb f . (12)

This 4 × 4 system can be rewritten such that αb can be directly
computed and the parameters βb, γb, δb can be computed by
solving a 3 × 3 system. We therefore propose to perform a basis
transform: all considered positions xb f and also xb are translated
to positions x̄b f and x̄b by

db =

∑
b f

xb f Vb f Wbb f∑
b f

Vb f Wbb f

(13)

i.e.

x̄b f =
(
x̄b f , ȳb f , z̄b f

)T
= xb f − db (14)

x̄b =
(
x̄b, ȳb, z̄b

)T
= xb − db. (15)

This basis transform, i.e. the translation of all incorporated
particle positions by the same vector db, does not affect the

parameters of the hyperplane. Thus, instead of solving Eq. (12),
we now consider the following system with the same solution:

∑
b f

1 x̄b f ȳb f z̄b f

x̄b f x̄2
b f

x̄b f ȳb f x̄b f z̄b f

ȳb f x̄b f ȳb f ȳ2
b f

ȳb f z̄b f

z̄b f x̄b f z̄b f ȳb f z̄b f z̄2
b f

 Vb f Wbb f

αb

βb

γb

δb

=

∑
b f

1

x̄b f

ȳb f

z̄b f

 pb f Vb f Wbb f . (16)

Please note that Wbb f in Eq. (16) depends on the distance be-
tween xb and xb f . Now, some elements of the 4 × 4 matrix can
be replaced by zero based on the following observation:∑

b f

x̄b f Vb f Wbb f =
∑
b f

(
xb f − db

)
Vb f Wbb f

=
∑
b f

xb f Vb f Wbb f − db

∑
b f

Vb f Wbb f

= db

∑
b f

Vb f Wbb f − db

∑
b f

Vb f Wbb f

= 0 . (17)

Thereby, we get the following form:
∑
b f

1 0 0 0
0 x̄2

b f
x̄b f ȳb f x̄b f z̄b f

0 x̄b f ȳb f ȳ2
b f

ȳb f z̄b f

0 x̄b f z̄b f ȳb f z̄b f z̄2
b f

 Vb f Wbb f

αb

βb

γb

δb

=

∑
b f

1

x̄b f

ȳb f

z̄b f

 pb f Vb f Wbb f . (18)

Solution. Now, we can directly solve for αb:

αb =

∑
b f

pb f Vb f Wbb f∑
b f

Vb f Wbb f

, (19)

which corresponds to the weighted average of the pressure values
of fluid particles b f adjacent to boundary particle b. The other
hyperplane parameters βb, γb and δb are obtained by solving

 βb

γb

δb

 =

∑
b f

x̄2

b f
x̄b f ȳb f x̄b f z̄b f

x̄b f ȳb f ȳ2
b f

ȳb f z̄b f

x̄b f z̄b f ȳb f z̄b f z̄2
b f

 Vb f Wbb f

−1

∑
b f

 x̄b f

ȳb f

z̄b f

 pb f Vb f Wbb f . (20)

Finally, the pressure pb at boundary particle b is computed as

pb = (1, x̄b, ȳb, z̄b)T · cb . (21)

5

In our experiments, however, we experienced issues with a
singular matrix in Eq. (20) for boundary particles whose fluid
neighbors are co-linear or co-planar. In these cases, we follow
Müller et al. [50] and use safe inversion via Singular Value
Decomposition (SVD) [57] to avoid the problems with singular
matrices.

4. Implementation

We have combined our proposed boundary handling with a
slightly modified DFSPH solver [3] that is outlined in Algo-
rithm 1. We follow the idea of combining two solvers, one for
the velocity divergence and one for the density invariance. As
a minor notation change to DFSPH, our two solvers compute
pressure p instead of stiffness parameter κ. DFSPH implicitly
introduces κ with the relation ∇p f =

∑
f j

m f jκ f j∇W f f j with f j

denoting a fluid or a boundary neighbor of f . From the SPH
formulation ∇p f =

∑
f j

m f j

ρ f j
p f j∇W f f j , it follows that p f j = κ f jρ f j .

So, we use the DFSPH solver, but multiply all κ values with the
density ρ to get pressure values.

The functions CorrectDivergenceError and CorrectDen-
sityError in Algorithm 1 compute pressure at fluid particles,
but they are also responsible for the pressure computation at
boundary particles. In case of pressure mirroring, the pressure is
not explicitly computed, but just considered in the computation
of a∗ and a∗∗ by using Eq. (2) instead of Eq. (1). The SPH
extrapolation and our proposed MLS extrapolation loop over
the boundary particles to compute and store pressure. Then,
Eq. (1) is used to compute the pressure accelerations a∗ and a∗∗.
Finally, we update the pressure values p f of fluid particles f in
a Jacobi step. In our experiments, we set the relaxation coeffi-
cient ω = 0.5. In case of Pressure Boundaries, pressure at the
boundary is not re-computed in each iteration, but updated with
a Jacobi step (Eq. (8)).

If all particles have the same rest density and mass, we propose
to solve the linear system that is used to resolve the velocity-
divergence error with PCG instead of relaxed Jacobi. For the
pre-conditioner, we use the diagonal element λ f . Since we
require the computation of the diagonal element for resolving
the density-invariant error anyway, this pre-conditioner choice
does not add any considerable computational overhead. PCG
can be applied because we do not have to clamp pressure values
in-between the iterations (unlike for the density-invariant error
as stated by Ihmsen et al. [2] and Takahashi et al. [16]).

5. Discussion

Concept. Using a Taylor approximation, the continuous pres-
sure field p̃ in the neighborhood of a boundary particle b can be
approximated as

p̃(xb + ∆x) = p(xb) + 〈∇p〉(xb) · ∆x + O
(
||∆x||2

)
. (22)

Since we do not know the pressure value p at position xb, our
MLS fitting approach is conceptually different to, e.g., [50, 58,
30]. They use MLS to estimate the gradient, i.e. three unknowns,

Algorithm 1 DFSPH with MLS pressure extrapolation and PCG

procedure PerformSimulation
for each fluid particle f do

find neighborhoods N f (t)
for each fluid particle f do

compute density ρ f (t)

compute factor λ f ←
||
∑

j m j∇W f j||
2
+
∑

f f
m f m f f

∣∣∣∣∣∣∣∣∇W f f f

∣∣∣∣∣∣∣∣2
−ρ f (t)2

a∗ ← CorrectDivergenceError . divergence-free
for each fluid particle f do

predict velocity v∗f ← v f (t) + ∆t a∗f
for each fluid particle f do

predict velocity v∗∗f ← v∗f + ∆t anon-pressure
f

a∗∗ ← CorrectDensityError . density invariant
for each fluid particle f do

update velocity v f (t + ∆t)← v∗∗f + ∆t a∗∗f
update position x f (t + ∆t)← x f (t) + ∆t v f (t + ∆t)

procedure CorrectDivergenceError
for each fluid particle f do

compute source term s f ← −
1
∆t ∇ · v f (t)

initialize pressure p f ← 0
while not converged do

for each boundary particle b do
compute pressure pb using MLS . Eq. (21)

for each fluid particle f do
compute pressure acceleration a∗f . Eq. (1)

for each fluid particle f do
set pressure p f ← p f + ω

λ f

(
s f − ∇ · a∗f

)
return a∗

procedure CorrectDensityError
for each fluid particle f do

compute source term s f ←
1

∆t2

(
1 −

ρ0
f

ρ f (t)

)
− 1

∆t ∇ · v
∗∗
f

initialize pressure p f ← 0
while not converged do

for each boundary particle b do
compute pressure pb using MLS . Eq. (21)

for each fluid particle f do
compute pressure acceleration a∗∗f . Eq. (1)

for each fluid particle f do
set pressure p f ← max

(
0, p f + ω

λ f

(
s f − ∇ · a∗∗f

))
return a∗∗

6

at a position with a known value. In contrast to this, we estimate
the gradient and an offset, i.e. four unknowns.

Computation. Similar to the SPH pressure extrapolation and
Pressure Boundaries, our approach performs a loop over bound-
ary particles to compute and store pressure at boundary particles.
Each boundary particle has a unique pressure value. In contrast
to the SPH extrapolation, our MLS approach does not suffer
from the particle deficiency issue.

Pressure Boundaries. Our approach is more computationally
and memory efficient than Pressure Boundaries as it does not
have the overhead associated with solving a PPE. It does not
require the computation and storage of actual volumes, diagonal
elements, source terms and divergence of the pressure accelera-
tions for boundary particles. Another benefit of our approach is
the reduced parameter count compared to Pressure Boundaries.
First, it does not depend on a relaxation factor ωb for boundary
particles. And second, it does not require the volume correction
coefficient β in case of particle deficiency as no actual volumes
must be computed for boundary particles.

6. Results

In this section, we compare our proposed MLS pressure ex-
trapolation to the pressure mirroring of Akinci et al. [4], the
pressure extrapolation with SPH of Adami et al. [5] and the
extended PPE of Band et al. [6]. We show that our approach can
handle challenging scenarios, such as complex and fast-moving
boundary geometries and high water depths. We use different
particle spacings and time steps for the simulations. Table 2
gives an overview of the scenarios. For the SPH interpolation,
we use the cubic spline kernel [37] with a support of two times
the particle spacing. The rest density of the fluids is 1000 kg m−3

while the largest permissible compression error is 0.1 %. Fur-
thermore, as we want to focus on comparing concepts instead
of solver implementations, we never performed a warm-start
for the pressure solver, i.e. we always initialize pressure values
with zero. Besides, we employed the PCG solver only for the
experiments that are described in Sections 6.3, 6.7 and 6.8.

In our implementation, we employ compact hashing [59] for
the neighbor search. We apply a drag force to the fluid as de-
scribed in [60] and model surface tension as proposed in [61].
Viscosity is modeled as proposed by [62]. To reduce the loss in
turbulent details, we use a micropolar material model [63]. All
computations are fully parallelized with Intel Threading Build-
ing Blocks [64]. We use [65] to reconstruct the fluid surface.
The ray-traced images are rendered with [66]. All presented
scenarios have been computed on a 12-core 2.6 GHz Intel Xeon
E5-2690 with 32 GB of RAM.

6.1. Rotating Sphere

First, we compare our new approach to [4, 5, 6] in a setting
where fluid is placed inside a rigid sphere with free-slip boundary
conditions as illustrated in Fig. 3. The boundary sphere has a
radius of 3 m and is rotating slowly at 7 revolutions per minute.

(a) Pressure mirroring (b) SPH pressure extrapolation

(c) Pressure Boundaries (d) MLS pressure extrapolation

Figure 3: Comparison of the different boundary handling schemes. Velocities
are color-coded with blue corresponding to minimal and red corresponding to
maximal velocity. In contrast to pressure mirroring (3a), pressure extrapolation
with SPH (3b) and Pressure Boundaries (3c), our approach (3d) does not show
an incorrect movement of the fluid particles.

We use a particle spacing of 5 cm. The scenario consists of
417 k fluid and 44.5 k boundary particles and is simulated for
ten seconds with a fixed time step of 1 ms. The number of
density invariant iterations of our DFSPH solver was fixed to
ten while the divergence-free iterations count was set to zero.
This basically corresponds to an IISPH solver and resulted in a
density error of approximately 0.037 %.

In this experiment, the boundary particles should not influence
the fluid velocities and the fluid should rest inside the sphere.
However, as shown in Fig. 3, this is not the case for [4, 5, 6]. All
three boundary handling schemes introduce an artificial viscosity,
which causes an incorrect movement of the fluid particles. In
contrast to this, our MLS pressure extrapolation does not suffer
from artificial viscosity at the boundary. The computation time
for the pressure field is very similar for all approaches (our:
64.29 ms, [4]: 63.12 ms, [5]: 63.44 ms, [6]: 65.89 ms).

The reason why Pressure Boundaries [6] has the largest error
is that it has more potential sources for errors: First, the dis-
cretization of the source term of boundary particles might be
erroneous. Second, the correction factor β is used to account for
missing particle neighbor contributions. As discussed in Band
et al. [6], the boundary is assumed to be planar to calculate this
factor, which is obviously not the case in this scenario.

6.2. Breaking Dam

In order to compare the solver iteration counts of our approach
with [4, 5, 6], we simulate a breaking dam scenario inside a
cylindric-shaped domain of size 3 m×3 m×0.5 m with a particle
spacing of 8 mm. Thus, making a total of 2.95 million fluid
and 182.2 k boundary particles. The scenario is illustrated in
Fig. 4. Furthermore, we use different fixed time step sizes.
Table 1 summarizes the iteration measurements and computation
times to solve the PPE for a simulation over ten seconds.

7

Figure 4: Cylindrical breaking dam with 2.95 million fluid particles simulated
with our MLS pressure extrapolation approach. The smooth color-coded pressure
field on the bottom-right corresponds to the top-right frame.

In our experiment, our MLS pressure extrapolation approach
always requires the minimum number of iterations per simula-
tion step. For larger time step sizes, our approach outperforms
[5] due to more accurate pressure gradients at the boundary.
Computing unique pressure values for boundary particles is not
expensive. For [5], we measured an average computation time
for the boundary pressures of 1.12 ms per iteration. For our
approach, as we have to iterate twice over fluid neighbors of the
boundary particles, the computation time slightly increased to
1.87 ms. Furthermore, even solving a system for the boundary
pressure (1.95 ms) is not much more expensive.

6.3. Pre-conditioned Conjugate Gradient vs. Relaxed Jacobi

To compare the divergence-free solve with PCG and relaxed
Jacobi, we simulated the breaking dam scene described in Sec-
tion 6.2 with a fixed time step of 1 ms for 0.25 s, i.e. 250 simula-
tion steps. We measured the iteration counts required to halve
the initial divergence error.

Fig. 5 shows the results. Although PCG (76.1 ms) is more
expensive per iteration than relaxed Jacobi (56.5 ms), it performs
better overall since it requires less iterations to reach the allowed
error. Therefore, instead of resolving the divergence error with
relaxed Jacobi, as it was done in our previous work [7], we
propose to use PCG.

6.4. Vase

As shown in [6], computing unique pressure values for bound-
ary particles can be beneficial for scenarios with a high water
depth. In order to show that our approach can also handle such
challenging scenarios, we simulate a vase of height 10 m that is
filled with water over a duration of eighteen seconds. The scene
is illustrated in Fig. 6. The particle spacing is 2 cm and the adap-
tive time step [38] is 0.47 ms on average. The scene consists of
up to 13.33 million fluid and 826 k boundary particles. The total
computation time per simulation step is 3.70 s on average with
MLS pressure extrapolation, 3.72 s for pressure mirroring and

0.00 0.05 0.10 0.15 0.20 0.25
0

50

100

150

Time [s]

It
er

at
io

ns

PCG Relaxed Jacobi

Figure 5: Iteration counts for the divergence-free solve with PCG and relaxed
Jacobi for the Breaking Dam scenario.

3.84 s for SPH pressure extrapolation. The reduced computation
time of our approach is the result of a reduced solver iteration
count.

6.5. Teacup

In order to demonstrate the applicability of our approach
to two-way coupled dynamic objects, we integrated the Bullet
physics library [67] in our simulation framework. Figure 7 shows
a teacup that contains a two-way coupled rigid rubber duck that
has a rest density of 500 kg m−3. As fluid is filled into the cup,
the rubber duck begins to rise. We have simulated the scene for
ten seconds. It consists of up to 3.57 million fluid particles and
1.25 million boundary particles. The particle spacing is 3 mm.
Our DFSPH solver requires a total of 13.22 iterations on average
per simulation step with the adaptive time step being 0.28 ms
on average. The total average computation time per simulation
step is 1.112 s whereof computing the boundary pressures takes
34.33 ms.

6.6. Washing Machine

Our proposed method is particularly appropriate for fast-
moving and complex boundaries. This is indicated in Fig. 8
where we simulate a washing machine that contains seven two-
way coupled rigid spheres with different radii. The washing
drum is animated and contains holes, i.e. the fluid drains. The
particle spacing is 2 cm and the scene consists of up to 2.04
million fluid particles and 1.18 million boundary particles. We
use an adaptive time step with an average of 0.5 ms. Overall,
with our approach the average computation time is 409 ms per
simulation step whereof computing the boundary pressures takes
17.6 ms. The average iteration count is 4.42. Due to instabilities
at the fast-moving boundary, pressure mirroring requires a time
step that is half as large compared to our MLS extrapolation.

8

average per time step ∆t

iterations computation time

∆t Mirroring SPH extrapol. MLS extrapol. ext. PPE Mirroring SPH extrapol. MLS extrapol. ext. PPE

0.25 ms 4.0 4.0 4.0 4.0 116 ms 120 ms 123 ms 128 ms
0.50 ms 5.7 5.7 5.6 5.7 186 ms 192 ms 192 ms 205 ms
1.00 ms 12.0 12.2 11.8 12.0 448 ms 467 ms 462 ms 494 ms
1.50 ms 14.9 16.0 14.9 16.6 559 ms 618 ms 587 ms 684 ms

Table 1: Comparison of the different boundary handling schemes using different time steps for the Breaking Dam scenario.

Figure 6: Vase scenario with up to 13.33 million fluid particles. The bottom
image shows a closeup, visualizing the complex boundary geometry and the
particles.

This results in a speed-up of factor 1.8 compared to Akinci et al.
[4]. This speed-up factor is particularly remarkable considering
the fact that [4] typically works for time steps that correspond to
rather large CFL numbers.

6.7. Glasses

In another experiment we compare our MLS-based approach
to Pressure Boundaries [6]. For this, we use the scene that
is shown in Fig. 9. The particle spacing is 1.5 mm and the
scene consists of up to 26 million fluid particles and 8.2 million
boundary particles. Please note that due to the small particle
size, the water depth gets very high and challenging as fluid is
filled into the glasses. As a result, the time step size is 0.16 ms.
The average number of divergence-free iterations is 2 while the
average number of density-invariant iterations is 5.45. Due to the
overhead of solving a linear system for the pressure at boundary
particles, the total average computation time per simulation step
of Pressure Boundaries is higher than for our approach (our:
8.20 s vs. Pressure Boundaries: 8.46 s).

Figure 7: Our boundary handling processes complex geometries with reduced
artifacts and more efficiently compared to previous methods.

Figure 8: Animated washing machine with two-way coupled rigid spheres.

9

Figure 9: Glasses scenario with various complex boundary shapes and up to 26
million fluid particles simulated with our approach.

6.8. Highly Viscous Fluids

In recent years the simulation of highly viscous fluids with
SPH has become popular, e.g.[22, 3, 23, 25]. As indicated
by Peer et al. [21], the handling of boundaries is not straight-
forward in case of iteratively computed implicit viscosity formu-
lations. We therefore present scenarios to show that our MLS
boundary handling scheme is also applicable to such highly vis-
cous fluids. We implemented the approach of Weiler et al. [25],
i.e. we use the implicit discretization

v f (t + ∆t) = v f (t) + ∆t
µ

ρ f (t)
∇

2v f (t + ∆t) (23)

for the integration of the viscous forces and compute the Lapla-
cian of the velocity as

∇
2v f = 2(d + 2)

∑
f j

V f j

v f f j · x f f j

||x f f j ||
2 + 0.01h2∇W f f j . (24)

We solve the resulting linear system with PCG with the 3 × 3
block pre-conditioner. However, we want to note that for ra-
dial symmetrical SPH kernels, like the cubic spline kernel [37],
the pre-conditioner matrix is symmetric. Therefore, we only
compute and store six coefficients of the matrix instead of nine
to improve the computation time and to reduce the required
memory amount of the viscosity solver.

6.8.1. Chocolate Ducks
In this scene, we simulated three ducks that are coated

with chocolate. We used a particle spacing of 3 mm, µ =

2000 N s m−2, a rest density of 1325 kg m−3 and a fixed time
step of 0.4 ms. The scene is illustrated in Fig. 10 and consists of
up to 10.1 million fluid particles and 1 million boundary parti-
cles. The average number of iterations for the viscosity solver is
20 while the total computation time of one simulation step was
3.99 s on average.

6.8.2. Discretization of the Velocity Laplacian
There are many possibilities to discretize the Laplacian of the

velocity with SPH, e.g. [62, 15, 37]. One option, that we used

Figure 10: Highly viscous fluid scene with up to 10.1 million fluid particles.

Figure 11: Comparison of the different discretizations of the velocity Laplacian.
On the left, the Laplacian is discretized with Eq. (25) [62] while on the right, it
is discretized with Eq. (24) [25].

to simulate the non-highly viscous materials, was described by
Morris et al. [62]:

∇
2v f = 2(d + 2)

∑
j

V j
∇W f j · x f j

||x f j||
2 + 0.01h2 v f j . (25)

Although Eq. (24) looks very similar to Eq. (25), the resulting
pair-wise viscous force acts in a different direction: In Eq. (24)
it acts in the direction of the SPH gradient whereas in Eq. (25)
it acts in the direction of the relative velocity between the two
particles. This difference motivated us to compare the two dis-
cretizations in the context of an implicit formulation for highly
viscous fluids. Please note that for Eq. (25) the pre-conditioner
is simply a scalar value instead of a 3 × 3 matrix.

Figure 11 shows that the two formulations behave differently.
For this comparison, we used a cube-shaped viscous material in
a free-fall setting. As the fluid hits the surface, it starts to rotate
with the discretization Eq. (24) but not with Eq. (25). Please
refer to the accompanying video to assess the differences in the
dynamics.

7. Conclusion and Future Work

MLS pressure extrapolation at boundaries reduces artifacts at
fluid-solid interfaces which can improve the performance of the
pressure computation in iterative solvers. We have shown that
pressure mirroring, SPH extrapolation and Pressure Boundaries
suffer from artificial viscosity which is not the case for the pro-
posed MLS extrapolation. We have also shown that the reduced
velocity artifacts in our boundary handling can positively influ-
ence the pressure computation time for challenging scenarios.
It is particularly remarkable that our local MLS approach can
compete with the globally formulated Pressure Boundaries in
terms of stability and time step size. Furthermore, we showed

10

average

scene fluid particles particle spacing h time step size ∆t computation time per simulation step

Rotating Sphere 0.417 million 50 mm 1 ms 0.097 s
Breaking Dam 2.95 million 8 mm 1 ms 1.106 s
Vase 13.33 million 20 mm 0.47 ms 3.70 s
Teacup 3.57 million 3 mm 0.28 ms 1.112 s
Washing Machine 2.04 million 20 mm 0.5 ms 0.409 s
Glasses 26 million 1.5 mm 0.16 ms 8.20 s
Chocolate Ducks 10.1 million 3 mm 0.4 ms 3.99 s

Table 2: Measurements for the scenarios simulated with our MLS boundary handling.

that our boundary handling scheme can also be applied to highly
viscous fluids.

As one of the next steps, we plan to investigate properties
of the MLS gradient estimation for other purposes, e.g. the
computation of the pressure acceleration at fluid particles.

Acknowledgments

The vase model is courtesy of Eckerput at
https://www.cgtrader.com and is licensed under Royalty
Free License. The cup model is courtesy of nerosoft at
https://www.cgtrader.com and is licensed under Royalty
Free License. The saucer model is courtesy of trapdormi at
https://www.cgtrader.com and is licensed under Royalty Free
License. The model of the washing machine is courtesy of
vikinger at https://www.cgtrader.com and is licensed under
Royalty Free License. The rubber duck is courtesy of willie at
www.thingiverse.com and is licensed under Creative Commons -
Public Domain Dedication license. The models of the glasses
are courtesy of leighiria at https://www.cgtrader.com and are
licensed under Royalty Free License.

References

[1] Solenthaler, B, Pajarola, R. Predictive-corrective Incompressible SPH.
ACM Transactions on Graphics 2009;28(3):40:1–40:6.

[2] Ihmsen, M, Cornelis, J, Solenthaler, B, Horvath, C, Teschner, M.
Implicit incompressible SPH. IEEE Transactions on Visualization and
Computer Graphics 2014;20(3):426–435.

[3] Bender, J, Koschier, D. Divergence-Free SPH for Incompressible and Vis-
cous Fluids. IEEE Transactions on Visualization and Computer Graphics
2017;23(3):1193–1206.

[4] Akinci, N, Ihmsen, M, Akinci, G, Solenthaler, B, Teschner, M. Versatile
Rigid-fluid Coupling for Incompressible SPH. ACM Transactions on
Graphics 2012;31(4):62:1–62:8.

[5] Adami, S, Hu, XY, Adams, NA. A generalized wall boundary condition
for smoothed particle hydrodynamics. Journal of Computational Physics
2012;231(21):7057 – 7075.

[6] Band, S, Gissler, C, Ihmsen, M, Cornelis, J, Peer, A, Teschner, M.
Pressure Boundaries for Implicit Incompressible SPH. ACM Transactions
on Graphics 2018;37(2):14:1–14:11. Presented at SIGGRAPH 2018.

[7] Band, S, Gissler, C, Peer, A, Teschner, M. MLS Pressure Extrapolation
for the Boundary Handling in Divergence-Free SPH. In: Virtual Reality
Interactions and Physical Simulations. Eurographics Association. ISBN
978-3-03868-059-8; 2018,.

[8] Kenney, J, Keeping, E. Mathematics of Statistics Part I. Van Nostrand;
1956.

[9] Nealen, A. An as-short-as-possible introduction to the least squares,
weighted least squares and moving least squares methods for scattered data
approximation and interpolation. http://www.nealen.de/projects/
mls/asapmls.pdf; 2004.

[10] He, X, Liu, N, Li, S, Wang, H, Wang, G. Local Poisson SPH For Viscous
Incompressible Fluids. Computer Graphics Forum 2012;31(6):1948–1958.

[11] Macklin, M, Müller, M. Position Based Fluids. ACM Transactions on
Graphics 2013;32(4):104:1–104:12.

[12] Ihmsen, M, Orthmann, J, Solenthaler, B, Kolb, A, Teschner, M. SPH
Fluids in Computer Graphics. In: Eurographics (State of the Art Reports).
2014,.

[13] Stam, J, Fiume, E. Depicting Fire and Other Gaseous Phenomena Using
Diffusion Processes. In: Proceedings of the 22nd Annual Conference on
Computer Graphics and Interactive Techniques. ISBN 0-89791-701-4;
1995, p. 129–136.

[14] Desbrun, M, Gascuel, MP. Smoothed particles: A new paradigm for ani-
mating highly deformable bodies. In: Computer Animation and Simulation.
Springer; 1996, p. 61–76.

[15] Müller, M, Charypar, D, Gross, M. Particle-based Fluid Simulation for
Interactive Applications. In: ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. ISBN 1-58113-659-5; 2003, p. 154–159.

[16] Takahashi, T, Dobashi, Y, Nishita, T, Lin, MC. An Efficient Hy-
brid Incompressible SPH Solver with Interface Handling for Boundary
Conditions. Computer Graphics Forum 2018;37(1):313–324.

[17] Müller, M, Solenthaler, B, Keiser, R, Gross, M. Particle-based Fluid-
fluid Interaction. In: ACM SIGGRAPH/Eurographics Symposium on
Computer Animation. ISBN 1-59593-198-8; 2005, p. 237–244.

[18] Solenthaler, B, Pajarola, R. Density Contrast SPH Interfaces. In: ACM
SIGGRAPH/Eurographics Symposium on Computer Animation. ISBN
978-3-905674-10-1; 2008, p. 211–218.

[19] Ren, B, Li, C, Yan, X, Lin, MC, Bonet, J, Hu, SM. Multiple-fluid
sph simulation using a mixture model. ACM Transactions on Graphics
2014;33(5):171:1–171:11.

[20] Alduán, I, Tena, A, Otaduy, MA. DYVERSO: A versatile multi-phase
position-based fluids solution for VFX. In: Computer Graphics Forum;
vol. 36. Wiley Online Library; 2017, p. 32–44.

[21] Peer, A, Ihmsen, M, Cornelis, J, Teschner, M. An implicit viscosity for-
mulation for SPH fluids. ACM Transactions on Graphics 2015;34(4):114.

[22] Takahashi, T, Dobashi, Y, Fujishiro, I, Nishita, T, Lin, MC. Implicit
Formulation for SPH-based Viscous Fluids. Computer Graphics Forum
2015;34(2):493–502.

[23] Peer, A, Teschner, M. Prescribed Velocity Gradients for Highly Viscous
SPH Fluids with Vorticity Diffusion. IEEE Transactions on Visualization
and Computer Graphics 2017;23(12):2656–2662.

[24] Barreiro, H, Garcı́a-Fernández, I, Alduán, I, Otaduy, MA. Conformation
constraints for efficient viscoelastic fluid simulation. ACM Transactions
on Graphics 2017;36(6):221.

[25] Weiler, M, Koschier, D, Brand, M, Bender, J. A Physically Consistent
Implicit Viscosity Solver for SPH Fluids. Computer Graphics Forum
2018;37(2).

[26] Keiser, R, Adams, B, Gasser, D, Bazzi, P, Dutre, P, Gross, M. A
unified Lagrangian approach to solid-fluid animation. In: Proceedings
Eurographics/IEEE VGTC Symposium Point-Based Graphics. 2005, p.

11

https://www.cgtrader.com/free-3d-print-models/house/decor/twisted-tubes-vase
https://www.cgtrader.com/free-3d-print-models/art/other/my-coffee-cup
https://www.cgtrader.com/free-3d-models/household/kitchenware/plate-set-a6d3af27-0960-4ad5-86cd-97407675f26f
https://www.cgtrader.com/free-3d-models/household/kitchenware/washing-machine--11
https://www.thingiverse.com/thing:139894
https://www.cgtrader.com/free-3d-models/furniture/furniture-set/set-collection-of-glass
http://www.nealen.de/projects/mls/asapmls.pdf
http://www.nealen.de/projects/mls/asapmls.pdf

125–148.
[27] Solenthaler, B, Schläfli, J, Pajarola, R. A Unified Particle Model

for Fluid-Solid Interactions. Computer Animation and Virtual Worlds
2007;18(1):69–82.

[28] Peer, A, Gissler, C, Band, S, Teschner, M. An Implicit SPH Formulation
for Incompressible Linearly Elastic Solids. Computer Graphics Forum
2018;37(6):135–148.

[29] Monaghan, JJ. Simulating Free Surface Flows with SPH. Journal of
Computational Physics 1994;110(2):399–406.

[30] Adams, B, Pauly, M, Keiser, R, Guibas, LJ. Adaptively Sampled Particle
Fluids. ACM Transactions on Graphics 2007;26(3).

[31] Becker, M, Teschner, M. Weakly Compressible SPH for Free Surface
Flows. In: ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. Eurographics Association. ISBN 978-1-59593-624-0; 2007, p.
209–217.

[32] Chorin, AJ. Numerical Solution of the Navier-Stokes Equations. Mathe-
matics of Computation 1968;22(104):745–762.

[33] Shao, S, Lo, EY. Incompressible SPH method for simulating Newtonian
and non-Newtonian flows with a free surface. Advances in Water Resources
2003;26(7):787 – 800.

[34] Cummins, SJ, Rudman, M. An SPH Projection Method. Journal of
Computational Physics 1999;152(2):584–607.

[35] Purcell, TJ, Donner, C, Cammarano, M, Jensen, HW, Hanrahan, P.
Photon Mapping on Programmable Graphics Hardware. In: ACM SIG-
GRAPH/Eurographics Conference on Graphics Hardware. Eurographics
Association. ISBN 1-58113-739-7; 2003, p. 41–50.

[36] Hu, XY, Adams, NA. An incompressible multi-phase sph method. Journal
of Computational Physics 2007;227(1):264–278.

[37] Monaghan, JJ. Smoothed Particle Hydrodynamics. Reports on Progress
in Physics 2005;68(8):1703.

[38] Ihmsen, M, Akinci, N, Gissler, M, Teschner, M. Boundary Handling
and Adaptive Time-stepping for PCISPH. In: Virtual Reality Interactions
and Physical Simulations. ISBN 978-3-905673-78-4; 2010,.

[39] Müller, M, Schirm, S, Teschner, M, Heidelberger, B, Gross, M.
Interaction of Fluids with Deformable Solids: Research Articles. Computer
Animation and Virtual Worlds 2004;15(3-4):159–171.

[40] Monaghan, J, Kajtar, J. SPH particle boundary forces for arbitrary
boundaries. Computer Physics Communications 2009;180(10):1811 –
1820.

[41] Becker, M, Tessendorf, H, Teschner, M. Direct Forcing for Lagrangian
Rigid-Fluid Coupling. IEEE Transactions on Visualization and Computer
Graphics 2009;15(3):493–503.

[42] Colagrossi, A, Landrini, M. Numerical Simulation of Interfacial Flows
by Smoothed Particle Hydrodynamics. Journal of Computational Physics
2003;191(2):448–475.

[43] Yildiz, M, Rook, R, Suleman, A. SPH with the multiple boundary tangent
method. International Journal for Numerical Methods in Engineering
2009;77(10):1416–1438.

[44] Schechter, H, Bridson, R. Ghost SPH for Animating Water. ACM
Transactions on Graphics 2012;31(4):61:1–61:8.

[45] Ott, F, Schnetter, E. A modified SPH approach for fluids with large
density differences. In: ArXiv Physics e-prints. 2003, p. 3112.

[46] Akinci, N, Cornelis, J, Akinci, G, Teschner, M. Coupling Elastic Solids
with SPH Fluids. Computer Animation and Virtual Worlds 2013;24(3-
4):195–203.

[47] Band, S, Gissler, C, Teschner, M. Moving Least Squares Boundaries
for SPH Fluids. In: Virtual Reality Interactions and Physical Simulations.
Eurographics Association. ISBN 978-3-03868-032-1; 2017,.

[48] Dilts, GA. Moving-least-squares-particle hydrodynamics I: Consistency
and stability. International Journal for Numerical Methods in Engineering
1999;44(8):1115–1155.

[49] Alexa, M, Behr, J, Cohen-Or, D, Fleishman, S, Levin, D, T. Silva,
C. Computing and Rendering Point Set Surfaces. IEEE Transactions on
Visualization and Computer Graphics 2003;9(1):3–15.

[50] Müller, M, Keiser, R, Nealen, A, Pauly, M, Gross, MH, Alexa,
M. Point Based Animation of Elastic, Plastic and Melting Objects. In:
ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
Eurographics Association. ISBN 3-905673-14-2; 2004, p. 141–151.

[51] Bilotta, G, Russo, G, Hérault, A, Negro, CD. Moving least-squares
corrections for smoothed particle hydrodynamics. Annals of Geophysics
2011;54(5).

[52] Huber, M, Eberhardt, B, Weiskopf, D. Boundary Handling at Cloth-Fluid
Contact. Computer Graphics Forum 2015;34(1):14–25.

[53] Fujisawa, M, Miura, KT. An Efficient Boundary Handling with a Modified
Density Calculation for SPH. Computer Graphics Forum 2015;34(7):155–
162.

[54] Koschier, D, Bender, J. Density Maps for Improved SPH Boundary
Handling. In: ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. ACM. ISBN 978-1-4503-5091-4; 2017, p. 1:1–1:10.

[55] Cornelis, J, Bender, J, Gissler, C, Ihmsen, M, Teschner, M. An
optimized source term formulation for incompressible SPH. The Visual
Computer 2018;34:1–11.

[56] Rosswog, S. SPH Methods in the Modelling of Compact Objects. Living
Reviews in Computational Astrophysics 2015;1(1).

[57] Press, WH, Teukolsky, SA, Vetterling, WT, Flannery, BP. Numeri-
cal Recipes 3rd Edition: The Art of Scientific Computing. 3 ed.; New
York, NY, USA: Cambridge University Press; 2007. ISBN 0521880688,
9780521880688.

[58] Pauly, M, Keiser, R, Adams, B, Dutré, P, Gross, M, Guibas, LJ.
Meshless Animation of Fracturing Solids. ACM Transactions on Graphics
2005;24(3):957–964.

[59] Ihmsen, M, Akinci, N, Becker, M, Teschner, M. A Parallel SPH
Implementation on Multi-Core CPUs. In: Computer Graphics Forum;
vol. 30. Wiley Online Library; 2011, p. 99–112.

[60] Gissler, C, Band, S, Peer, A, Ihmsen, M, Teschner, M. Generalized drag
force for particle-based simulations. Computers & Graphics 2017;69:1–11.

[61] Akinci, N, Akinci, G, Teschner, M. Versatile Surface Tension and Adhe-
sion for SPH Fluids. ACM Transactions on Graphics 2013;32(6):182:1–
182:8.

[62] Morris, JP, Fox, PJ, Zhu, Y. Modeling Low Reynolds Number
Incompressible Flows Using SPH. Journal of Computational Physics
1997;136(1):214–226.

[63] Bender, J, Koschier, D, Kugelstadt, T, Weiler, M. Turbulent Micropolar
SPH Fluids with Foam. IEEE Transactions on Visualization and Computer
Graphics 2018;PP:1–1.

[64] Pheatt, C. Intel R© Threading Building Blocks. Journal of Computing
Sciences in Colleges 2008;23(4):298–298.

[65] FIFTY2 Technology, . PreonLab. www.fifty2.eu; 2018.
[66] Side Effects Software, . Houdini. www.sidefx.com; 2018.
[67] Coumans, Erwin, . The bullet physics library. www.bulletphysics.org;

2018.

12

www.fifty2.eu
www.sidefx.com
www.bulletphysics.org

	Introduction
	Related Work
	Method
	Pressure mirroring
	Pressure extrapolation with SPH
	Pressure Boundaries
	Pressure Extrapolation with MLS

	Implementation
	Discussion
	Results
	Rotating Sphere
	Breaking Dam
	Pre-conditioned Conjugate Gradient vs. Relaxed Jacobi
	Vase
	Teacup
	Washing Machine
	Glasses
	Highly Viscous Fluids
	Chocolate Ducks
	Discretization of the Velocity Laplacian

	Conclusion and Future Work

