MLS Pressure Boundaries for Divergence-Free and Viscous SPH Fluids - Appendix

Stefan Band

1 Mass of a boundary particle

Iterative solvers such as PCISPH [11, IISPH [5] or DFSPH 4 compute a pressure field p and apply pressure accelerations of the form

$$
\begin{equation*}
\boldsymbol{a}_{f}^{\mathrm{p}}=-\sum_{j} m_{j}\left(\frac{p_{f}}{\rho_{f}^{2}}+\frac{p_{j}}{\rho_{j}^{2}}\right) \nabla W_{f j}-\sum_{b} m_{b}\left(\frac{p_{f}}{\rho_{f}^{2}}+\frac{p_{b}}{\rho_{b}^{2}}\right) \nabla W_{f f_{b}} \tag{1}
\end{equation*}
$$

to fluid particles f [3]. Here, j and b denote fluid and boundary neighbors of fluid particle f, respectively. Equation (1) requires a notion of mass m_{b} and density ρ_{b} at boundary particles b.
The mass m_{b} at a boundary particle b can be geometrically motivated from the boundary particle volume V_{b} [1, 10, 2], i.e. the mass m_{b} can be derived from the relation $m_{b}=\rho_{b} V_{b}$. Since the density ρ_{b} is typically set to the rest density of the adjacent fluid particle [1], i.e.

$$
\begin{equation*}
\rho_{b}=\rho_{f} \tag{2}
\end{equation*}
$$

the mass m_{b} of a boundary particle b can be computed as

$$
\begin{equation*}
m_{b}=\rho_{f}^{0} V_{b}^{0} \tag{3}
\end{equation*}
$$

where ρ_{f}^{0} denotes the rest density of fluid particle f and the rest volume V_{b}^{0} is [2]

$$
\begin{equation*}
V_{b}^{0}=\frac{\gamma}{\sum_{b_{b}} W_{b b_{b}}} \tag{4}
\end{equation*}
$$

The computation of Eq. (4) only processes boundary neighbors b_{b} of a boundary particle b as the rest volume does not depend on possibly adjacent fluid particles [2]. As only one layer of boundary particles is used to represent the surface of the boundary [1], the coefficient γ accounts for an incomplete neighborhood. The coefficient depends on the choice of the SPH kernel function. For the cubic spline kernel [7] with a smoothing length of two times the particle size $h, \gamma \approx 0.7$ [2]. This motivated by the fact that $0.7 / \sum_{b_{b}} W_{b b_{b}}=h^{3}$ for boundary particles that are evenly sampled in a plane. See Fig. 1 for an illustration of the derivation.

Figure 1: Cross section of a boundary plane with color-coded SPH kernel weights. In 3D, red represents 31.8%, orange 8% and yellow 1.6% of the total kernel weight. Due to missing particle neighbors (crossed), the sum of kernel weights of the central particle is not 100% but $1 \cdot 31.8 \%+4 \cdot 8 \%+4 \cdot 1.6 \%=70.2 \%$.

Implementation Employing Eqs. (2) to (4), the pressure acceleration of a fluid particle f, Eq. (1), can be computed as

$$
\begin{equation*}
\boldsymbol{a}_{f}^{\mathrm{p}}=-\sum_{j} m_{j}\left(\frac{p_{f}}{\rho_{f}^{2}}+\frac{p_{j}}{\rho_{j}^{2}}\right) \nabla W_{f j}-\sum_{b} \rho_{f}^{0} V_{b}^{0}\left(\frac{p_{f}}{\rho_{f}^{2}}+\frac{p_{b}}{\rho_{f}^{2}}\right) \nabla W_{f b} \tag{5}
\end{equation*}
$$

2 Pressure Extrapolation with MLS

The pressure p_{b} at boundary particle b is computed as

$$
\begin{equation*}
p_{b}=\left(1, \bar{x}_{b}, \bar{y}_{b}, \bar{z}_{b}\right)^{\mathrm{T}} \cdot \boldsymbol{c}_{b} \tag{6}
\end{equation*}
$$

where $\boldsymbol{c}_{b}=\left(\alpha_{b}, \beta_{b}, \gamma_{b}, \delta_{b}\right)^{\mathrm{T}}$ is a vector of unknown coefficients. The first parameter α_{b} is the weighted average of the pressure values of fluid particles b_{f} adjacent to boundary particle b :

$$
\begin{equation*}
\alpha_{b}=\frac{\sum_{b_{f}} p_{b_{f}} V_{b_{f}} W_{b b_{f}}}{\sum_{b_{f}} V_{b_{f}} W_{b b_{f}}} \tag{7}
\end{equation*}
$$

The other parameters β_{b}, γ_{b} and δ_{b} are obtained by solving

$$
\begin{array}{r}
{\left[\begin{array}{c}
\beta_{b} \\
\gamma_{b} \\
\delta_{b}
\end{array}\right]=\left(\sum_{b_{f}}\left[\begin{array}{ccc}
\bar{x}_{b_{f}}^{2} & \bar{x}_{b_{f}} \bar{y}_{b_{f}} & \bar{x}_{b_{f}} \bar{z}_{b_{f}} \\
\bar{x}_{b_{f}} \bar{y}_{b_{f}} & \bar{y}_{b_{f_{f}}}^{2} & \bar{y}_{b_{f}} \bar{z}_{b_{f}} \\
\bar{x}_{b_{f}} \bar{z}_{b_{f}} & \bar{y}_{b_{f}} \bar{z}_{b_{f}} & \bar{z}_{b_{f}}^{2}
\end{array}\right] V_{b_{f}} W_{b b_{f}}\right)^{-1}} \\
\sum_{b_{f}}\left[\begin{array}{c}
\bar{x}_{b_{f}} \\
\bar{y}_{b_{f}} \\
\bar{z}_{b_{f}}
\end{array}\right] p_{b_{f}} V_{b_{f}} W_{b b_{f}} . \tag{8}
\end{array}
$$

Implementation In our experiments, we experienced issues with a singular matrix in Eq. (8) for boundary particles whose fluid neighbors are co-linear or
co-planar. In these cases, we follow [8 and use safe inversion via Singular Value Decomposition (SVD) [9 to avoid the problems with singular matrices. We use the SVD implementation of [6].
Also, we set β_{b}, γ_{b} and δ_{b} to zero if $\left\|\sum_{b_{f}}\left(\bar{x}_{b_{f}}, \bar{y}_{b_{f}}, \bar{z}_{b_{f}}\right)^{\mathrm{T}} p_{b_{f}} V_{b_{f}} W_{b b_{f}}\right\|<\epsilon$, where ϵ is a small value, e.g., 10^{-5}. This results in a pressure value $p_{b}=\alpha_{b}$.

References

[1] N. Akinci, M. Ihmsen, G. Akinci, B. Solenthaler, and M. Teschner. Versatile Rigid-fluid Coupling for Incompressible SPH. ACM Transactions on Graphics, 31(4):62:1-62:8, 2012.
[2] S. Band, C. Gissler, M. Ihmsen, J. Cornelis, A. Peer, and M. Teschner. Pressure Boundaries for Implicit Incompressible SPH. ACM Transactions on Graphics, 37(2):14:1-14:11, 2018. Presented at SIGGRAPH 2018.
[3] S. Band, C. Gissler, A. Peer, and M. Teschner. MLS Pressure Boundaries for Divergence-Free and Viscous SPH Fluids. Computers \mathcal{E} Graphics, 76:37-46, 2018.
[4] J. Bender and D. Koschier. Divergence-Free SPH for Incompressible and Viscous Fluids. IEEE Transactions on Visualization and Computer Graphics, 23(3):1193-1206, 2017.
[5] M. Ihmsen, J. Cornelis, B. Solenthaler, C. Horvath, and M. Teschner. Implicit incompressible SPH. IEEE Transactions on Visualization and Computer Graphics, 20(3):426-435, 2014.
[6] Jacob, Benoît and Guennebaud, Gaël. Eigen. https://eigen.tuxfamily org, 2018.
[7] J. J. Monaghan. Smoothed Particle Hydrodynamics. Reports on Progress in Physics, 68(8):1703, 2005.
[8] M. Müller, R. Keiser, A. Nealen, M. Pauly, M. H. Gross, and M. Alexa. Point Based Animation of Elastic, Plastic and Melting Objects. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 141151. Eurographics Association, 2004.
[9] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. $N u-$ merical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, New York, NY, USA, 3 edition, 2007.
[10] S. Rosswog. SPH Methods in the Modelling of Compact Objects. Living Reviews in Computational Astrophysics, 1(1), 2015.
[11] B. Solenthaler and R. Pajarola. Predictive-corrective Incompressible SPH. ACM Transactions on Graphics, 28(3):40:1-40:6, 2009.

