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Stefan Band

1 Mass of a boundary particle

Iterative solvers such as PCISPH [11], IISPH [5] or DFSPH [4] compute a
pressure field p and apply pressure accelerations of the form

ap
f = −

∑
j

mj

(
pf
ρ2f

+
pj
ρ2j

)
∇W fj −

∑
b

mb

(
pf
ρ2f

+
pb
ρ2b

)
∇W ffb (1)

to fluid particles f [3]. Here, j and b denote fluid and boundary neighbors of
fluid particle f , respectively. Equation (1) requires a notion of mass mb and
density ρb at boundary particles b.

The mass mb at a boundary particle b can be geometrically motivated from the
boundary particle volume Vb [1, 10, 2], i.e. the mass mb can be derived from the
relation mb = ρbVb. Since the density ρb is typically set to the rest density of
the adjacent fluid particle [1], i.e.

ρb = ρf , (2)

the mass mb of a boundary particle b can be computed as

mb = ρ0fV
0
b , (3)

where ρ0f denotes the rest density of fluid particle f and the rest volume V 0
b is [2]

V 0
b =

γ∑
bb
Wbbb

. (4)

The computation of Eq. (4) only processes boundary neighbors bb of a boundary
particle b as the rest volume does not depend on possibly adjacent fluid particles
[2]. As only one layer of boundary particles is used to represent the surface of the
boundary [1], the coefficient γ accounts for an incomplete neighborhood. The
coefficient depends on the choice of the SPH kernel function. For the cubic spline
kernel [7] with a smoothing length of two times the particle size h, γ ≈ 0.7 [2].
This motivated by the fact that 0.7/

∑
bb
Wbbb = h3 for boundary particles that

are evenly sampled in a plane. See Fig. 1 for an illustration of the derivation.
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Figure 1: Cross section of a boundary plane with color-coded SPH kernel weights.
In 3D, red represents 31.8%, orange 8% and yellow 1.6% of the total kernel
weight. Due to missing particle neighbors (crossed), the sum of kernel weights of
the central particle is not 100% but 1 · 31.8% + 4 · 8% + 4 · 1.6% = 70.2%.

Implementation Employing Eqs. (2) to (4), the pressure acceleration of a
fluid particle f , Eq. (1), can be computed as

ap
f = −

∑
j

mj

(
pf
ρ2f

+
pj
ρ2j

)
∇W fj −

∑
b

ρ0fV
0
b

(
pf
ρ2f

+
pb
ρ2f

)
∇W fb . (5)

2 Pressure Extrapolation with MLS

The pressure pb at boundary particle b is computed as

pb = (1, x̄b, ȳb, z̄b)
T · cb , (6)

where cb = (αb, βb, γb, δb)
T
is a vector of unknown coefficients. The first parame-

ter αb is the weighted average of the pressure values of fluid particles bf adjacent
to boundary particle b:

αb =

∑
bf

pbfVbfWbbf∑
bf

VbfWbbf

, (7)

The other parameters βb, γb and δb are obtained by solving βb

γb
δb

 =

∑
bf

 x̄2
bf

x̄bf ȳbf x̄bf z̄bf
x̄bf ȳbf ȳ2bf ȳbf z̄bf
x̄bf z̄bf ȳbf z̄bf z̄2bf

VbfWbbf

−1

∑
bf

 x̄bf

ȳbf
z̄bf

 pbfVbfWbbf . (8)

Implementation In our experiments, we experienced issues with a singular
matrix in Eq. (8) for boundary particles whose fluid neighbors are co-linear or
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co-planar. In these cases, we follow [8] and use safe inversion via Singular Value
Decomposition (SVD) [9] to avoid the problems with singular matrices. We use
the SVD implementation of [6].

Also, we set βb, γb and δb to zero if ||
∑

bf

(
x̄bf , ȳbf , z̄bf

)T
pbfVbfWbbf || < ϵ, where

ϵ is a small value, e.g., 10−5. This results in a pressure value pb = αb.
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