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Implicit incompressible SPH (IISPH) solves a pressure Poisson equation

(PPE). While the solution of the PPE provides pressure at fluid samples, the

embedded boundary handling does not compute pressure at boundary sam-

ples. Instead, IISPH uses various approximations to remedy this deficiency.

In this paper, we illustrate the issues of these IISPH approximations. We

particularly derive Pressure Boundaries, a novel boundary handling that

overcomes previous IISPH issues by the computation of physically meaning-

ful pressure values at boundary samples. This is basically achieved with an

extended PPE. We provide a detailed description of the approach that focuses

on additional technical challenges due to the incorporation of boundary

samples into the PPE. We therefore use volume-centric SPH discretizations

instead of typically used density-centric ones. We further analyze the prop-

erties of the proposed boundary handling and compare it to the previous

IISPH boundary handling. In addition to the fact that the proposed boundary

handling provides physically meaningful pressure and pressure gradients

at boundary samples, we show further benefits such as reduced pressure

oscillations, improved solver convergence and larger possible time steps.

The memory footprint of fluid samples is reduced and performance gain

factors of up to five compared to IISPH are presented.
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1 INTRODUCTION
Incompressible SPH (ISPH) has recently gained attention in the

graphics community as a promising alternative to previous non-

iterative, e.g. [Becker and Teschner 2007; Müller et al. 2003], or

iterative state-equation solvers, e.g. [He et al. 2012; Shao and Lo
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2003; Solenthaler and Pajarola 2009]. ISPH solves a pressure Poisson

equation (PPE) to compute pressure values at fluid samples in a

global way, e.g. [Cummins and Rudman 1999; Goswami et al. 2010;

Ihmsen et al. 2014a; Takahashi et al. 2016]. As outlined in [Ihmsen

et al. 2014b], various source terms can be used in the PPE that either

encode the predicted density error or the predicted divergence of the

velocity field. These formulations can also be combined in various

ways. E.g., [Bender and Koschier 2017] indicates that a combination

of two pressure solvers that resolve both, density deviations and the

divergence of the velocity field, can improve the overall performance

of the pressure computation. In this paper, we build upon implicit

incompressible SPH (IISPH) with the density invariance condition

as source term [Ihmsen et al. 2014a].

Related work. Representing solid boundaries with particles is pop-

ular in SPH fluids [Bender and Koschier 2017; Ihmsen et al. 2014a;

Monaghan 2005; Takahashi et al. 2016], since particle-based repre-

sentations are very flexible and can handle arbitrarily shaped ge-

ometries. E.g., in [Monaghan 2005], boundary particles exert penalty

forces on the surrounding fluid samples as soon as they are within

a certain distance. Penalty forces should prevent fluid samples from

penetrating the boundary. However, small time steps are required

to produce a smooth pressure field, since these forces also lead to

large pressure variations within the fluid. In order to achieve larger

time steps, the direct forcing method has been proposed in [Becker

et al. 2009]. In this method, one- and two-way-coupled solid ob-

jects are handled by computing control forces and velocities with

a predictor-corrector-scheme. But, due to an incomplete support

domain, approximating field variables at boundaries is problematic

with SPH. As a result, fluid samples tend to stick to the boundary if

the direct forcing method or a distance-based penalty force is used.

Ghost particles [Colagrossi and Landrini 2003; Schechter and Brid-

son 2012; Yildiz et al. 2009] are another technique to treat boundaries.

For fluid samples that are located at a certain distance to the bound-

ary, a ghost particle is generated, which has the same viscosity, mass,

density and pressure as its associated fluid sample. For complex ge-

ometries, however, generating such ghost particles is challenging.

In addition, the sampling of the boundary has a significant influ-

ence on the numerical stability and quality of the simulation. While

simple objects can be easily represented by uniformly distributed

samples, e.g. [Adami et al. 2012], complex objects can not. Based

on the concept of the number density [Ott and Schnetter 2003; So-

lenthaler and Pajarola 2008], [Akinci et al. 2012] treats irregular

samplings by computing volume contributions and by mirroring
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the hydrodynamic quantities of a fluid sample, i.e. density and pres-

sure, onto its neighboring boundary samples. While adhering to the

concept of SPH, this approach is efficient to compute and allows a

versatile coupling of fluids and solid objects. Employing a Moving

Least Squares technique, [Band et al. 2017] extended the boundary

handling of [Akinci et al. 2012] to improve the accuracy of the den-

sity estimate and normal computation in planar regions. They try

to locally reconstruct the surface of the true boundary by fitting

boundary particles to a plane, resulting in a smooth representation

of the boundary. Recently, an implicit representation of static and

dynamic rigid boundaries has been proposed [Koschier and Ben-

der 2017]. This approach allows an efficient density and boundary

normal evaluation based on a pre-computed density map. All these

techniques, however, do not solve a system to compute consistent

pressure at the boundary.

Our contribution. Wepropose Pressure Boundaries, a novel bound-

ary handling for IISPH that computes pressure values at boundary

samples using the PPE. In contrast to IISPH, approximate or in-

consistent assumptions are avoided. Instead, pressure values are

computed that realize a physically meaningful pressure gradient at

the discretized fluid-solid interface. This improves the robustness of

the boundary handling, in particular the number of required solver

iterations is reduced compared to IISPH. Performance gain factors

of up to five have been achieved in the presented experiments. The

proposed solution also works with larger time steps compared to

IISPH. Further, Pressure Boundaries reduce artificial pressure oscil-

lations that can occur in IISPH due to simplifying assumptions on

boundary pressures.

Differences and benefits over IISPH. IISPH mirrors pressure values

from fluid samples to adjacent boundary samples which has vari-

ous issues. First, the pressure gradient is not correct at fluid-solid

interfaces. Second, a boundary sample can have different pressure

values mirrored from adjacent fluid samples. Third, all boundary

samples adjacent to a fluid particle have the same pressure value.

These issues are addressed in the proposed approach by computing

unique, physically meaningful pressure values at boundary samples.

Figs. 1a and 1b illustrate the issues of the IISPH boundary handling.

Fig. 1c indicates the desired pressure distribution that we achieve

with the proposed Pressure Boundaries.

2 METHOD
Here, we first recapitulate the general idea of ISPH, followed by the

specific PPE discretization of IISPH. Issues in the boundary han-

dling of IISPH are explained and the proposed boundary handling

is motivated. Afterwards, the concept and details of the proposed

boundary handling are described.

2.1 ISPH
ISPH [Cummins and Rudman 1999] computes the pressure field p
by solving a PPE of the form ∇2p = s with s being a source term

that either encodes the divergence of a predicted velocity field, a

predicted density deviation or a combination of both. As the pressure

field is computed from a global formulation, it is typically rather

(a) (b) (c)

Fig. 1. The illustrations show boundary samples (gray) and fluid samples
(blue). Pressure is color-coded. 1a: IISPH erroneously assumes equal pressure
values at all boundary samples adjacent to the same fluid sample. The
arrow indicates the limitation that the resulting pressure force exerted from
boundary samples only varies in magnitude, but not in direction. 1b: At the
same time, IISPH assumes several, potentially inconsistent pressure values
at one boundary sample if this sample is adjacent to several fluid samples.
1c: In contrast, the proposed Pressure Boundary method computes unique
and physically meaningful pressure values at boundary samples.

smooth which positively affects the stability compared to, e.g., state-

equation solvers [Adams et al. 2007; Monaghan 1994; Müller et al.

2005]. One option to derive a PPE with density invariance as source

term is to start with the mass conservation law:

Dρ(t + ∆t)

Dt
+ ρ(t + ∆t)∇ ·v(t + ∆t) = 0 . (1)

v denotes the velocity, ρ denotes the density, t and ∆t denote time

and time step. Introducing the constraint ρ(t + ∆t) = ρ0, with ρ0

denoting the rest density, using a backward difference for
Dρ(t+∆t )

Dt
and

v(t + ∆t) = v(t) + ∆tanon-p(t)︸                 ︷︷                 ︸
v∗(t+∆t )

−∆t
1

ρ0
∇p(t) (2)

with anon-p(t) denoting all non-pressure accelerations, we get

ρ(t + ∆t) − ρ(t)

∆t
+ ρ0 ∇ ·

(
v∗(t + ∆t) − ∆t

1

ρ0
∇p(t)

)
= 0 . (3)

This equation can be written as

ρ0 −
(
ρ(t) − ∆tρ0∇ ·v∗(t + ∆t)

)
∆t

− ∆t∇2p(t) = 0 . (4)

The term ρ∗(t + ∆t) = ρ(t)−∆tρ0∇ ·v∗(t + ∆t) is an approximation

of the predicted density at time t + ∆t , resulting in the following

form of the PPE:

∆t2∇2p(t) = ρ0 − ρ∗(t + ∆t) . (5)

Solving this PPE results in pressure values p(t) and respective veloc-
ity changes −∆t 1

ρ0
∇p(t) that correct the predicted density deviation

ρ0 − ρ∗(t + ∆t) to make the fluid incompressible.

2.2 IISPH
IISPH [Ihmsen et al. 2014a] is a specific discretization of ∆t2∇2p(t)
that is motivated by two reasons. First, it addresses the issue of

operator inconsistency in SPH. As the SPH discretization of ∇2p is
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generally not equal to the SPH discretization of ∇ · ∇p, i.e. ⟨∇2p⟩ ,
⟨∇ · ⟨∇p⟩⟩, IISPH discretizes ⟨∇ · ⟨∇p⟩⟩ rather than ⟨∇2p⟩.
According to [Cummins and Rudman 1999], the IISPH discretiza-

tion is an accurate projection scheme which is in contrast to approx-

imate projection schemes that discretize ⟨∇2p⟩. The convergence
of IISPH and one particular approximate projection has been com-

pared in, e.g. [Ihmsen et al. 2014a]. In the respective test scenarios,

IISPH required less solver iterations than the approximate projection

variant. Ihmsen et al. argue that the consideration of second-ring

neighbors in IISPH improves its convergence. Another reason could

be the fact that the same discretization ⟨∇p⟩ is consistently used in

the computation of the pressure acceleration ap(t) = − 1

ρ0
∇p(t). It

can also be speculated that the formulation and the discretization

of the source term in IISPH positively affect the iteration count.

In addition to the comparatively low iteration count of the IISPH

solver, a second motivation is the performance compared to other

pressure solvers and the comparatively low memory consumption

of IISPH in combination with a simple implementation. Although

IISPH considers neighbors of neighbors, it can be implemented in a

matrix-free way. The experiments in [Ihmsen et al. 2014a] indicate

that IISPH is faster than iterative state-equation solvers for large

scenarios, while the matrix-free implementation of the relaxed Ja-

cobi technique for solving the PPE just requires the storage of seven

additional scalar values per sample. Accordingly, IISPH uses the

following two discretizations at a fluid sample position f :

−
1

ρ0f
∇pf (t) = a

p

f (t) = −
∑
ff

mff
©­«
pf (t)

ρ2f (t)
+
pff (t)

ρ2ff
(t)

ª®¬∇W f ff (t)

−
∑
fb

mfb

pf (t)

ρ2f (t)
∇W f fb (t) (6)

with ff denoting fluid neighbors and fb denoting boundary neigh-

bors of f and

∆t2∇2pf (t) = ∆t2
∑
ff

mff

(
a
p

f (t) − a
p

ff
(t)

)
· ∇W f ff (t)

+∆t2
∑
fb

mfba
p

f (t) · ∇W f fb (t) = ρ0f − ρ∗f (t + ∆t) (7)

which gives the PPE discretization.

Boundaries in IISPH are handled by pressure mirroring as pro-

posed in, e.g., [Akinci et al. 2012]. As can be seen in Eq. (6), IISPH

computes the pressure acceleration at fluid samples f due to bound-

ary neighbors fb with

∑
fb mfb

pf (t )
ρ2

f (t )
∇W f fb (t) which is an approxi-

mation of

∑
fb mfb

pfb (t )
ρ2

fb
(t )

∇W f fb (t). This approximation is obtained

from the mirroring assumptions pfb (t) = pf (t) and ρfb (t) = ρf (t).
Further, since the computation of the pressure acceleration at a

boundary sample is more involved (as all pressure forces at bound-

ary samples have to be accumulated first to finally predict the next

state of the boundary samples) IISPH uses the simplifying assump-

tion that boundary samples b are not accelerated, i.e. a
p

b (t) = 0. This
can be seen in Eq. (7) where the term ∆t2

∑
fb mfba

p

f (t) · ∇W f fb (t)

is a simplification of ∆t2
∑
fb mfb (a

p

f (t) − a
p

fb
(t)) · ∇W f fb (t) due

to a
p

fb
(t) = 0. However, this simplification is correct for one-way

coupled static and kinematic boundaries.

The mirroring assumptions lead to the artifacts illustrated in

Fig. 1. From the perspective of a fluid sample, all adjacent boundary

samples have the same pressure (see Fig. 1a). Further, different

pressure values are considered at a boundary sample, if this sample

has more than one fluid neighbor (see Fig. 1b).

2.3 IISPH with Pressure Boundaries
In order to avoid the illustrated artifacts and to realize a consistent

pressure gradient at boundary samples (see Fig. 1c), we propose a

novel PPE discretization that introduces changes to Eqs. (6) and (7).

Sec. 2.3.1 derives the novel PPE discretization at fluid and boundary

samples. Sec. 2.3.2 describes the computation, i.e. the implementa-

tion of all quantities that are required to solve the PPE. Sec. 2.3.3

motivates the employed notation where we prefer to work with

sample volumes instead of densities.

2.3.1 Proposed PPE Discretization. In contrast to Eq. (6), we pro-

pose to compute the pressure acceleration at a fluid sample f in a

unified way. Omitting time indices, we use

a
p

f = −
Vf

mf

∑
fj

Vfj

(
pf + pfj

)
∇W f fj (8)

withVf denoting the actual volume of sample f . This discretization
has been used in, e.g. [Colagrossi and Landrini 2003] and is a variant

of the so-called generalized SPH derivative operators as discussed,

e.g. in [Price 2012]. An alternative derivation of this discretization

is outlined in appendix A. Note that the sum in Eq. (8) processes

all fluid and boundary neighbors fj of the fluid sample f in the

same way. Approximating assumptions on boundary pressures as

in Eq. (6) are avoided and linear momentum is preserved.

In contrast to IISPH, we propose a PPE discretization that does

not only consider unknown pressure at fluid samples, but also at

boundary samples. I.e., the system consists of one equation per

unknown pressure at a fluid sample and one equation per unknown

pressure at a boundary sample. This novel formulation overcomes

the mirroring assumptions of IISPH. It computes pressure values at

boundary samples which are consistent with pressures at adjacent

fluid samples (see Fig. 1c). At fluid samples, we use

∆t2
∑
ff

Vff

(
a
p

f − a
p

ff

)
· ∇W f ff

+ ∆t2
∑
fb

Vfba
p

f · ∇W f fb = 1 −

V 0

f

Vf
+ ∆t∇ ·v∗

f . (9)

with V 0

f denoting the rest volume of sample f . This equation is

closely related to Eq. (7) and derived in appendix A. The velocity

divergence ∇ ·v∗
f is discretized with Eq. (16). It is a variant of the

generalized SPH derivative operators [Price 2012] and commonly

used as SPH divergence operator. Despite the similarity to Eq. (7),

Eqs. (7) and (9) differ in the computation of the pressure accelerations

a
p

f (Eq. (6) vs. Eq. (8)). The additional equations at boundary samples
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can be derived from Eq. (9) by using a
p

b (t) = 0, as in IISPH:

−∆t2
∑
bf

Vbf a
p

bf
· ∇W bbf = 1 −

V 0

b
Vb
+ ∆t∇ ·v∗

b . (10)

Here, the velocity divergence ∇ · v∗
b is discretized with Eq. (17)

analogous to the divergence operator used in Eq. (9). Eqs. (9) and (10)

constitute the proposed PPE discretization Ap = s with p denoting

the vector of all pressure values at fluid and boundary samples.

Accordingly, Eqs. (9) and (10) can be denoted as (Ap)f = sf and

(Ap)b = sb , respectively.

2.3.2 Computation of Required Quantities. In order to solve the

system, various quantities have to be computed: pressure accel-

erations a
p

f at fluid samples, rest volumes V 0

f of fluid and V 0

b of

boundary samples, actual volumes Vf of fluid and Vb of boundary

samples and also velocity divergences ∇ ·v∗
f at fluid and ∇ ·v∗

b at

boundary samples.

Rest volumes. The rest volume of a fluid sample is computed as

V 0

f = h
3

(11)

withh being the initial sample distance, i.e. the edge length of a cube-

shaped fluid sample that is typically used for the initial sampling of

the fluid body. The rest volume of a boundary sample is computed

as

V 0

b =
γ∑

bb Wbbb
. (12)

It is intuitively clear that this computation only processes boundary

neighbors as the rest volume of a boundary sample does not depend

on possibly adjacent fluid samples. The coefficient γ is inspired

by [Akinci et al. 2012] and accounts for an incomplete neighborhood

of boundary samples as we only use one layer of boundary samples

to represent the surface of boundaries. In our experiments, we use

γ = 0.7 in combination with a cubic spline kernel [Monaghan 2005]

with a smoothing length of 2h. This is motivated by the fact that

0.7∑
bb

Wbbb
= h3 for boundary samples that are evenly sampled in a

plane with distance h. Interestingly, Eq. (12) can consider adjacent

boundary samples from different boundary objects. This allows the

handling of intersecting objects. Eq. (12) can also be used to update

the rest volume during a simulation if intersecting boundary objects

move relative to each other.

Actual volumes. If all samples had the same rest volume, the actual

volume of a sample could be computed as Vi =
1∑

ij Wiij
. Due to the

flexible boundary sampling, however, this is not the case. According

to [Rosswog 2015], the volume of a sample can be computed as

Vi =
V 0

i∑
ij V

0

ij
Wiij

which results in

Vf =
V 0

f∑
ff V

0

ff
Wf ff +

∑
fb V

0

fb
Wf fb

(13)

for the actual volume of a fluid sample. The actual volume of a

boundary sample could be computed with the same equation. Anal-

ogous to the rest volume computation, however, we consider the

incomplete neighborhood boundary samples and compute the actual

volume as

Vb =
V 0

b∑
bf V

0

bf
Wbbf +

∑
bb V

0

bb
Wbbb + β

. (14)

We use β = 0.15 · h3 which models a planar boundary sampling

where only one side can be in contact with fluid. For planar bound-

aries where both sides can be in contact with fluid, the offset β
would be zero. Assuming that the neighboring boundary samples

bb of boundary samples b are uniformly distributed on a plane, i.e.

V 0

b = V
0

bb
and using Eq. (12) allows us to simplify Eq. (14) to

Vb =
V 0

b∑
bf V

0

bf
Wbbf + γ + β

(15)

This simplification saves memory and computation time as there

is nothing to compute for boundary samples that have no fluid

neighbors.

Velocity divergences. The velocity divergence at a fluid sample is

computed as

∇ ·v∗
f = −

∑
ff

Vff

(
v∗
f −v∗

ff

)
· ∇W f ff

−
∑
fb

Vfb

(
v∗
f −v∗

fb

)
· ∇W f fb . (16)

For one-way coupled static objects, the velocity v∗
fb

of a bound-

ary neighbor fb is zero. For one-way coupled kinematic objects,

v∗
fb

is user-defined. Hence, one-way coupled objects are accurately

handled. For two-way coupled dynamic objects without prescribed

velocities, we make the simplifying assumption that the pressure

solver does not change the velocity v∗
fb
, i.e. v∗

fb
is computed by

applying all non-pressure forces including collision handling to the

respective solid object. This assumption introduces an error to the

two-way coupling with solid objects. Nevertheless, it still allows for

a plausible simulation of two-way coupled solids, e.g. see [Akinci

et al. 2012; Bender and Koschier 2017; Ihmsen et al. 2014a]. The

opposite of the pressure force at a fluid sample due to a boundary

sample is simply applied to the boundary sample, accumulated and

then applied to the solid object.

Eq. (16) considers the divergence with respect to adjacent fluid

and boundary samples. In contrast, the computation of the veloc-

ity divergence at a boundary sample does not consider adjacent

boundary samples. This corresponds to the fact that there is no

relative movement between boundary samples. While this is true

for samples of the same solid object, the assumption does not hold

for adjacent boundary samples that belong to different objects. As

the rest volume is updated with Eq. (12) in this case, however, there

is generally no density change at a boundary sample due to the rela-

tive movement of boundary samples of another object. Therefore, it

is correct to compute the velocity divergence at a boundary sample

as

∇ ·v∗
b = −

∑
bf

Vbf

(
v∗
b −v∗

bf

)
· ∇W bbf . (17)
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Summary. Eqs. (11) to (17) describe the computations of all terms

of the proposed PPE discretization Ap = s in Eqs. (9) and (10).

2.3.3 Discussion of the Employed Notation. With our volume-

centric notation, we follow, e.g., [Rosswog 2015; Solenthaler and

Pajarola 2008]. As shown in [Solenthaler and Pajarola 2008], the

density computation at interfaces requires special treatments which

can be avoided by using the volume instead. Accordingly, [Solen-

thaler and Pajarola 2008] employs a volume-centric formulation for

the pressure force.

2.4 Solver
Here, we follow [Ihmsen et al. 2014a] and use relaxed Jacobi. This

is motivated by two reasons. On the one hand, [Ihmsen et al. 2014a;

Takahashi et al. 2016] reported issues when using Conjugate Gradi-

ents. On the other hand, the usage of the same solver in IISPH and

in the proposed pressure-boundary formulation enables compar-

isons that focus on the concept instead of the solver implementation.

Pressure values p0i are initialized with zero at all fluid and boundary

samples and then iteratively updated with

pl+1i = max

(
pli + ωi

si − (Apl )i
aii

, 0

)
(18)

where l denotes the iteration number. As negative pressures can

cause instabilities due to attractive forces, we clamp negative pres-

sure to zero in each iteration. The relaxation factor ωi can vary for

each sample. We use ωi = 0.5
V 0

i
h3

in our experiments, i.e. ωf = 0.5

and ωb = 0.5
γ

h3
∑
bb

Wbbb
, which is motivated by the fact that we

experienced convergence issues for constant relaxation factors in

case of large volume ratios of fluid and boundary samples, i.e. very

small boundary samples. The term aii indicates the i-th diagonal

element of A. Its derivation is outlined in appendix B. For a fluid

sample, we get

af f = −∆t2
Vf

mf

������
������∑fj Vfj∇W f fj

������
������
2

− ∆t2Vf
∑
ff

Vff

Vff

mff

������∇W f ff

������2
(19)

and for a boundary sample, we get

abb = −∆t2Vb
∑
bf

Vbf

Vbf

mbf

������∇W bbf

������2 . (20)

Convergence criterion. In ISPH fluid simulations, the average de-

viation from the rest density is commonly used as the pressure

solver’s termination criterion, cf. [Ihmsen et al. 2014b]. However,

our proposed form of the PPE also includes equations for boundary

samples and therefore, boundary samples must be considered too in

the evaluation of the solver’s termination criterion. As mentioned

above, we have a notion of a boundary sample’s volume rather than

its density. Thus, we terminate the Jacobi solver if it has reached a

specified average volume error V error
. This error can be efficiently

calculated in each Jacobi iteration from the residuals r li =
(
Apl

)
i
−si .

The source term si = 1−
V 0

i
Vi +∆t∇ ·v∗

i represents a relative volume

Algorithm 1 IISPH with Pressure Boundaries

procedure Compute Source Term
for each boundary sample b do

compute rest volume V 0

b ◃ Eq. (12)

compute volume Vb ◃ Eq. (15)

for each fluid sample f do
compute volume Vf ◃ Eq. (13)

for each fluid sample f do
predict velocityv∗

f = vf + ∆t a
non-p

f

for each sample i do
compute source term si ◃ RHS of Eqs. (9) and (10)

compute diagonal element aii ◃ Eqs. (19) and (20)

initialize pressure pi

procedure Solve PPE
while not converged do

for each fluid sample f do
compute pressure acceleration (a

p

f )
l ◃ Eq. (8)

for each sample i do
compute (Apl )i ◃ LHS of Eqs. (9) and (10)

update pressure pl+1i ◃ Eq. (18)

procedure Integration
for each fluid sample f do

vf (t + ∆t) = v
∗
f + ∆t a

p

f
x f (t + ∆t) = x f + ∆t vf (t + ∆t)

deviation: the first part represents the current relative volume devi-

ation, while the second term describes a predicted relative volume

deviation due to the divergence of the predicted velocity v∗
i . The

solver computes a pressure field pl such that Apl accounts for the

relative volume deviation in the source term, i.e.

(
Apl

)
i
is also a

relative volume deviation. Thus, we can compute the relative vol-

ume error of sample i from the residual r li . Computing the average

of all residuals of all samples provides us with the average relative

volume error

V error =
1

N

N∑
i=1

���r li ��� . (21)

Please note that the volume error V error
can be easily converted to

a density error and hence, both error variants are equivalent.

2.5 Implementation
The term (Apl )i is computed in two steps. First, the pressure accel-

erations (a
p

f )
l
are computed for fluid samples with Eq. (8). Then, the

LHS of Eqs. (9) and (10) are computed to get (Apl )f and (Apl )b for

fluid and boundary samples. Algorithm 1 summarizes the simulation

update.

IISPH. To compare Pressure Boundaries with IISPH, we focus on

the concept of computing individual pressure values for boundary

samples rather than on specific implementation details. Therefore,
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our implementation of IISPH is also based on the volume formula-

tion of the PPE, i.e. we use Eq. (9) as the building block for the IISPH

pressure solver instead of Eq. (7). It is also interesting to note that

the pressure update in Eq. (18) is much easier to read and requires

less floating point operations and thus is faster to compute than

Eq. (16) in the original IISPH paper [Ihmsen et al. 2014a]. Therefore,

we update the pressure values of fluid samples in our IISPH imple-

mentation as in Eq. (18). In summary, our implementation of IISPH

is optimized in the same way as our implementation of Pressure

Boundaries. This means that the presented performance gain factors

in Sec. 3 would be larger if we would have used the original IISPH

implementation from [Ihmsen et al. 2014a].

Differences to IISPH. In contrast to IISPH [Ihmsen et al. 2014a], we

store only five additional scalar values per fluid sample instead of

seven: one for the diagonal element af f , one for the source term sf
and three for the pressure acceleration a

p

f . Since we incorporate

pressure values of boundary samples into the PPE, we require two ad-

ditional loops over boundary samples in the ComputeSourceTerm

procedure to compute their actual volumes, diagonal elements and

source terms, i.e. we also have to store three additional scalar val-

ues for each boundary sample: the actual volume Vb , the diagonal
element abb and the source term sb . In the relaxed Jacobi iterations,

we require one additional loop over boundary samples to update

their pressure values. As the loops have no data dependencies, they

are well suited for parallel architectures.

3 RESULTS
In this section, we compare the proposed Pressure Boundaries with

standard IISPH [Ihmsen et al. 2014a]. All presented scenarios have

been computed on a 12-core 2.6GHz Intel Xeon E5-2690 with 32GB

of RAM.

In our implementation, we employ compact hashing [Ihmsen et al.

2011] for finding particle neighbors. For the SPH interpolation, we

use the cubic spline kernel [Monaghan 2005] with a support of 2h.
Furthermore, we model surface tension and drag forces as proposed

in [Akinci et al. 2013] and [Gissler et al. 2017], respectively. In order

to demonstrate the applicability of our approach to two-way coupled

dynamic objects, we integrated the Bullet physics library [Coumans,

Erwin 2018] in our simulation framework. All computations are

parallelized with Intel Threading Building Blocks [Pheatt 2008]. We

used [FIFTY2 Technology 2018] to reconstruct the fluid surface. The

ray-traced images were rendered with [Side Effects Software 2018].

3.1 Pillar
For the comparisons of the proposed Pressure Boundaries to stan-

dard IISPH, we use a fluid pillar within a box-shaped boundary

of size 0.25m × 0.25m × 10m and a sample size of 10
−6

m
3
. The

scenario consists of 480 k fluid samples and 100 k boundary samples.

The convergence criterion is set to a relative average volume error

of 0.01 %. The rest density of the fluid is set to 1000 kgm
−3
. In all

tests, we use XSPH viscosity [Schechter and Bridson 2012] with a

coefficient of 0.05 and a time step of 0.1ms, if not stated otherwise.

Pressure oscillations. Fig. 2 shows the average pressure over time

for both methods. It can be seen that Pressure Boundaries reduce
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Fig. 2. Oscillations of the average pressure in the fluid pillar.
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Fig. 3. Kinetic energy in the fluid pillar.

erroneous oscillations in the pressure field. In the same context,

Fig. 3 shows improved values for the kinetic energy which is smaller

and less fluctuating for Pressure Boundaries compared to IISPH.

Performance aspects. The reduced pressure oscillations result in

an improved solver convergence for Pressure Boundaries. Tab. 1

shows that that IISPH requires about 37 iterations per simulation

step, while the Pressure Boundary technique requires about 10 itera-

tions. The reduced iteration count, however, is partially neutralized

by the fact that Pressure Boundaries solve a larger PPE compared to

IISPH. Nevertheless, the Pressure Boundary method computes the

pressure field in 92ms, while IISPH needs 320ms. Fig. 4 indicates

that Pressure Boundaries are stable for larger time steps compared

to IISPH. In the pillar scenario, it is possible to increase the time

step from 0.1ms to 0.35ms for Pressure Boundaries, while IISPH

tends to get unstable for time steps larger than 0.1ms.

Solver parameters. The relaxation coefficient ω governs the con-

vergence of the Relaxed Jacobi solver in Eq. (18). As indicated in

Fig. 5, larger values of ω reduce the required number of solver it-

erations. However, we could not arbitrarily increase ω, since only

values in the range 0 < ω ≤ 0.5
V 0

i
h3

resulted in stable solutions for

our Pressure Boundary formulation. As shown in Fig. 6, the aver-

age and maximum pressure of the computed pressure field have

approximately equal values for varying relaxation coefficients ω.
As shown in [Bender and Koschier 2017], the convergence of

the solver can be improved by performing a warm start. For this

purpose, a second solver parameter is used to initialize the pressure

field. E.g., initial pressure values p0i can be set as p0i = λ · pi (t − ∆t)
with 0 ≤ λ ≤ 1. This parameter influences the solver’s performance

since larger values may reduce the iteration count. Note that λ = 1

works best for Pressure Boundaries, due to the more accurate pres-

sure computation at boundary samples. In contrast to this, IISPH
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(a) IISPH (b) Pressure Boundaries

Fig. 4. Pressure Boundaries work with a time step of up to 0.35ms, while
IISPH is unstable and suffers from leakage. Velocities are color-coded with
blue corresponding to minimal and red corresponding to maximal velocity.
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Fig. 5. Solver iterations for varying relaxation coefficients ω for the fluid
pillar. We generally use a spatially adaptive relaxation coefficient 0 < ω ≤

0.5
V 0

i
h3

. In the pillar scenario, however, all boundary and fluid samples have
the same initial volume V 0

i = h
3 which results in the same coefficient for

all boundary and fluid samples.
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Fig. 6. Average and maximum (dashed) pressure for varying relaxation
coefficients ω for the fluid pillar.

performs best when multiplying the pressure pi (t − ∆t) of the last
simulation step with λ = 0.5 [Bender and Koschier 2017; Ihmsen

et al. 2014a].

3.2 Breaking Dam
In order to compare the required iteration counts of IISPH to our

novel Pressure Boundaries approach, we simulated a breaking dam

Fig. 7. Smooth color-coded pressure field for three consecutive frames of
the Breaking Dam scenario simulated with our approach.

scenario inside a box-shaped domain of size 3m×12m×6mwith 6.4

million fluid and 625 k boundary samples. The particle spacing

was 2mm and we used different fixed time step sizes. Tab. 2 summa-

rizes the iteration measurements for a simulation over ten seconds.

In our experiment, we measured a smaller iteration ratio for smaller

time step sizes, since often the minimum number of iteration was

used. However, for larger time step sizes, due to more accurate pres-

sure values at the boundary, Pressure Boundaries outperforms IISPH

by a factor of about 5.58. This indicates that Pressure Boundaries

scales better compared to IISPH for growing time steps. Further-

more, our approach computes a smooth pressure field over time, as

indicated in Fig. 7.

Two-way coupling. In another experiment, we placed several rigid

bodies into the breaking dam scenario and simulated it for twenty

seconds with a variable time step. The results are shown in Fig. 8

and in the accompanying video.

3.3 Tank
The pressure computation at boundary samples does not only pos-

itively affect the robustness and efficiency of the IISPH solver for

animation purposes, but it can also be helpful in engineering ap-

plications. Fig. 9 illustrates a tank scenario (7m × 1.05m × 1.3m)

with different internal geometries with the aim to minimize slosh-

ing. In contrast to standard IISPH, Pressure Boundaries enable the

analysis of computed pressure values at the boundary. Each of the

three scenarios consists of 17.5 million fluid samples and 1.3 million

boundary samples. The particle spacing is 5mm and the average

time step is 0.47ms. Each scenario is simulated for 15 seconds. The

total computation time per simulation step is 5.1 s on average with

Pressure Boundaries and 6.4 s with IISPH. Each PPE solve of our

Pressure Boundaries approach requires 1.46 s with an average itera-

tion count of 4.4, whereas IISPH requires 2.76 s and 10.2 iterations,

respectively.

3.4 Gear
Pressure Boundaries are particularly appropriate for fast moving

and complex boundary geometries. This is indicated in the scenario

in Fig. 10 where two gears rotate with 1200 revolutions per minute.

The scene is simulated for five seconds and consists of 5.5 million

fluid samples and 750 k boundary samples. The particle spacing

is 1.25mm. Since the particles move very fast, considering the CFL

condition, the size of the time step is small, i.e. 0.02ms, resulting in
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iterations avg. pressure computation time / ∆t

scene particles h avg. ∆t IISPH Pressure Boundaries IISPH Pressure Boundaries

Pillar 480 000 10mm 0.10ms 36.6 10.4 320ms 92ms

Breaking Dam 6.4 million 20mm 1.50ms 226.8 39.8 20 946ms 3757ms

Tank 17.5 million 5mm 0.47ms 10.2 4.4 2763ms 1469ms

Gear 5.5 million 1.25mm 0.02ms 2 2 264ms 271ms

Table 1. Measurements for the scenarios.

iterations avg. pressure computation time / ∆t ratio

∆t IISPH Pressure Boundaries IISPH Pressure Boundaries IISPH / Pressure Boundaries

0.10ms 2.0 2.0 185ms 189ms 0.98

0.15ms 2.3 2.1 212ms 198ms 1.07

0.25ms 5.6 3.4 518ms 323ms 1.60

0.50ms 21.2 12.2 1958ms 1152ms 1.70

0.75ms 44.2 24.3 4101ms 2294ms 1.78

1.00ms 72.2 32.9 6668ms 3106ms 2.15

1.25ms 104.5 36.7 9651ms 3464ms 2.79

1.50ms 226.8 39.8 20 946ms 3757ms 5.58
Table 2. Comparison of IISPH with Pressure Boundaries using different time steps for the Breaking Dam scenario. The tolerated error was set to 0.01 %. The
largest ratio in the pressure computation time is marked bold. For time steps larger than 1.5ms, both IISPH and Pressure Boundaries suffer from leakage.

two iterations per simulation step. The total computation time per

simulation step is 1.22 s on average and 271ms for the SolvePPE

procedure.

4 DISCUSSION
Performance. Wehave presented scenarios, where Pressure Bound-

aries works for larger time steps and requires less solver iterations

compared to IISPH. As previously discussed in [Ihmsen et al. 2014b],

however, it is not possible to draw a general conclusion about the

performance differences of iterative pressure solvers. This is illus-

trated by the varying performance differences in Tab. 2 and by the

range of performance differences in the selected scenarios summa-

rized in Tab. 1.

Iteration count. The number of solver iterations scales with the

time step size and pressure differences in the fluid. One extreme

case would be a single fluid particle where standard state-equation

SPH, e.g. [Becker and Teschner 2007; Monaghan 1992], certainly

has the best performance. Even a huge number of fluid particles

could be efficiently simulated with standard state-equation SPH as

long as there is, e.g., just one layer of fluid particles on a planar

boundary, i.e. small pressure differences. Another extreme case

would be a scenario with much more boundary than fluid samples

where the larger size of the Pressure Boundary PPE would increase

the computation time per solver iteration compared to, e.g., standard

IISPH.

Apart from the question whether iterative solvers are always

the fastest ones, we would definitely always prefer such a solver

over a non-iterative solver for many other reasons, e.g. simple pa-

rameterization, guaranteed density deviation, flexibility in terms of

particle spacing and versatility in terms of scenarios. They are just

easy-to-setup dependable workhorses.

Convergence. We can only speculate about aspects that positively

influence the solver convergence. One aspect is perhaps the con-

sideration of second-ring neighbors in the discretization. A sec-

ond aspect could be the source term. It seems to be a difference

whether current density deviations are taken into account or not. A

velocity-divergence source term just considers the predicted veloc-

ity divergence, i.e. the predicted density deviation, while a density-

invariant source term considers both, the predicted velocity diver-

gence plus the current density error. It is also interesting to note

that the pressure update in the first solver iteration with an initial

pressure p0 = 0, i.e. λ = 0, is equivalent to a standard state equation.

In this case, the divergence of the velocity change due to pressure

accelerations would be Ap0 = 0 and the pressure in Eq. (18) would

be updated with p1i = max(
ωi
aii si , 0). The term si is a relative volume

error that can easily be translated to a density error and
ωi
aii corre-

sponds to the stiffness constant of the state equation. This seems

to indicate that even one solver iteration should give a reasonable

result for a sufficiently small time step.

5 CONCLUSION AND FUTURE WORK
We have presented Pressure Boundaries for IISPH. In contrast to the

previous IISPH boundary handling, approximate assumptions are

avoided. Instead, boundary samples are incorporated into the PPE

formulation which results in physically meaningful pressure values

at boundary samples. In the description of Pressure Boundaries, we

have used volume-centric SPH formulations that make the process-

ing of arbitrarily sized boundary samples more intuitive compared
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Fig. 8. Breaking Dam with 6.4 million fluid particles and two-way coupled
solid objects simulated with our Pressure Boundaries approach. The average
simulation time per time step was 1736ms, whereof the pressure solver
required 578ms.

to density-centric formulations. The presented analyses show an

improved solver convergence and larger possible time steps for Pres-

sure Boundaries compared to the original IISPH boundary handling.

Although Pressure Boundaries solves a larger PPE than the origi-

nal IISPH, its computation is typically faster. While the description

of Pressure Boundaries is based on IISPH, it would be interesting

to investigate the utility of the proposed boundary handling in

combination with other ISPH approaches that use alternative, but

generally similar PPE formulations.
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Fig. 9. Tank sloshing scenario with three different geometries (top row). Pressure Boundaries compute pressure values at solid boundaries (bottom row) with
color-coded pressure (blue min, red max).

Fig. 10. Gear scene (top row) with color-coded velocities (bottom row). The Pressure Boundary approach is particularly appropriate for fast moving, geometrically
complex boundaries.
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A VOLUME-BASED FORMULATION
Pressure accelerations: Eq. (8) follows from

∇pf = ∇(1 · pf ) = 1 · ∇pf + pf · ∇1 , (22)
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see, e.g., Eq. (2.31) in [Li and Liu 2004]. Applying the original SPH

approximation results in

∇pf =
∑
fj

Vfjpfj∇W f fj + pf
∑
fj

Vfj∇W f fj

=
∑
fj

Vfj

(
pf + pfj

)
∇W f fj . (23)

PPE discretization: Eq. (9) can be derived, e.g., from the continuity

equation at a fluid sample f :

Dρf (t + ∆t)

Dt
+ ρ0f ∇ ·vf (t + ∆t) = 0 . (24)

Time discretization, assuming incompressibility ρf (t + ∆t) = ρ0f ,

division by ρ0f and using vf (t + ∆t) = v∗
f (t + ∆t) + ∆ta

p

f (t) (see

Eq. (2)), we get

1

∆t
−
ρf (t)

ρ0f ∆t
+ ∇ ·v∗

f (t + ∆t) + ∇ · ∆ta
p

f (t) = 0 . (25)

Solving for ∇ · ∆ta
p

f (t), discretizing it with SPH (see, e.g., Eq. (2.17)

in [Monaghan 2005]) and omitting time indices, we get

∑
fj

Vfj

(
∆ta

p

ff
− ∆ta

p

f

)
· ∇W f fj = −

1

∆t
+

ρf

ρ0f ∆t
− ∇ ·v∗

f . (26)

We multiply by −∆t , replace ρf =
mf
Vf

and ρ0f =
mf

V 0

f
to finally get

∆t2
∑
fj

Vfj

(
a
p

f − a
p

ff

)
· ∇W f fj = 1 −

V 0

f

Vf
+ ∆t∇ ·v∗

f . (27)

B DIAGONAL ELEMENTS
Fluid samples: We first extract the coefficients in the pressure

accelerations in Eq. (8):

a
p

f = −
Vf

mf

∑
fj

Vfj

(
pf + pfj

)
∇W f fj

= −
Vf

mf

∑
fj

Vfjpf ∇W f fj

−
Vf

mf

∑
fj,f

Vfjpfj∇W f fj −
Vf

mf
Vf pf ∇W f f︸ ︷︷ ︸

=0

=
©­«−

Vf

mf

∑
fj

Vfj∇W f fj
ª®¬︸                      ︷︷                      ︸

c f

pf

+
∑
fj,f


(
−
Vf

mf
Vfj∇W f fj

)
︸                 ︷︷                 ︸

d f fj

pfj


=cf pf +

∑
fj,f

(df fjpfj ) . (28)

This formulation is now applied to Eq. (9) and we get

(Ap)f =∆t
2

∑
ff

Vff

(
a
p

f − a
p

ff

)
· ∇W f ff

+ ∆t2
∑
fb

Vfba
p

f · ∇W f fb

=∆t2
∑
ff

Vff

©­«cf pf +
∑
fj,f

df fjpfj
ª®¬

−
©­­«cff pff +

∑
ffj ,ff

dff ffj
pffj

ª®®¬
 · ∇W f ff

+ ∆t2
∑
fb

Vfb
©­«cf pf +

∑
fj,f

df fjpfj
ª®¬ · ∇W f fb . (29)

The pressure coefficient af f , i.e. the diagonal element of A, follows
as

af f =∆t
2

∑
ff

Vff cf · ∇W f ff

− ∆t2
∑
ff

Vff dff f · ∇W f ff

+ ∆t2
∑
fb

Vfbcf · ∇W f fb . (30)

The derivation of the coefficient from Eq. (29) is rather straight-

forward when we consider that there exist a j with ffj = f and
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that ∇W f ff = 0 for ff = f . The formulation in Eq. (30) requires

the computation of a nested sum which can be avoided. Using the

definitions of c and d , we get

af f = − ∆t2
∑
ff

Vff
©­«
Vf

mf

∑
fj

Vfj∇W f fj
ª®¬ · ∇W f ff

+ ∆t2
∑
ff

Vff

Vff

mff
Vf ∇W ff f · ∇W f ff

− ∆t2
∑
fb

Vfb
©­«
Vf

mf

∑
fj

Vfj∇W f fj
ª®¬ · ∇W f fb . (31)

The first sum of fluid neighbors and the third sum of boundary neigh-

bors can be combined to a sum of all neighbors. Further, ∇W ff f is

written as −∇W f ff :

af f = − ∆t2
Vf

mf

∑
fj

©­«
∑
fj

Vfj∇W f fj
ª®¬ ·Vfj∇W f fj

− ∆t2Vf
∑
ff

Vff

Vff

mff
∇W f ff · ∇W f ff . (32)

We finally get the diagonal element of A for a fluid sample as

af f = −∆t2
Vf

mf

������
������∑fj Vfj∇W f fj

������
������
2

− ∆t2Vf
∑
ff

Vff

Vff

mff

������∇W f ff

������2 .
(33)

Boundary samples: We use the notation of Eq. (28) to rewrite

Eq. (10) as

(Ap)b = − ∆t2
∑
bf

Vbf a
p

bf
· ∇W bbf

= − ∆t2
∑
bf

Vbf
©­­«cbf pbf +

∑
bfj ,bf

dbf bfj
pbfj

ª®®¬ · ∇W bbf .

(34)

As there exists a j with bfj = b, we get

abb = ∆t2
∑
bf

Vbf dbf b · ∇W bbf = −∆t2Vb
∑
bf

Vbf

Vbf

mbf

������∇W bbf

������2
(35)

for the diagonal element of A for a boundary sample.
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