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Fig. 1. SPH fluid with 43.8𝑀 particles in a terrain with 50𝑀 static rigid particles is two-way coupled with a water wheel that is connected to a gate via gears
and a chain. Gears, chain and water gate are represented with 2.3𝑀 dynamic rigid particles. Up to 90𝑘 simultaneous rigid-rigid contacts are handled.

We present a strong fluid-rigid coupling for SPH fluids and rigid bodies with
particle-sampled surfaces. The approach interlinks the iterative pressure
update at fluid particles with a second SPH solver that computes artificial
pressure at rigid body particles. The introduced SPH rigid body solver mod-
els rigid-rigid contacts as artificial density deviations at rigid body particles.
The corresponding pressure is iteratively computed by solving a global
formulation which is particularly useful for large numbers of rigid-rigid
contacts. Compared to previous SPH coupling methods, the proposed con-
cept stabilizes the fluid-rigid interface handling. It significantly reduces the
computation times of SPH fluid simulations by enabling larger time steps.
Performance gain factors of up to 58 compared to previous methods are
presented. We illustrate the flexibility of the presented fluid-rigid coupling by
integrating it into DFSPH, IISPH and a recent SPH solver for highly viscous
fluids. We further show its applicability to a recent SPH solver for elastic
objects. Large scenarios with up to 90𝑀 particles of various interacting ma-
terials and complex contact geometries with up to 90𝑘 rigid-rigid contacts
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are shown. We demonstrate the competitiveness of our proposed rigid body
solver by comparing it to Bullet.
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1 INTRODUCTION
Particle-sampled solids are a popular basis for the boundary han-
dling in SPH fluid simulations (see e.g. [Ihmsen et al. 2014b]). The
density computation at fluid particles considers contributions from
nearby boundary particles and the pressure — derived from density
deviations — induces interface forces. This concept works for one-
way and two-way coupling where the interface forces do not only
affect the fluid velocity field, but also the velocity of rigid bodies.
When implemented in iterative pressure solvers, the computed

contact forces are often only applied after finishing the pressure com-
putation. E.g., Akinci et al. [2012] use this concept in combination
with PCISPH [Solenthaler and Pajarola 2009], Ihmsen et al. [2014a]
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in combination with IISPH and Bender and Koschier [2017] in com-
bination with DFSPH. In these works, the velocities of rigid particles
are kept constant during the solver process that iteratively updates
the fluid pressure. We show that this concept causes substantial is-
sues in the two-way coupling for practically relevant scenarios. E.g.,
instabilities can cause void regions at fluid-rigid interfaces and the
simulation result is severely distorted. A simplistic solution would
be a reduced time step size. This, however, lowers the performance
and is also difficult to implement as the reduced step size cannot be
simply derived from the CFL condition.

Contribution:We propose to stabilize the handling of SPH fluid-
rigid interfaces by using a strong fluid-rigid coupling, where the
velocities of rigid body particles are updated in each iteration of the
fluid pressure solver. Our update considers fluid-rigid and rigid-rigid
contacts that are uniformly handled with the SPH concept. While
the fluid solver is responsible for the fluid-rigid contact forces, a
novel system is solved to compute rigid-rigid contact forces. We
therefore propose an approximate SPH formulation that works with
particle-sampled rigid surfaces. If objects are in contact, an artificial
SPH density deviation is determined which results in the respective
pressure and contact forces that are computed using an implicit
formulation.
We show that our strong coupling of fluid pressure and rigid

body velocities significantly reduces instabilities, i.e. void regions
at fluid-solid interfaces. We further show scenarios where a simi-
lar simulation quality can only be achieved by previous boundary
handling approaches, if the time step size is reduced by one or two
orders of magnitude, resulting in a performance gain factor of up
to 58 for our method. Independently from the fluid-rigid coupling,
we also demonstrate the competitiveness of our rigid body solver
by comparing it to Bullet [Coumans 2018] and showing stability
advantages and performance gains by up to a factor of 9.
Our approach can be combined with iterative SPH pressure sol-

vers and with a boundary handling that computes fluid-rigid in-
terface forces. Although the proposed two-way coupling is tightly
interconnected with the fluid solver, it can still flexibly be used with
various SPH pressure solvers. We emphasize this by deriving our
concept for a generic SPH fluid solver and by presenting experi-
ments with four different solvers: IISPH, DFSPH, a solver for highly
viscous SPH fluids [Peer et al. 2015] and a solver for elastic SPH
solids [Peer et al. 2018]. Our approach does not only handle large
scenarios with up to 90𝑀 particles as shown in Fig. 1. It also handles
complex contact geometries with up to 90𝑘 simultaneous rigid-rigid
contacts.

2 RELATED WORK
The graphics community investigates the two-way coupling of flu-
ids with solid objects in the context of various fluid solver con-
cepts, e.g. two-way coupling for height-field fluids [Chentanez and
Müller 2010; Solenthaler et al. 2011; Thürey et al. 2007], for Lattice-
Boltzmann fluids [Thürey et al. 2006], for the Lagrangian vortex
method [Vines et al. 2014], for model-reduced fluids [Gerszewski
et al. 2015] or for MPM fluids [Yan et al. 2018].

Traditionally, a lot of interesting approaches work with Eulerian
fluids. E.g., the fluid-rigid coupling proposed by Carlson et al. [2004],

and also used by Kwatra et al. [2010] to simulate an articulated
swimmer, treats regions occupied by rigid bodies as fluid during the
pressure solve. Although solid regions are considered in the pressure
solve, the rigidity constraint of these regions is only fulfilled in a
second step. This is resolved by Klingner et al. [2006], where fluid
and rigid constraints are simultaneously enforced. An extension to
deformable solids is presented by Chentanez et al. [2006]. Lentine
et al. [2011] and Tan et al. [2011] both present an improved two-way
coupling for articluated swimming creatures. A strong coupling
with FLIP fluids is proposed by Batty et al. [2007], where rigid
bodies are incorporated into the solver formulation. Rigid-rigid
contacts, however, are handled sequentially in a separate step. The
FLIP-based stream function solver presented by Ando et al. [2015]
treats solid regions as fluid similar to Carlson et al. [2004], but
presents a monolithic solver for the fluid-rigid coupling. Rigid-rigid
contacts are not discussed. Guendelman et al. [2005] focus on the
Eulerian coupling of deformable thin shells, where fluid and solids
are solved separately. In contrast, Robinson-Mosher et al. [2008]
introduce a monolithic solver based on an implicit formulation that
also works for thin shells. In this context, Robinson-Mosher et al.
[2009] propose an improved handling of tangential velocities at
interfaces. Monolithic fluid-solid coupling and the investigation
of the solvability of the respective systems are addressed, e.g., by
Grétarsson et al. [2011]; Patkar et al. [2016]; Robinson-Mosher et al.
[2011]. The method of Robinson-Mosher et al. [2011] is used and
extended towards Chimera grids by English et al. [2013]. Lu et al.
[2016] also build on the approach of Robinson-Mosher et al. [2011]
to couple fluids with reduced deformable objects. A recent cut-cell
method for the strong coupling of Eulerian fluids and deformable
bodies is presented by Zarifi and Batty [2017].

Our paper focuses on Lagrangian fluid formulations. Müller et al.
[2004] show the interaction of fluids and deformable objects. Fluid
and rigid objects are solved sequentially by Clavet et al. [2005]. In
the rigid update step, the fluid particles are considered as rigid and
their penetration into rigid bodies is resolved. Oger et al. [2006]
integrate pressure values of the fluid particles over the surface of
the rigid to compute the coupling forces. Keiser et al. [2006] treat
rigid body particles as fluid to compute interacting forces similar to
the forces used by Carlson et al. [2004]. As these approaches base
on explicit formulations, the simulation time step is rather limited.
A predictor-corrector scheme for two-way fluid-rigid coupling is
proposed by Becker et al. [2009]. Although the coupling bases on a
global formulation to solve for valid relative velocities at interfaces,
non-penetration is only enforced in a subsequent correction of parti-
cle positions. An alternative two-way coupling with pressure-based
SPH boundary forces is introduced by Akinci et al. [2012]. The force
formulation is particularly useful for incomplete neighborhoods
and non-uniform boundary samplings, i.e. one-layer-boundaries
with particles of varying size can be handled. Rigid-rigid contacts
and predicted velocities of rigid objects are not updated during the
fluid solve. Akinci et al. [2013b] extend the concept of Akinci et al.
[2012] to elastic solids. Fujisawa and Miura [2015] propose to adapt
the density computation of fluid particles such that no boundary
particles are needed. However, their approach does not support
two-way coupling. Similarly, Koschier and Bender [2017] propose
density maps instead of boundary particles to compute the influence
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of a rigid body onto the fluid. Here, two-way coupling is realized
by mirroring the interface forces from the fluid to a rigid similar to
the method of Akinci et al. [2012]. Takahashi and Lin [2016] and
Takahashi et al. [2017] classify particles depending on the boundary
condition to improve the convergence of the fluid solver. The com-
puted interface forces are similar to the ones of Akinci et al. [2012].
Oh et al. [2009] propose an impulse-based fluid-rigid coupling which
also can be used to simulate solid-solid interactions with particles.
The approach, however, is local and multiple simultaneous contacts
are resolved subsequently ignoring previous results. Two-way cou-
pling solutions with particle-sampled rigid objects are also used in
frameworks for multiple materials, e.g. [Keiser et al. 2005; Macklin
et al. 2014; Solenthaler et al. 2007]. Recently, Akbay et al. [2018]
proposed an improved two-way coupling which is applicable to
both Eulerian and Lagrangian fluids.
In contrast to the discussed coupling methods, our concept in-

terconnects two SPH pressure solvers to simultaneously resolve
fluid-rigid and rigid-rigid contacts. Rigid-rigid contacts are modeled
as deviations of an artificial SPH density at rigid body particles that
represent the surface of a rigid body. A global formulation is solved
to handle rigid-rigid contacts. The two-way coupling is tightly con-
nected to the fluid solver, but can still be applied to various SPH
pressure solvers.

3 METHOD
We first motivate the addressed two-way coupling issue in existing
iterative SPH fluid solvers in Subsection 3.1. Subsection 3.2 intro-
duces the concept to resolve this issue. In Subsection 3.3, we detail
the fluid-rigid force formulations we use. The proposed rigid body
solver used for our two-way coupling is introduced in Subsection 3.4.
Here, we first derive the implicit formulation that we solve. We then
describe the SPH implementation of the respective solver. Finally, in
Subsection 3.5, we explain the combination of our rigid body solver
with a generic iterative SPH pressure solver.

3.1 Generic iterative pressure solver with the boundary
handling of Akinci et al. [2012]

Iterative SPH pressure solvers such as PCISPH [Solenthaler and
Pajarola 2009], LPSPH [He et al. 2012], IISPH [Ihmsen et al. 2014a]
and DFSPH [Bender and Koschier 2017] compute a pressure field
and velocity changes from pressure gradients to preserve the rest
density of the fluid at all particles (see Algorithm 1). A predicted
fluid velocity v∗,𝑙

𝑓
is initialized by applying all non-pressure induced

velocity changes and then refined in each solver iteration 𝑙 . Velocities
at rigid particles v∗𝑟 are predicted accordingly, but not refined during
the solver iterations according to the concept of Akinci et al. [2012].

The iterative refinement of fluid velocities v∗,𝑙
𝑓

depends on a pres-
sure-induced force Fp,𝑙

𝑓
which in turn depends on the iteratively

refined pressure field 𝑝𝑙
𝑓
. Finally, the refinement of the pressure

field 𝑝𝑙
𝑓
depends on predicted fluid velocities v∗,𝑙

𝑓
that are updated

in each iteration and on predicted velocities of rigid particles v∗𝑟
that are constant during the iterations.
Keeping rigid body velocities constant during the iterations is a

simplification that introduces errors in the pressure computation,
i.e. in the computation of the final velocities of the fluid and the

rigid objects. This is due to the fact that each iteration computes
forces at the fluid-rigid interface which are applied to fluid particles,
but are neglected at rigid particles. The pressure-induced fluid-rigid
interface forces at rigid particles Ffr𝑟 are only applied after the itera-
tions by using the final pressure field. Rigid-rigid contacts and the
resulting forces Frr𝑟 are also computed and applied once after the
solver iterations. This means that the predicted velocities at rigid
particles v∗𝑟 are erroneous during the solver iterations. As these
velocities influence the pressure computation, the pressure field is
negatively affected which finally introduces errors to the velocity
field of the fluid.

1: Initialize 𝑙 = 0, 𝑝𝑙
𝑓
, v∗,𝑙

𝑓
, v∗𝑟

2: while Density deviation too large do
3: Compute fluid pressure forces Fp,𝑙+1

𝑓
(𝑝𝑙

𝑓
)

4: Compute predicted fluid velocity v∗,𝑙+1
𝑓

(Fp,𝑙+1
𝑓

)
5: Compute pressure 𝑝𝑙+1

𝑓
(v∗,𝑙+1

𝑓
, v∗𝑟 )

6: 𝑙 += 1
7: Update fluid
8: Compute fluid-rigid interface forces Ffr𝑟 (𝑝𝑙𝑓 )
9: Compute rigid-rigid contact forces Frr𝑟 (v∗𝑟 )
10: Update rigid bodies

Algorithm 1. Generic iterative pressure solver with the boundary handling
of Akinci et al. [2012]. Predicted velocities of fluid particles v∗,𝑙

𝑓
are updated

in each iteration 𝑙 , while rigid particle velocities v∗𝑟 are kept constant. Please
note that actual solvers might update more quantities or in a different order
which does not affect the concept.

3.2 Iterative pressure solver with interleaved fluid-rigid
velocity update

We propose an improved two-way coupling where forces at the fluid-
rigid interface are not only applied to fluid particles, but also to rigid
particles in each iteration. I.e., instead of working with a predicted
velocity v∗𝑟 at rigid particles that is constant during the iterations, we
propose to update the velocity v∗,𝑙𝑟 in each iteration 𝑙 . In contrast to
Algorithm 1, interface forces Ffr𝑟 and forces due to rigid-rigid contact
Frr𝑟 refine velocities v∗,𝑙𝑟 of rigid particles per iteration as illustrated
in Algorithm 2. This refinement now constitutes the actual effect
of the interface forces not only onto the fluid velocities, but also
onto the velocities of the rigid bodies. The erroneous assumption of
constant velocities of rigid particles as in Algorithm 1 is not applied.
As the improved predicted velocities v∗,𝑙𝑟 influence the pressure
refinement 𝑝𝑙

𝑓
, they also affect the fluid velocities v∗,𝑙

𝑓
.

3.3 Fluid-rigid interface forces
The coupling between fluid and rigid objects requires the computa-
tion of the fluid-rigid interface force Ffr𝑟 as detailed in the previous
section. Multiple different options to compute such an interface
force have been proposed in previous work, e.g. by Adami et al.
[2012]; Akinci et al. [2012]; Band et al. [2018a,b, 2017]; Koschier and
Bender [2017]; Monaghan [1994]; Schechter and Bridson [2012]. Our
strong coupling formulation does not rely on a specific fluid-rigid
interface computation as long as a force can be computed per rigid
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1: Initialize 𝑙 = 0, 𝑝𝑙
𝑓
, v∗,𝑙

𝑓
, v∗,𝑙𝑟

2: while Density deviation too large do
3: Compute fluid pressure forces Fp,𝑙+1

𝑓
(𝑝𝑙

𝑓
)

4: Compute predicted fluid velocity v∗,𝑙+1
𝑓

(Fp,𝑙+1
𝑓

)
5: Compute fluid-rigid interface forces Ffr,𝑙+1𝑟 (𝑝𝑙

𝑓
)

6: Compute rigid-rigid contact forces Frr,𝑙+1𝑟 (v∗,𝑙𝑟 )
7: Compute predicted rigid velocity v∗,𝑙+1𝑟 (Ffr,𝑙+1𝑟 , Frr,𝑙+1𝑟 )
8: Compute pressure 𝑝𝑙+1

𝑓
(v∗,𝑙+1

𝑓
, v∗,𝑙+1𝑟 )

9: 𝑙 += 1
10: Update fluid
11: Update rigid bodies

Algorithm 2. Generic iterative pressure solver with the proposed interleaved
fluid-rigid velocity update. In contrast to Algorithm 1, predicted velocities
of fluid and rigid particles — v∗,𝑙

𝑓
and v∗,𝑙𝑟 — are updated in each iteration

𝑙 . As the updated predicted velocities of fluid and rigid particles influence
the pressure refinement 𝑝𝑙

𝑓
, the interleaved velocity update results in an

improved pressure field which in turn results in an improved fluid velocity
field and in an improved rigid body movement compared to Algorithm 1.

particle. We integrated the forces proposed by Akinci et al. [2012]
and Band et al. [2018b] and will shortly summarize them in the
following.
Both interface forces determine a pressure value for each rigid

particle in contact with at least one fluid particle. This pressure
value is considered when computing a pressure gradient for the
fluid particle using SPH. For two-way coupling, the pairwise force
acting from a rigid particle onto a fluid particle is mirrored and
assumed to act on the respective rigid. The approaches by Akinci
et al. [2012] and Band et al. [2018b] differ in how they determine
the pressure value of the rigid particle.

Akinci et al. [2012] determine the pressure value at a rigid particle
by assuming that it has the same pressure value as the respective
fluid particle. In contrast, Band et al. [2018b] determine the pressure
value at a rigid particle by doing an extrapolation from the fluid
pressure values onto the boundary. They employ MLS for this pres-
sure extrapolation to improve the robustness to sampling disorder
compared to an SPH interpolation.

3.4 Rigid body solver
Each iteration of the proposed solver requires the computation of
fluid-rigid interface forces Ffr𝑟 and forces due to rigid-rigid contact
Frr𝑟 . As discussed in the previous section, we employ the fluid-rigid
interface forces proposed by Akinci et al. [2012] and Band et al.
[2018b].
Motivated by a unified computation of all forces with SPH, we

propose to compute the rigid-rigid contact forces Frr𝑟 based on arti-
ficial density deviations at rigid particles. We therefore assume an
artificial rest density, e.g. 𝜌0𝑟 = 1. If there is a rigid-rigid contact, we
calculate a density 𝜌𝑟 > 𝜌0𝑟 . We then determine contact forces Frr𝑟
such that 𝜌𝑟 = 𝜌0𝑟 for all rigid particles after applying the forces Frr𝑟
to the rigid bodies and updating their state.
This is realized by computing an artificial pressure field 𝑝𝑟 and

deriving artificial pressure forces from the pressure gradient at all

rigid particles. These forces cause velocity changes whose diver-
gence cancels the density errors. In the following, we first derive
the formulation to compute 𝑝𝑟 in Subsection 3.4.1. Then, in Subsec-
tion 3.4.2, we show how to implement the presented solver with
SPH.

3.4.1 System. The proposed system can be derived from the
continuity equation D𝜌𝑟

D𝑡 = −𝜌𝑟∇ · v𝑟 with 𝜌𝑟 being the density
and v𝑟 being the velocity of a rigid particle 𝑟 . Discretizing time
with a backward difference and introducing the constraint that the
density at time 𝑡 +Δ𝑡 with Δ𝑡 being the simulation time step should
be equal to the desired rest density, i.e. 𝜌next𝑟 = 𝜌0𝑟 , we get

𝜌0𝑟 − 𝜌𝑟
Δ𝑡

= −𝜌𝑟∇ · vnext𝑟 (1)

with vnext𝑟 being the desired velocity of a rigid particle at time 𝑡 +Δ𝑡
to obtain the desired density 𝜌0𝑟 . Note, that the velocity divergence
at particle 𝑟 is zero with respect to other particles of the same rigid
body, but may be non-zero with respect to particles of other rigid
bodies. The velocity vnext𝑟 can be written as

vnext𝑟 = vnext
𝑅

+ 𝝎next
𝑅

× rnext𝑟 (2)

with vnext
𝑅

and 𝝎next
𝑅

being the linear and angular velocities of the
respective rigid body 𝑅 at time 𝑡 + Δ𝑡 , respectively (see e.g. [Bender
et al. 2014]). rnext𝑟 denotes the vector from the center of mass of 𝑅 to
the position of the particle 𝑟 at time 𝑡 + Δ𝑡 . Using Euler integration
and Newton’s second law, we write the linear velocity vnext

𝑅
as

vnext
𝑅

= v𝑅 + Δ𝑡
1
𝑀𝑅

(
F𝑅 +

∑︁
𝑘

Frr
𝑘

)
(3)

with 𝑀𝑅 being the mass of rigid body 𝑅. The force F𝑅 comprises
all momentum-changing sources except the unknown rigid-rigid
contact forces Frr𝑟 . This includes, e.g., gravitational force and the
fluid-rigid interface forces. The sum considers all particles 𝑘 of the
rigid body 𝑅. The angular velocity 𝝎next

𝑅
in Eq. (2) can be written as

𝝎next
𝑅 = 𝝎𝑅 + Δ𝑡I−1𝑅

(
𝝉𝑅 + (I𝑅𝝎𝑅) × 𝝎𝑅 +

∑︁
𝑘

r𝑘 × Frr
𝑘

)
. (4)

The torque𝝉𝑅 contains all sources except the unknown rigid-rigid
contact forces. Again, the fluid-rigid interface forces are included in
𝝉𝑅 . The matrix I𝑅 is the inertia tensor of 𝑅 and the sum considers
all particles 𝑘 of rigid body 𝑅. Using Eqs. (2) to (4), we write Eq. (1)
as
𝜌0𝑟 − 𝜌𝑟

Δ𝑡
= − 𝜌𝑟∇ ·

(
v𝑅 + Δ𝑡

1
𝑀𝑅

F𝑅

)
− 𝜌𝑟∇ ·

(
Δ𝑡

1
𝑀𝑅

∑︁
𝑘

Frr
𝑘

)
− 𝜌𝑟∇ ·

((
𝝎𝑅 + I−1𝑅 (Δ𝑡𝝉𝑅 + Δ𝑡 (I𝑅𝝎𝑅) × 𝝎𝑅)

)
× rnext𝑟

)
− 𝜌𝑟∇ ·

(
Δ𝑡

(
I−1𝑅

∑︁
𝑘

r𝑘 × Frr
𝑘

)
× rnext𝑟

)
.

(5)
Compared to Eq. (1), unknown velocities are replaced by unknown

rigid-rigid contact forces in Eq. (5). We introduce the approximation
rnext𝑟 = r𝑟 and the term 𝑠𝑟 with 𝑠𝑟 =

𝜌0
𝑟−𝜌𝑟
Δ𝑡 + 𝜌𝑟∇ · vs𝑟 with vs𝑟 =

v𝑅 +Δ𝑡 1
𝑀𝑅

F𝑅 + (𝝎𝑅 +I−1𝑅 (Δ𝑡𝝉𝑅 +Δ𝑡 (I𝑅𝝎𝑅)×𝝎𝑅))×r𝑟 . Accordingly,
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𝑠𝑟 requires F𝑅 and 𝝉𝑅 which include the fluid-rigid interface forces
and all forces we assume to be constant. They do not include the
rigid-rigid contact forces. Finally, to get a system of equations, we
move 𝑠𝑟 to the left-hand side and leave the rigid-rigid contact force
terms of Eq. (1) on the right-hand side which results in

𝑠𝑟 = − 𝜌𝑟∇ ·
(
Δ𝑡

1
𝑀𝑅

∑︁
𝑘

Frr
𝑘
+

(
Δ𝑡I−1𝑅

∑︁
𝑘

r𝑘 × Frr
𝑘

)
× r𝑟

)
(6)

which can be written as

𝑠𝑟 = −𝜌𝑟∇ ·
(
Δ𝑡

∑︁
𝑘

K𝑟𝑘F
rr
𝑘

)
(7)

with K𝑟𝑘 = 1
𝑀𝑅

1 − r̃𝑟 I−1𝑅 r̃𝑘 where 1 is the identity matrix and r̃𝑟 is
the skew-symmetric cross-product matrix of vector r𝑟 . The matrix
K is referred to as collision matrix and has been proposed by Mirtich
[1996]. Equation (7) applies to particle 𝑟 of rigid body 𝑅 and the sum
considers all particles 𝑘 of the same rigid body 𝑅. For two particles 𝑟
and 𝑘 , the term Δ𝑡K𝑟𝑘Frr𝑘 gives the velocity change at particle 𝑟 due
to the contact force Frr

𝑘
at particle 𝑘 . Equation (7) shares the same

positive characteristics as other implicit formulations, e.g. [Xu et al.
2014]. In particular, large numbers of simultaneous contacts can be
handled.

We model the rigid-rigid contact forces as pressure forces, i.e. we
define Frr

𝑘
= −𝑉𝑘 ∇ 𝑝𝑘 , where 𝑉𝑘 is an artificial volume of a rigid

particle 𝑘 and 𝑝𝑘 is an unknown artificial pressure. Note that this
artificial pressure value is only used for rigid-rigid contact resolution.
It is independent of the pressure value at a rigid particle which is
determined for the computation of the fluid-rigid interface force.
Now, Eq. (7) can be written as

𝑠𝑟 = 𝜌𝑟∇ ·
(
Δ𝑡

∑︁
𝑘

𝑉𝑘K𝑟𝑘 ∇ 𝑝𝑘

)
(8)

with unknown artificial pressure. We have 𝑛 equations with 𝑛 un-
known pressure values, where 𝑛 is the overall number of all rigid
particles of all rigid bodies. The equation for particle 𝑟 considers
pressure gradients ∇ 𝑝𝑘 for all particles 𝑘 of the same object. If ob-
jects are in contact, equation sets of different objects are coupled as
∇ 𝑝𝑘 is computed with particle pressures from the colliding objects.
If an object is not in contact with any other object, the respective
equations can be removed from the system. In such a case, 𝑠𝑟 is
equal to zero for all particles of a body and 𝑝𝑟 = 0 for those particles
is a solution. The derived contact forces are also zero and none of
the particles affects pressure gradients at other objects.

3.4.2 Implementation. This section describes the solver implemen-
tation for Eq. (8). First, the discretization concept SPH is briefly
outlined. Then, the SPH approximations for the quantities in Eq. (8)
are described. Finally, the relaxed Jacobi solver to compute the pres-
sure is shown and its parameters are discussed.

SPH: We use SPH for interpolations 𝐴𝑖 =
∑

𝑗
𝑚 𝑗

𝜌 𝑗
𝐴 𝑗𝑊𝑖 𝑗 where 𝐴 is

an arbitrary scalar quantity,𝑚 is the mass and 𝜌 is the density of a
particle (see e.g. [Desbrun et al. 1996; Gingold and Monaghan 1977;
Lucy 1977; Monaghan 2012; Müller et al. 2003; Stam and Fiume
1995]). 𝑊𝑖 𝑗 is a kernel function, where we use the cubic spline
kernel as, e.g., described by Monaghan [2005]. The sum considers

all particles 𝑗 within a given distance to the position of sample 𝑖 . In
rest state, fluid particles are sampled at distance ℎ and the support
of our kernel function is 2ℎ. We also use SPH to compute spatial

derivatives. In particular, we use ∇𝐴𝑖 = 𝜌𝑖
∑

𝑗 𝑚 𝑗

(
𝐴𝑖

𝜌2
𝑖

+ 𝐴 𝑗

𝜌2
𝑗

)
∇𝑊𝑖 𝑗

to approximate the gradient and ∇ ·A𝑖 =
1
𝜌𝑖

∑
𝑗 𝑚 𝑗 (A𝑗 −A𝑖 ) ·∇𝑊𝑖 𝑗

to approximate the divergence. These approximations are commonly
used. They are variants of the generalized SPH derivative operators
as, e.g., discussed by Price [2012].

Artificial rest volume: Following, e.g. Solenthaler and Pajarola [2008]
or Akinci et al. [2012], the rest volume 𝑉 0

𝑟 of a rigid particle is
computed as 𝑉 0

𝑟 =
𝛾∑

𝑘𝑊𝑟𝑘
. The sum considers rigid particles 𝑘 of

the same object within the kernel support at particle 𝑟 . We use
𝛾 = 0.7. We motivate our choice of this value and demonstrate the
result of changing 𝛾 in detail in Appendix A.

Artificial rest density: The artificial rest density 𝜌0𝑟 of a rigid particle
is set to one. As we parameterize the rigid body solver with a rela-
tive density error at rigid particles, this choice is irrelevant for the
simulation.

Artificial density: The actual density 𝜌𝑟 of a rigid particle is computed
as 𝜌𝑟 =

∑
𝑘 𝜌

0
𝑟𝑉

0
𝑟𝑊𝑟𝑘 . Here, the sum considers all particles 𝑘 from

all rigid bodies within the kernel support at 𝑟 . If other objects are in
contact at the location of particle 𝑟 , we get a density deviation, i.e.
𝜌𝑟 > 𝜌0𝑟 .

Artificial volume: The actual volume 𝑉𝑟 in case of 𝜌𝑟 > 𝜌0𝑟 is com-
puted as 𝑉𝑟 =

𝜌0
𝑟𝑉

0
𝑟

𝜌𝑟
.

Computation of 𝑠𝑟 : The computation of 𝑠𝑟 requires the computation
of F𝑅 and 𝝉𝑅 which include all forces and torques except the rigid-
rigid contact forces. As our proposed rigid body solver is integrated
into an iterative fluid solver, 𝑠𝑟 is updated in each iteration of the
rigid solver due to the fact that the fluid-rigid interface forces are
updated in each iteration of the fluid solver. All other forces con-
tributing to F𝑅 and 𝝉𝑅 are assumed to be constant and we compute
them once in the initialization step of the rigid body solver.

The term 𝑠𝑟 further requires the divergence ∇ · vs𝑟 which is com-
puted as:

∇ · vs𝑟 =
1
𝜌𝑟

∑︁
𝑘

𝑉𝑘𝜌𝑘 (vs𝑘 − vs𝑟 ) · ∇𝑊𝑟𝑘 . (9)

The sum considers rigid neighbors 𝑘 of 𝑟 with particles 𝑘 belong-
ing to rigid bodies 𝐾 , 𝑟 to a rigid body 𝑅 and 𝑅 ∉ 𝐾 . This is due
to the fact that the divergence term encodes density changes due
to the relative movement of rigid bodies 𝐾 in contact with 𝑅. For
neighboring particles in 𝑅, the divergence term should be zero.

Computation of 𝜌𝑟∇ · (Δ𝑡 ∑𝑘 𝑉𝑘K𝑟𝑘 ∇ 𝑝𝑘 ) of Eq. (8): A first loop over

all rigid particles computes ∇ 𝑝𝑟 = 𝜌𝑟
∑
𝑘 𝑉𝑘𝜌𝑘

(
𝑝𝑟

𝜌2
𝑟
+ 𝑝𝑘

𝜌2
𝑘

)
∇𝑊𝑟𝑘 .

The same loop accumulates −Δ𝑡 1
𝑀𝑅
𝑉𝑟 ∇ 𝑝𝑟 and −Δ𝑡I−1

𝑅
𝑉𝑟 r𝑟 × ∇𝑝𝑟

per rigid body and stores the result of the two sums as vrr
𝑅
and

𝝎rr
𝑅
at each rigid body, respectively. A second loop over all rigid

particles computes the velocity vrr𝑟 = vrr
𝑅

+ 𝝎rr
𝑅

× r𝑟 , i.e. vrr𝑟 =
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−Δ𝑡 ∑𝑘 𝑉𝑘K𝑟𝑘 ∇ 𝑝𝑘 . This is the velocity change at particle 𝑟 due
to the applied contact forces Frr

𝑘
derived from ∇ 𝑝𝑘 at all particles

𝑘 of the same rigid body. The second loop also computes the di-
vergence 𝜌𝑟∇ · (Δ𝑡 ∑𝑘 𝑉𝑘K𝑟𝑘 ∇ 𝑝𝑘 ) = −𝜌𝑟∇ · vrr𝑟 using 𝜌𝑟∇ · vrr𝑟 =∑
𝑘 𝑉𝑘𝜌𝑘 (vrr𝑘 − vrr𝑟 ) · ∇𝑊𝑟𝑘 with 𝑘 being neighboring rigid particles

of 𝑟 .

Solver step: We use a relaxed Jacobi solver, i.e. we update pressure
from iteration 𝑙 to iteration 𝑙 + 1 using

𝑝𝑙+1𝑟 = 𝑝𝑙𝑟 +
𝛽
RJ
𝑟

𝑏𝑟

(
𝑠𝑟 − 𝜌𝑟∇ ·

(
Δ𝑡

∑︁
𝑘

𝑉𝑘K𝑟𝑘 ∇ 𝑝𝑘

))
(10)

with 𝛽RJ𝑟 being the relaxation coefficient and 𝑏𝑟 being the diagonal
element of the linear system. Both variables are discussed below. Ad-
ditionally, we clamp negative values of 𝑝𝑙+1𝑟 to 0 to prevent attraction
forces due to the SPH pressure gradient.

Computation of 𝛽RJ𝑟 :As basis for the relaxation coefficient 𝛽RJ𝑟 , we use
a value of 0.5 as proposed by Ihmsen et al. [2014a]. We additionally
adapt its value to improve the convergence of our employed relaxed
Jacobi solver for solving the rigid-rigid contacts. For this, we follow
the idea of Tonge et al. [2012] and divide the relaxation factor by
the overall number of contacts of the rigid body to which particle 𝑟
belongs: 𝛽RJ𝑟 = 0.5

𝑛𝑢𝑚_𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠 .

Computation of 𝑏𝑟 : We compute Eq. (8) for all rigid body particles
in the scene and thus get a system of equations that can be written
as s = Bp with s and p denoting vectors that contain 𝑠𝑟 and 𝑝𝑟 of
all rigid particles 𝑟 , respectively. The relaxed Jacobi step in Eq. (10)
requires the diagonal elements of matrix B with 𝑏𝑟 denoting the
diagonal element in line 𝑟 . Therefore, we accumulate all coefficients
of 𝑝𝑟 in Eq. (8) to compute 𝑏𝑟 .

Friction: We employ an explicit per-particle friction force based on
the Coulomb model (see e.g. [Bender et al. 2014]) to handle friction
between rigid bodies. First, we compute a normal at each rigid parti-
cle 𝑟 in contact as n𝑟 = x𝑟 −

∑
𝑘 x𝑘𝑊𝑟𝑘∑
𝑘𝑊𝑟𝑘

. We furthermore compute the
averaged relative predicted velocity due to other external forces at
particle 𝑟 and map this to a normal velocity and tangential velocity
vrel, t𝑟 using n𝑟 . We estimate a contact impulse based on the normal
velocity which – together with the tangential velocity direction –
allows us to compute a friction force using the Coulomb model.
To ensure that the friction force only decreases the relative veloc-
ity of the whole rigid body, we clamp its value to a maximum of
− 1
Δ𝑡

1
𝑛𝑢𝑚_𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠

1
t⊤𝑟 K𝑟𝑟 t𝑟

vrel, t𝑟 per particle where t𝑟 is the computed
tangent at 𝑟 .

3.5 Combining fluid and rigid body solver
The rigid body solver computes the rigid-rigid contact forces and
the predicted rigid velocities in lines 6 and 7 of the proposed concept
in Algorithm 2. Algorithm 3 shows the same concept, extended by
the embedding of the introduced rigid body solver.
The fluid and rigid body solvers are closely coupled. The fluid

solver provides fluid-rigid interface forces Ffr𝑟 to the rigid body solver.
In particular, Ffr𝑟 contributes to F𝑅 and 𝝉𝑅 used in vs𝑟 and finally in 𝑠𝑟

1: Initialize 𝑙 = 0, 𝑝𝑙
𝑓
, 𝑝𝑙𝑟 , v

∗,𝑙
𝑓
, v∗,𝑙𝑟

2: while Density deviation too large do
3: Compute fluid pressure forces Fp,𝑙+1

𝑓
(𝑝𝑙

𝑓
)

4: Compute predicted fluid velocity v∗,𝑙+1
𝑓

(Fp,𝑙+1
𝑓

)
5: Compute fluid-rigid interface forces Ffr,𝑙+1𝑟 (𝑝𝑙

𝑓
)

6: Compute source term 𝑠𝑙+1𝑟 (Ffr,𝑙+1𝑟 )
7: Compute rigid-rigid contact forces Frr,𝑙+1𝑟 = −𝑉𝑟 ∇𝑝𝑙𝑟

8: Compute predicted rigid velocity v∗,𝑙+1𝑟 = vs,𝑙+1𝑟 + vrr,𝑙+1𝑟

9: Compute pressure 𝑝𝑙+1
𝑓

(v∗,𝑙+1
𝑓

, v∗,𝑙+1𝑟 )
10: Compute pressure 𝑝𝑙+1𝑟 (𝑠𝑙+1𝑟 , 𝑝𝑙𝑟 )
11: 𝑙 += 1
12: Update fluid
13: Update rigid bodies

Algorithm 3. Our proposed two-way coupling. The introduced rigid body
solver is combined with a generic iterative SPH fluid solver using the con-
cept shown in Algorithm 2. The computation of 𝑝𝑙𝑟 is motivated in Subsec-
tion 3.4.1. Implementation details of 𝑠𝑙𝑟 , F

rr,𝑙
𝑟 , v∗,𝑙𝑟 and 𝑝𝑙𝑟 are described in

Subsection 3.4.2. The additional superscript 𝑙 indicates that the quantities
are updated in each iteration 𝑙 of the solver.

(see Eq. (9) and line 6 in Algorithm 3). In turn, the rigid body solver
computes updated predicted rigid velocities v∗𝑟 that are used by the
fluid solver. The fluid solver computes predicted density deviations
from the divergence of predicted particle velocities, e.g. IISPH, or
from predicted positions using predicted velocities, e.g. PCISPH.
Thus, v∗𝑟 influences the pressure computation at fluid particles.

The order of the rigid body computations in lines 6, 7, 8 and 10
in Algorithm 3 is determined by the fact that these computations
constitute a solver iteration for Eq. (8). The term 𝑠𝑟 in line 6 is the
left-hand side of this equation, while Frr𝑟 in line 7 and v∗𝑟 in line
8 are estimated during the computation of the right-hand side of
Eq. (8). Note that v∗𝑟 = vs𝑟 + vrr𝑟 and vrr𝑟 = Δ𝑡

∑
𝑘 𝑉𝑘K𝑟𝑘 ∇ 𝑝𝑘 . After

the computations in lines 6, 7 and 8, the solver step can be performed
in line 10 using Eq. (10).
The proposed concept interlinks two pressure solvers. As each

update of the fluid solver affects the rigid solver and each rigid solver
step influences the next fluid solver step, it is natural to couple them
in a one-to-one manner as realized in Algorithm 3.
When solving both the fluid and the rigid-rigid collision in a

coupled system as shown in Algorithm 3, a unified stopping cri-
terion must be used. Our used stopping criterion is fulfilled when
the stopping criterion of our employed fluid solver is fulfilled and
additionally the average density deviation of all rigid particles in
contact with other rigid objects is smaller than 0.1%.

3.6 Discussion
We propose to couple our novel pressure-based rigid body solver
with an existing iterative fluid pressure solver in order to achieve
strong coupling. By coupling them as shown in Algorithm 3, we no
longer have a partitioned solver for fluid dynamics and rigid body
dynamics in contrast to the current state-of-the-art approach by
Akinci et al. [2012]. In fact, our approach describes a monolithic,
unified system that solves fluid and rigid dynamics simultaneously.
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There is an equation for each fluid and rigid particle in the scene
with an unknown pressure value for each respective particle.

Chentanez et al. [2006] and Klingner et al. [2006] initially pro-
posed to solve fluid and solids simultaneously to achieve a strong
coupling. In contrast to their approach which uses an Eulerian fluid
discretization and a Lagrangian solid discretization, we use a unified
SPH-based discretization for fluids and rigid objects. For Position
Based Dynamics methods, there exist different approaches to handle
rigid-rigid and two-way coupling constraints. Macklin et al. [2014]
first consider the rigid particles belonging to the same rigid object as
being unconnected and then later constrain the movement of these
particles to a rigid body movement using shape matching. Instead,
we directly consider the rigid body movement in our system of
equations. This is similar to the approach of Deul et al. [2014], who
integrate the rigid body motion into the rigid-rigid constraints.

4 RESULTS
We have combined our strong two-way coupling with two fluid
solvers, IISPH [Ihmsen et al. 2014a] andDFSPH [Bender andKoschier
2017], with a solver for highly viscous fluids [Peer et al. 2015] and
also with a solver for elastic solids [Peer et al. 2018]. Vorticity is
modeled with the micropolar formulation of Bender et al. [2017].
Viscosity follows the idea of Morris et al. [1997]. Fluid-air interaction
in free-surface scenarios is modeled with the drag force proposed by
Gissler et al. [2017]. Surface tension is based on the method of Akinci
et al. [2013a]. Multi-phase simulations employ the number-density
concept of Solenthaler and Pajarola [2008]. We sample the surfaces
of triangle meshes with boundary particles with an algorithm that
is similar to the one proposed by Bell et al. [2005].
The experiments are organized as follows. Subsection 4.1 illus-

trates the improved stability and discusses the performance gain of
the proposed fluid-rigid coupling compared to the state-of-the-art
approach by Akinci et al. [2012]. In Subsection 4.2, we demonstrate
the utility of our approach in complex scenarios with large particle
numbers, large numbers of interacting rigid bodies, large numbers
of rigid-rigid contacts, and with multiple fluid phases. In Subsec-
tion 4.3, we compare our rigid body solver with Bullet. Subsection 4.4
emphasizes the advantage of having a unified SPH-based rigid body
solver by showing phase transitions and by combining it with highly
viscous fluids and elastic solids.

Table 1 summarizes particle numbers for all scenarios. Table 2
shows particle sizes, time steps, iteration counts and computation
time per frame. The experiments have been computed on a 16-core
3.1GHz Intel Xeon workstation. We use a framerate of 50 frames/s
for all scenes apart from the AR scene where we use 60 frames/s to
match framerate of the video recording.

4.1 Comparison to the method of Akinci et al. [2012]
4.1.1 Rising sphere. A 2D simulation of a sphere with a density of
100 kgm−3 rising in an IISPH fluid with a density of 1000 kgm−3 is
used to illustrate stability improvements and performance gain of
our concept compared to themethod of Akinci et al. [2012]. Figure 2a
illustrates that their approach is unstable when using the same time
step as for our concept in Fig. 2d which results in a stable simulation.
Reducing the time step for the method of Akinci et al. [2012] in

Scene particles
solid

fluid static dynamic contacts
Rising sphere Fig. 2 4886 304 43 0
Propeller pump Fig. 3 253𝑘 86𝑘 1953 4
Orion splashdown Fig. 4 117𝑘 29𝑘 4555 0
Moored buoys Fig. 5 5𝑀 2𝑀 149𝑘 202
Armadillo drain Fig. 6 2𝑀 407𝑘 411𝑘 6325
AR scene Fig. 7 287𝑘 850𝑘 44𝑘 210
Water gate Fig. 1 44𝑀 50𝑀 2.3𝑀 90𝑘
Nut and bolt Fig. 9 7.16𝑀 85𝑀 927𝑘 4007
Duck production Fig. 10 405𝑘 477𝑘 405𝑘 374
Armadillo pool Fig. 11 1𝑀 103𝑘 58𝑘 33
Valley Fig. 12 38𝑀 19𝑀 270𝑘 3739

Table 1. The maximum number of particles and maximum simultaneous
rigid-rigid contacts per scene. For the Armadillo pool and Valley scene, the
number of fluid particles also includes the particles of the viscous fluid and
deformable objects.

Scene part. time- iter- time
size step ations per
[mm] [ms] frame

Rising sphere
Akinci et al. [2012] 50 0.02 5 2.68 s
our concept 50 2 5 0.046 s

Propeller pump
Akinci et al. [2012] 50 0.3 2 6.63 s
our concept 50 3 14 1.43 s

Orion splashdown
Akinci et al. [2012] 200 2 3 1.31 s
our concept 200 20 19 0.39 s

Moored buoys 20 0.1 25 18min
Armadillo drain 15 0.2 2 58 s
AR scene

our concept 10 0.25 1 7.98 s
our concept 10 1 7 3.84 s

Water gate 8 0.3 5 15min
Nut and bolt 10 0.1 2 19.9min
Duck production 5 0.1 1 13.2 s
Armadillo pool 30 1 6 9 s
Valley 50 1 8 6min

Table 2. Particle sizes, maximum time steps, average solver iterations and
computation time per frame for all scenes. Comparative numbers for the
method of Akinci et al. [2012] with similar simulation results are given for
the first three scenes. For the Armadillo pool and Valley scene, pressure
solver iterations are given, viscosity and elasticity solver iterations are not
included.

Figs. 2b and 2c reduces artifacts and improves the stability, but is
more expensive to compute. To get comparable simulation results
to our approach, the time step has to be reduced by two orders of
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magnitude for the formulation of Akinci et al. [2012], resulting in a
performance gain factor of 58 for our technique.

(a) (b) (c) (d)

Fig. 2. 2D simulation of a rising sphere. (a), (b) and (c) show the method of
Akinci et al. [2012] with time steps of 2ms, 0.2ms and 0.02ms, respectively.
(d) shows our approach with a time step of 2ms.

4.1.2 Propeller pump. Figure 3 shows a scenario where a fast rotat-
ing propeller pumps fluid from one side of a tank to the other one.
The propeller is two-way coupled, accelerated by a force and reaches
a maximum speed of 160 rpm. The DFSPH fluid has a density of
1000 kgm−3, the rubber ducks have a density of 500 kgm−3 and the
propeller has a density of 1500 kgm−3. The scene is simulated with
a time step of 3ms using our strong coupling method. Using the
weak coupling of Akinci et al. [2012] requires a reduced time step
of 0.3ms to obtain a stable result. Accordingly, using our approach
results in a performance gain factor of 4.6.

4.1.3 Orion splashdown. The simulated splashdown of an Orion
spacecraft capsule with the method of Akinci et al. [2012] and with
our approach is compared in Fig. 4. The density of the IISPH fluid
is 1000 kgm−3 and the density of the capsule is 1200 kgm−3. When
using the same time step of 20ms for both approaches, our method
is stable, while the weak coupling of Akinci et al. [2012] leads to an
artificial void region below the capsule. This void region disturbs the
interface handling and results in an unstable simulation. A stable
result using their weak coupling can only be obtained with a reduced

Fig. 3. A force-driven propeller pumps fluid from the right container to the
left one using our approach. The time step is 3ms, while [Akinci et al. 2012]
requires a time step of 0.3ms to obtain a stable simulation result.

time step of 2ms which results in a performance gain factor of 3.4
for our method.

Fig. 4. Cutaway view of the Orion splashdown scene. The top image with
a void region below the capsule is simulated using the method of Akinci
et al. [2012]. The bottom image without void region is simulated with our
two-way coupling approach.

4.2 Rigid body solver
4.2.1 Moored buoys. The scene in Fig. 5 illustrates our two-way
coupling for multiphase fluids and also the rigid-rigid contact han-
dling. Three buoys swim in two IISPH fluids with densities of
750 kgm−3 and 1500 kgm−3. Since the three buoys have different
densities (orange: 100 kgm−3, green: 1100 kgm−3, turquois: 2000 kgm−3),
they swim at different levels. The surfaces of the buoys and of the
chain elements are particle-sampled. All rigid-rigid contacts of the
respective chain elements and the buoys are handled by our pro-
posed rigid body solver.

4.2.2 Armadillo drain. Figure 6 illustrates that our SPH-based rigid
body solver can simulate a large number of interacting, geomet-
rically complex rigid bodies. Additionally, the 1500 Armadillos in
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Fig. 5. Three buoys with different densities moored to the ground of a tank
and interacting with two fluids of different densities.

this scene are two-way coupled with a DFSPH fluid. The particle
numbers for the fluid and the Armadillos and also the number of
simultaneous contact points are given in Table 1.

Fig. 6. 1500 Armadillos are dropped into a funnel which is then rinsed with
water.

4.2.3 AR scene. In the scene shown in Fig. 7, we use the fluid-rigid
interface force proposed by Band et al. [2018b] in contrast to the
interface force by Akinci et al. [2012] which we use in other scenes.
This demonstrates that we can use our strong coupling approach
with different fluid-rigid interface forces. Furthermore, we simulated
the scene with different time steps as shown in Table 2 to demon-
strate that it is generally beneficial for the overall computation time
to use larger time steps.

4.2.4 Water gate. Figure 1 illustrates that our method can handle
large-scale scenarios with millions of fluid and rigid body particles
and also with tens of thousands of simultaneous rigid-rigid contacts.
A water wheel is connected to a water gate with a chain andmultiple
gears. The chain and the gears are fully simulated with our rigid
body solver. The connections between the respective chain elements
are purely solved based on rigid-rigid contacts. All dynamic rigid

Fig. 7. Spheres are dropped into a pool of fluid. In this scene, we use the
fluid-rigid interface force proposed by Band et al. [2018b].

bodies are two-way coupled with an IISPH fluid. Figure 8 shows a
close-up of the chain and its particle representation.

Fig. 8. These images show the chain in the water gate scene (see Fig. 1).
The bottom image shows a closeup, visualizing the rigid body particles of
the chain elements and the gear.

4.2.5 Nut and bolt. Our rigid body solver stably simulates complex,
interacting, concave geometry with many simultaneous contacts
which is demonstrated in the scene shown in Fig. 9. We simulated a
bolt inside a nut acting as a valve for water. The bolt is fully modeled
as rigid body with six degrees of freedom. Using a screwdriver, the
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Scene Discretization time per
per Armadillo frame

Armadillo drain
Bullet 1 concave hull 0.23min
Bullet 36 concave hulls 1.92min
ours 274 particles 1.44min

Table 3. Timings for the Armadillo drain comparison scene.

bolt is slowly loosened until it falls out. In this scene, we employed
the fluid-rigid interface force proposed by Band et al. [2018b].

Fig. 9. A nut which acts as a valve for water is slowly loosened by a screw-
driver until it falls out. The bolt is simulated as rigid body with six degrees
of freedom using our approach.

4.3 Comparison to Bullet [Coumans 2018]
To evaluate our rigid body solver independently of the proposed
strong fluid-rigid coupling, we compare it to Bullet [Coumans 2018]
which is a popular state-of-the-art rigid body engine that imple-
ments a PGS LCP solver [Bender et al. 2014].

4.3.1 Armadillo drain. Weadapted theArmadillo drain scene shown
in Subsection 4.2.2 by removing the fluid to compare our rigid body
solver with Bullet [Coumans 2018]. The resulting timings from the
comparison are shown in Table 3. Bullet is faster than our solver
when discretizing the Armadillo with a single convex hull. However,
this simplifies the problem drastically since the Armadillo mesh is
highly concave. When using 36 convex hulls, Bullet’s overall compu-
tation time is slower compared to our solver where we discretized
the Armadillo mesh with 274 boundary particles.

4.3.2 Nut and bolt. We use the nut and bolt from the scene shown
in Fig. 9 for a comparison with interacting geometry with a lot
of simultaneous contact points. We only simulated the bolt being
affected by gravity and resting inside the nut. This is a similar setup
to the scene used by Xu et al. [2014] to compare their proposed
rigid body solver to Bullet. As proposed by them, we also employ a
convex decomposition of the meshes when simulating them with
Bullet.
Table 4 shows the result of the comparison. Using our proposed

rigid body solver, we were able to stably simulate the 4 s of physical

Scene time step [ms] Stability time per frame
Nut and bolt

Bullet 1 unstable 0.4 s
Bullet 0.04 unstable 2.6 s
Bullet 0.03 stable 3.8 s
ours 10 stable 0.4 s

Table 4. Timings for the nut and bolt comparison scene.

time in 1min and 21 s. For the same overall computation time, Bullet
does not produce a stable simulation as shown in the accompanying
video. For Bullet to stably simulate this scene, we needed to reduce
the time step to 0.03mswhich resulted in a computation time which
was larger by a factor of 9.5 compared to using our solver.

In addition to the computation time disadvantage of Bullet, we
needed to create the convex decomposition of the nut and bolt
meshes. We were not able to get an automatic convex decompo-
sition of the meshes which was accurate enough for the use with
Bullet. Instead, we needed to manually separate the meshes into
convex parts which was time consuming. In contrast, with our rigid
body solver, only the surface of the rigid body needs to be sampled
with particles which can be robustly done, e.g., with the algorithm
proposed by Bell et al. [2005].

4.3.3 Discussion. We have shown two examples in which our pro-
posed rigid body solver is faster and more stable than Bullet which
shows that our proposed rigid body solver is competitive. However,
obviously, one could construct scenes where our solver has disad-
vantages compared to Bullet. For example, our solver may use a
lot of particles to discretize a simple box depending on the particle
resolution. Accordingly, Bullet could be faster in scenes where only
simple rigid body objects like boxes are involved for which Bullet
uses specialized collision algorithms. In contrast, our solver is espe-
cially well suited for many interacting, complex and concave rigid
bodies.

4.4 Unified SPH solver
4.4.1 Duck production. The duck production scenario in Fig. 10
shows a setup where fluids solidify to rigid bodies and later become
fluid again. This shows an advantage of having a unified solver
based on SPH for fluid dynamics and rigid body dynamics. It allows
to switch the existing fluid particles to be simulated as a rigid body
and back to be simulated as fluid without instabilities due to the
conversion. Furthermore, since everything is simulated based on
particles, it is not necessary to have a triangle mesh or to be able to
create a collision shape which would be needed when simulating
this scene with for example Bullet [Coumans 2018].

4.4.2 Armadillo pool. To illustrate the flexibility of our concept,
various highly viscous [Peer et al. 2015], elastic [Peer et al. 2018] and
rigid Armadillos (simulated with our rigid body solver) are two-way
coupled with an IISPH fluid. The fluid-viscous and fluid-elastic cou-
pling of the highly viscous and elastic Armadillos is realized using
the methods of Peer et al. [2015] and Peer et al. [2018], respectively.
Our approach is used for the coupling of the rigid Armadillos to the
fluid phase and to the viscous and elastic Armadillos. An image of
the scene is shown in Fig. 11.
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Fig. 10. Duck production scene. First, fluid is filled into the molds. The fluid
particles are then transformed into a rigid body and simulated with our
proposed rigid body solver. Finally, the particles are again transformed into
fluid.

Fig. 11. Highly viscous (pink), elastic (turquoise) and rigid (orange) Armadil-
los are dropped into a pool of water.

4.4.3 Valley. Figure 12 shows the interactions of different materials
in a large-scale scenario. Two animated creatures flee from an IISPH
fluid. They need to run through highly viscous mud simulated using
the approach of Peer et al. [2015] and break through a wall. The
two-way coupling of the IISPH fluid with the bricks, the two-way
coupling of the bricks with the highly viscous mud, the two-way
coupling of bricks with the elastic tree [Peer et al. 2018] and the
rigid-rigid contacts between the bricks are handled by our approach.

5 LIMITATIONS
The accuracy of the rigid-rigid contact handling is related to the
size of a rigid body particle which in turn is related to the size
of a fluid particle. Thus, the accuracy of the contact handling is
coupled to the accuracy of the fluid simulation. Our approach can
handle rigid body particle sizes that vary to some extent, but we
assume that they are generally similar to the size of a fluid particle.
Using fluid and rigid particles of largely different sizes as, e.g. in
Winchenbach et al. [2017], is definitely an interesting opportunity
for future research as it would decouple the accuracy of the fluid and
the rigid body solver. This, however, might induce adjustments in

Fig. 12. Creatures break through a wall while fleeing from a flood. Please
also refer to the accompanying video to see the highly viscous mud and the
elastic tree in this scene.

the fluid solver, e.g. adaptive kernel supports, which is currently not
required in our coupling approach. Another consequence of using
particles for the rigid-rigid contact handling is that their size and
velocity influence the maximum allowed time step due to the CFL
condition. However, this time step restriction generally applies for
particle-based boundary handling when the fluid is in contact with
a moving rigid body. Furthermore, in our scenes, the CFL condition
of the fluid solver normally dominated the time step.
As already illustrated in Subsection 4.1, the performance gain

factor varies and depends on the scenario. Our approach is espe-
cially useful in scenes with large velocities or large accelerations at
particles. It is also advantageous in scenes with large density ratios.
In the rising sphere scenario in Fig. 2, e.g., we use a moderate density
ratio of 1:10. If we would use a larger ratio, we could present larger
speedups. On the other hand, the performance gain is reduced in
scenarios with smaller density ratios and also in calm scenes with
slowly moving particles.

6 CONCLUSION
We have introduced a strong two-way coupling method for SPH
fluids and rigid bodies with particle-sampled surfaces.
On one hand, the technique shares characteristics of a unified

approach by solving pressure at fluid and rigid body particles based
on SPH density deviations and also by deriving fluid-rigid and rigid-
rigid contact forces from pressure using the SPH methodology. Fur-
ther, the proposed rigid body solver is closely interconnected with
the fluid solver. Each fluid solver iteration influences the rigid body
solver and each iteration of the rigid body solver affects the fluid
solver.
On the other hand, although we solve a monolithic system, we

show that it is a flexible and useful extension for iterative SPH
pressure solvers in general. This is emphasized by the description
of the coupling concept, where we specify the interface between
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fluid and rigid body solver, but keep the fluid solver in a general
format. The flexibility is further shown in the experiments, where
we combine our coupling with DFSPH, IISPH, highly viscous fluids
and elastic solids. Large scenarios with up to 90𝑀 particles have
been presented.

Our two-way coupling stabilizes the fluid-rigid interface handling.
This is illustrated in comparisons with the approach of Akinci et al.
[2012]. This stabilization enables larger simulation time steps which
corresponds to significant performance improvements of up to a
factor of 58. The introduced SPH-based rigid-rigid contact handling
does not only promote the two-way coupling, but is also able to
handle complex contact geometries between rigid objects with tens
of thousands of simultaneous contacts.

In the future, we plan to investigate the applicability of our con-
cept to alternative Lagrangian fluid formulations, i.e. position-based
fluids [Macklin and Müller 2013] due to the versatility of the concept
and power particles [de Goes et al. 2015] due to the improved accu-
racy compared to SPH interpolation. Both approaches can handle
particle sampled boundaries, but the interface to our two-way cou-
pling has to be investigated. In our current setting, the fluid solver
provides fluid-rigid interface forces to the rigid bodies. Further, the
fluid solver has to be able to process velocity changes at rigid body
particles during the iterations. Additionally, it could be interesting
to combine the proposed strong coupling with alternative particle-
based rigid body solvers (e.g., solvers based on DEM as proposed by
Bell et al. [2005] or Harada [2007]).
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A CHOICE OF 𝛾
We use a value of 0.7 for 𝛾 for the computation of the artificial
rest volume of a rigid particle in Subsection 3.4.2. This follows
from the following observation. If a volume is uniformly sampled
with particles at distance ℎ, we get 1∑

𝑘𝑊𝑟𝑘
= ℎ3 for a particle 𝑟

with complete neighborhood and neighbors 𝑘 , i.e. its volume ℎ3 is
correctly computed from the inverse of the number density. If we
remove particles from the neighborhood of 𝑟 , its volume would be
overestimated. These missing contributions can be compensated by
𝛾 . If 3D particles are uniformly sampled in a 2D plane which we
assume to be the case in our rigid body representation, the desired
volume would still be ℎ3, but we get 1∑

𝑘𝑊𝑟𝑘
≈ ℎ3

0.7 . Computing
0.7∑
𝑘𝑊𝑟𝑘

instead, i.e. 𝛾 = 0.7, results in the desired volume ℎ3.
The effect of using different values for𝛾 is demonstrated in Fig. 13.

(a) 𝛾 = 0.5 (b) 𝛾 = 0.7 (c) 𝛾 = 1

Fig. 13. The effect of using different values of 𝛾 for the computation of the
artificial rest volume of a rigid particle. The green cube falls onto the static
red plane. If 𝛾 is chosen lower than 0.7, a collision is only detected and
resolved after the two objects already overlap. When choosing 𝛾 = 1, the
two rigid bodies come to rest without touching each other. 𝛾 = 0.7 gives the
desired result.
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