
An Implicit Compressible SPH Solver for Snow Simulation
CHRISTOPH GISSLER, University of Freiburg, Germany and FIFTY2 Technology GmbH, Germany
ANDREAS HENNE, FIFTY2 Technology GmbH, Germany
STEFAN BAND, University of Freiburg, Germany
ANDREAS PEER, FIFTY2 Technology GmbH, Germany
MATTHIAS TESCHNER, University of Freiburg, Germany

Fig. 1. Snow fall onto a car is simulated with single snow flakes modeled as single particles. The particles are coupled to a precomputed airflow field (visualized
in the top left). The snow accumulates and is wiped away by moving windshield wipers. The car drives away in the end, compressing the snow below its tires.

Snow is a complex material. It resists elastic normal and shear deformations,

while some deformations are plastic. Snow can deform and break. It can

be significantly compressed and gets harder under compression. Existing

snow solvers produce impressive results. E.g., hybrid Lagrangian/Eulerian

techniques have been used to capture all material properties of snow. The

auxiliary grid, however, makes it challenging to handle small volumes. In par-

ticular, snow fall and accumulation on surfaces have not been demonstrated

with these solvers yet. Existing particle-based snow solvers, on the other

hand, can naturally handle small snow volumes. However, existing solutions

consider simplified material properties. In particular, shear deformation and

the hardening effect are typically omitted.

We present a novel Lagrangian snow approach based on Smoothed Parti-

cle Hydrodynamics (SPH). Snow is modeled as an elastoplastic continuous

material that captures all above-mentioned effects. The compression of snow

is handled by a novel compressible pressure solver, where the typically

employed state equation is replaced by an implicit formulation. Accelera-

tion due to shear stress is computed using a second implicit formulation.

The linear solvers of the two implicit formulations for accelerations due

to shear and normal stress are realized with matrix-free implementations.

Using implicit formulations and solving them with matrix-free solvers al-

lows to couple the snow to other phases and is beneficial to the stability

and the time step size, i.e., performance of the approach. Solid boundaries

Authors’ addresses: C. Gissler, S. Band, andM. Teschner, Georges-Köhler-Allee 52, 79110

Freiburg im Breisgau, Germany; emails: {gisslerc, bands, teschner}@informatik.uni-

freiburg.de; A. Henne, and A. Peer, Tullastraße 80, 79108 Freiburg im Breisgau, Germany;

emails: {andreas.henne, andreas.peer}@fifty2.eu.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3386569.3392431.

are represented with particles and a novel implicit formulation is used to

handle friction at solid boundaries. We show that our approach can simulate

accumulation, deformation, breaking, compression and hardening of snow.

Furthermore, we demonstrate two-way coupling with rigid bodies, interac-

tion with incompressible and highly viscous fluids and phase change from

fluid to snow.

CCS Concepts: • Computing methodologies→ Physical simulation.

Additional Key Words and Phrases: Implicit solver, physically-based anima-

tion, smoothed particle hydrodynamics, snow, two-way coupling

ACM Reference Format:
Christoph Gissler, Andreas Henne, Stefan Band, Andreas Peer, and Matthias

Teschner. 2020. An Implicit Compressible SPH Solver for Snow Simulation.

ACM Trans. Graph. 39, 4, Article 36 (July 2020), 16 pages. https://doi.org/10.

1145/3386569.3392431

1 INTRODUCTION
Smoothed Particle Hydrodynamics (SPH) is mostly known in the

computer graphics community for the simulation of fluids, e.g., as

described by Müller et al. [2003]; Ihmsen et al. [2014b]; Bender

and Koschier [2017]. However, it has also been used to simulate a

varied collection of different materials such as viscous fluids (e.g.,

as shown by Takahashi et al. [2015]; Peer et al. [2015]; Weiler et al.

[2018]), elastic solids (e.g., as shown by Desbrun and Gascuel [1996];

Solenthaler et al. [2007]; Becker et al. [2009]; Peer et al. [2018]),

dynamic rigid body objects (e.g., as proposed by Gissler et al. [2019])

or ferrofluids (e.g., as presented by Huang et al. [2019]). While SPH

covers this wide range of materials, fully-featured snow simulations

with SPH are uncommon.

This is the author’s version (v3) of the manuscript ACM Trans. Graph., Vol. 39, No. 4, Article 36. Publication date: July 2020.

HTTPS://ORCID.ORG/0000-0002-2723-3248
HTTPS://ORCID.ORG/0000-0002-6850-9319
HTTPS://ORCID.ORG/0000-0002-3312-8743
HTTPS://ORCID.ORG/0000-0002-4214-3996
https://doi.org/10.1145/3386569.3392431
https://doi.org/10.1145/3386569.3392431
https://doi.org/10.1145/3386569.3392431

36:2 • Gissler et al.

Instead, there are a lot of other approaches that each focus on

capturing different types of snow effects. Height fields and signed

distance fields are typically used to model snow accumulation. For

example, Feldman and O’Brien [2002] use height fields and addition-

ally take wind effects into account when computing the accumulated

snow on geometry. Stomakhin et al. [2013] use the material point

method (MPM) to simulate snow as a continuous material using an

elastoplatic model. Their hybrid Lagrangian/Eulerian method is able

to reproduce different types of snow dynamics but they do not show

snow fall and accumulation. Lagrangian particle-based approaches

simulate snow for example as fluids (e.g., as shown by Takahashi and

Fujishiro [2012]) but since they employ a viscosity model and thus

their snow simulation only reacts to shear rate instead of shear, they

are unable to realistically capture complex physical snow behaviors

for which a full elastoplastic snow model is needed. We present a

novel snow solver based on SPH and show that we can reproduce

various effects which were previously only shown by multiple dif-

ferent approaches. In Fig. 1, a simulation can be seen where we

simulate snow fall on a car. The snow is coupled to a precomputed

wind simulation and accumulates on the car. The wipers of the car

move, which illustrates the interaction with complex and moving

geometry. Since we use an elastoplastic model similar to the one by

Stomakhin et al. [2013], we are also able to simulate different types

of snow and the snow is able to compress, deform and break. We

also show the coupling of snow with (viscous) fluids and dynamic

rigid body objects.

Contributions.
We propose a novel fully-fledged elastoplastic SPH approach for snow.
The proposed approach extends the range of materials that can be

handled within the SPH formalism by realizing a variant of the

constitutive model of Stomakhin et al. [2013]. As an essential com-

ponent of our approach we propose a novel implicit compressible
SPH pressure solver. This solver allows us to handle snow compres-

sion while providing the performance and stability advantages of

an implicit formulation. The combination of this novel pressure

solver with an implicit linear elastic solver inspired by Peer et al.

[2018] enables the simulation of a wide range of snow dynamics

and the coupling of snow with other phases. In addition to the novel

handling of the elastic deformation, we propose to improve the

typically employed differential update of the plastic deformation by

incorporating additional information from the current particle con-

figuration. Our boundary handling bases on particle representations

which particularly simplifies the interaction of snow with complex

geometries. In this context, we propose a novel direct computation of
a viscosity-based boundary friction which solves a limitation discussed
in Peer et al. [2018]. Within the scope of the analyses of our SPH

snow approach, we present novel experiments showing the two-way
coupling of snow with fluids and rigid bodies, snow fall and snow
accumulation.

2 RELATED WORK
Early snow-related computer graphics workmostly focused on snow

accumulation on geometries. Nishita et al. [1997] employ metaballs

to allow users to manually define snow accumulation on surfaces.

Fearing [2000] computes the sky occlusion of areas by shooting

particles upwards to automatically cover geometries with snow.

They combine this with a stability criterion to get realistic snow

accumulation behavior. Using height fields to represent snow is also

a common method. Sumner et al. [1999] for example use a height

field representation to model foot imprints in snow. Haglund et al.

[2002] use height fields for the real-time simulation of snow accumu-

lation. Reynolds et al. [2015] also use height fields for representing

snow accumulation in real-time while respecting occlusion by other

geometries. Feldman and O’Brien [2002] and Wang et al. [2006]

couple snow fall simulations with wind simulations while also rep-

resenting the accumulated snow with height fields. Festenberg and

Gumhold [2009] use a statistical model for snow distribution which

they later extended with a diffusion approach to model snow bridges

and overhangs [2011]. Cordonnier et al. [2018] recently proposed to

use multiple height fields to model different types of layered snow

to simulate snow-covered landscapes and avalanches. Hinks and

Museth [2009] use a level-set approach instead of height fields to

more accurately simulate wind-driven snow buildup.

In recent years, more work is published that focuses on simulat-

ing the snow dynamics as a continuous material using a constitutive

model. These simulation methods typically build on physical elasto-

plastic snow models, e.g., on the one presented by Meschke et al.

[1996]. Most prominently, Stomakhin et al. [2013] introduced the

material point method (MPM) in the computer graphics community

to simulate snow. Stomakhin et al. [2014] further extended the MPM

method to handle phase changes. There has been additional work

extending the use and performance of MPM, e.g., by Tampubolon

et al. [2017]; Wretborn et al. [2017]; Gao et al. [2018]; Fang et al.

[2019]; Wang et al. [2019]. Other authors building upon the MPM

method also show snow simulations, e.g., Gast et al. [2015]; Fang

et al. [2018]; Hu et al. [2019b]. Recently, Han et al. [2019] showed fric-

tional contact for MPM simulations, amongst other things between

snow and hair. An elastoplastic snow model is able to reproduce

realistic snow behavior as shown by Gaume et al. [2018, 2019] who

predict snow avalanches using an adapted MPM snow solver based

on the work of Stomakhin et al. [2013].

Apart from MPM, there are also other discretization methods that

are used to simulate the complete snow dynamics. Wong and Fu

[2015] use the Discrete Element Method (DEM) in combination with

springs between the snow particles for an interactive simulation.

Mukai et al. [2017] use an extended DEM method to simulate split-

ting and sliding snow on a roof. Position-based dynamics (PBD) is

used by Dagenais et al. [2016] to simulate snow behavior by model-

ing snow particles as a granular material on top of a base level-set

representation. Takahashi and Fujishiro [2012] approximate the be-

havior of snow by modeling it as a fluid using SPH. An extensive

overview of SPH fluids is given by Monaghan [2012], Ihmsen et al.

[2014b] and Koschier et al. [2019]. In a later work, they replaced SPH

with the Fluid-Implicit-Particle (FLIP) method and added a durability

measure to model compressibility. Abdelrazek et al. [2014] model

snow as a fluid by employing the Bingham viscosity model in order

to simulate snow avalanches. Goswami et al. [2019] use particles to

model snow behavior in real-time on the GPU, but compute simple

inter-particle forces to avoid evaluating an SPH interpolation kernel.

We simulate snow as an elastoplastic material and there exists

extensive work with regard to elastic and elastoplastic materials in

ACM Trans. Graph., Vol. 39, No. 4, Article 36. Publication date: July 2020.

An Implicit Compressible SPH Solver for Snow Simulation • 36:3

the computer graphics community which is too large to be covered

here in full extend. While Desbrun and Gascuel [1996] presented

an early SPH-based method to simulate deformable bodies, there

has also been a lot of work focusing on discretization methods (e.g.,

as proposed by Gerszewski et al. [2009] or Wojtan et al. [2009]),

on fracturing (e.g., as shown by Hahn and Wojtan [2015]; Jones

et al. [2016a]; Wolper et al. [2019]), or on other aspects, e.g., real-

time simulation as for example recently shown by Brandt et al.

[2018] or on plastic deformation without simulating elasticity as

presented by Jones et al. [2016b]. While outdated, the report by

Nealen et al. [2006] gives a good overview of different methods.

Similarly, coupling between different phases is a popular research

topic in the simulation community since it allows to reproduce

interesting phenomena as shown by Losasso et al. [2006]. While it

is out of scope for us to cover all the work, recent advances were

made by Akbay et al. [2018], Brandt et al. [2019] and Gissler et al.

[2019].

For our approach, we discretize the snow with SPH particles and

compute accelerations based on an elastoplastic constitutive model.

Using SPH in contrast to MPM simplifies the boundary handling and

the simulation of single falling particles that accumulate over time.

Furthermore, compared to previous approaches, we employ a combi-

nation of two implicit solvers to replicate the elastic behavior of the

snow. First, we use a novel implicit compressible equation-of-state

pressure solver. A notable exception is the fluid solver proposed

by Weiler et al. [2016], which builds upon the Projective Dynamics

method proposed by Bouaziz et al. [2014]. Weiler et al. use a linear

state equation evaluated with SPH to formulate the constraints re-

quired by the implicit Projective Dynamics method. However, since

their approach is based on the Projective Dynamics framework, it

is more challenging to combine their solver with existing incom-

pressible fluids that are typically simulated using iterative pressure

solvers, e.g., as proposed by Solenthaler and Pajarola [2009]; Ihm-

sen et al. [2014a]; Bender and Koschier [2017]. For our solver, we

combine the performance advantage of having an iterative implicit

pressure solver, the possibility to couple it with existing incom-

pressible solvers, and with the ability to model compression. As a

second solver, we use a linear elasticity solver. The linearization of

our elastic solver is guided by the work of Peer et al. [2018], who

apply their solver for the simulation deformable objects with SPH.

Compared to their approach, we simulate an elastoplastic material.

Furthermore, we do not rely on the initial particle configuration and

we adapted the discretization to satisfy our requirements for snow.

In contrast to previous methods that focus on specific aspects of

snow, our approach and the combined use of the two solvers allows

us to simulate a wider range of effects, including snow fall and

accumulation, phase change, phase interactions and compression,

deformation and breaking.

3 METHOD
We base the physical behavior of our snow solver on the constitutive

model proposed by Stomakhin et al. [2013]. Accordingly, we model

the snow as a continuous elastoplastic material. The snow counter-

acts elastic deformations while plastic deformations are permanent

and influence its stiffness. An acceleration resulting from the elas-

tic deformation tries to return the snow into a rest configuration

which is dependent on the previous plastic deformation of the snow.

Accordingly, to simulate the snow behavior, we compute this elastic

response and additionally update the plastic deformation over time.

In the following, we first give an overview of the complete algo-

rithm for a single simulation step in Subsection 3.1. We then detail

in Subsection 3.2 how we compute the acceleration due to elastic

deformation. For this, we employ two implicit solvers. First, we

propose a novel compressible pressure solver that iteratively com-

putes accelerations counteracting the volume change of the snow.

Secondly, we use an implicit linear solver that counteracts shear.

Afterward, in Subsection 3.3, we explain how we update the plastic

deformation of the snow and how the compression of the snow

influences its stiffness and shear modulus. In Subsection 3.4, we

describe our boundary handling which includes an implicit bound-

ary friction formulation. Finally, we summarize and discuss our

proposed method in Subsection 3.5.

3.1 Overview
A single simulation step consists of multiple successive computa-

tions. We give a brief overview of all the steps in this section before

describing each step in detail in Subsections 3.2 to 3.4. Algorithm 1

shows the order of the steps. In a first loop over all particles (Lines 1

Algorithm 1 A single simulation step of our proposed SPH-based

snow solver.

1: foreach particle 𝑖 do
2: compute 𝜌𝑡

0,𝑖
⊲ see Subsection 3.3.2

3: compute L𝑖 ⊲ see Eq. (15)

4: compute aother,𝑡
𝑖

⊲ e.g., gravity and adhesion

5: compute afriction,𝑡
𝑖

⊲ using Eq. (24)

6: solve for a𝜆
𝑖

⊲ see Subsection 3.2.1

7: solve for a𝐺
𝑖

⊲ see Subsection 3.2.2

8: foreach particle 𝑖 do
9: integrate v𝑡+Δ𝑡

𝑖
= v𝑡

𝑖
+ Δ𝑡 (aother,𝑡

𝑖
+ afriction,𝑡

𝑖
+ a𝜆

𝑖
+ a𝐺

𝑖
)

10: foreach particle 𝑖 do
11: integrate F𝐸,𝑖 ⊲ see Subsection 3.3.1

12: foreach particle 𝑖 do
13: integrate x𝑡+Δ𝑡

𝑖
= x𝑡

𝑖
+ Δ𝑡v𝑡+Δ𝑡

𝑖

to 5), we compute and store variables for each particle that are

required in later steps. This includes the current rest density of a

particle (Line 2) which, e.g., indicates the compression of the snow

and is used to model the plastic hardening, i.e., the increase of stiff-

ness of the snow when compressed. In Line 3, the correction matrix

L𝑖 is computed which is used for an improved evaluation of the

SPH kernel gradient (cf. Eq. (16)). Additionally, we evaluate accel-

erations like gravity which are included in aother,𝑡
𝑖

(Line 4) and the

friction-based acceleration afriction,𝑡
𝑖

at the boundary (Line 5).

Then, in Lines 6 and 7, we compute the acceleration of the snow

due to elastic deformation. For this, we use two separate solvers

which simplifies the integration of our approach with existing SPH

solvers for fluids and rigid bodies. We detail the motivation for using

ACM Trans. Graph., Vol. 39, No. 4, Article 36. Publication date: July 2020.

36:4 • Gissler et al.

these two solvers in Subsection 3.2. In principle, we model the elastic

response of the snow using the Lamé parameters 𝜆 and 𝐺 . Each of

the solver computes an acceleration corresponding to one of the

Lamé parameters. First, a pressure solver computes a𝜆
𝑖
, reacting to

compression of the snow. Then, we use a linear elasticity solver to

compute a𝐺
𝑖
to counteract shear.

Finally, we integrate all particles. For this, we first integrate the ve-

locities of each particles with the previously computed accelerations

as shown in Lines 8 and 9. Then, we update and store the deforma-

tion gradient (Lines 10 and 11) of each particle. The separation of

the overall deformation into elastic and plastic parts also happens in

this step. Finally, we update the particle positions (Lines 12 and 13).

3.2 Elastic deformation
In this section, we describe how we compute an acceleration to react

on the elastic deformation of each snow particle using our proposed

snow solver. There are multiple requirements that our snow solver

needs to satisfy. First, we want to integrate it into an existing SPH

framework and want to simulate interactions between different

phases. Secondly, snow gets less compressible the more it already is

compressed until it is nearly incompressible. Furthermore, snow not

only counteracts compression but also shear strain. For an elastic

material, the Lamé parameters 𝜆 and 𝐺 can be used to define the

stress-strain relationship, i.e., the Cauchy stress 𝝈 is computed as

𝝈 = 2𝐺𝝐 +𝜆𝑡𝑟 (𝝐)1, where 𝝐 is the strain and 1 is the identity matrix.

However, instead of computing the stress and resulting acceleration

in a single step, we compute the accelerations of the snow using

two implicit solvers to satisfy the above-mentioned requirements.

The first solver iteratively computes a pressure which we use

to compute the acceleration a𝜆 that counteracts compression of

the snow depending on the Lamé parameter 𝜆. This allows us to

integrate our snow solver into an existing SPH framework where

the other phases are also based on computing pressure. SPH-based

compressible solvers that compute the pressure values explicitly

using a state equation require that the time step needs to be se-

verely restricted to keep the simulation stable, thus harming the

performance. Alternatively, iterative pressure solvers that model

incompressible materials are common and allow large time steps.

In the following, we present a novel implicit compressible pressure

solver that combines the compressibility of a state equation solver

with the performance and stability of an iterative pressure solver

and thus allows us to model the compressible snow. Our derivation

of the system of equations of the solver is using a state equation

and is motivated by the derivations used for the Implicit Incom-

pressible SPH (IISPH) approaches by Ihmsen et al. [2014a]; Band

et al. [2018a]. This leads us to an iterative matrix-free compressible

pressure solver, which enables the integration with existing iterative

pressure solvers.

The second solver counteracts the deformations that are not yet

captured, e.g., shear-based deformations, by computing the accel-

eration a𝐺 based on the Lamé parameter 𝐺 . For this, we employ

an implicit solver based on a linear hyperelastic material model.

For the derivation of this solver, we adopt the linearization con-

cept proposed by Peer et al. [2018]. We describe the derivation of

the linear system, the discretization using SPH and its matrix-free

implementation in Subsection 3.2.2.

3.2.1 Implicit equation-of-state solver. We derive an implicit formu-

lation for an equation of state which enables us to solve the pressure

of a compressible material. We use this pressure to compute an

acceleration to counteract compression of the snow. In the follow-

ing, we first show the theoretical derivation of the linear system

of equations. We then give implementation details, e.g., how we

discretize the equations with SPH and how we solve the system

such that it integrates into existing pressure solvers.

Theory.
In general, we follow the basic steps outlined in the work by Band

et al. [2018a] to derive our system of equations. Note that we omit

the particle index 𝑖 in the following for better readability. We start

with the mass-conservation law:

D𝜌

D𝑡
+ 𝜌∇ · v =0 , (1)

where v is the velocity and 𝜌 the density. We compute the velocity

at the next time 𝑡 + Δ𝑡 as

v𝑡+Δ𝑡 =v∗ − Δ𝑡
1

𝜌𝑡+Δ𝑡
∇𝑝𝑡+Δ𝑡 (2)

where 𝑝 is pressure and v∗ is the predicted velocity based on known

accelerations: v∗ = v𝑡 +Δ𝑡 (aother,𝑡 +afriction,𝑡). afriction,𝑡 is a friction-
based acceleration near the boundary which is described in more

detail in Subsection 3.4. aother,𝑡 includes accelerations like grav-

ity. Note that for a better clarity in the derivation we use v𝑡+Δ𝑡

in Eq. (2) although the final velocity used in the integration step

also includes the acceleration from the second implicit solver which

we detail in Subsection 3.2.2. By combining a backward-difference

discretization at time 𝑡 + Δ𝑡 of Eq. (1) with Eq. (2) and approximat-

ing 𝜌𝑡+Δ𝑡∇ · (1

𝜌𝑡+Δ𝑡
∇𝑝𝑡+Δ𝑡) = ∇2𝑝𝑡+Δ𝑡 , we get a system of equa-

tions with unknowns 𝜌𝑡+Δ𝑡 and 𝑝𝑡+Δ𝑡 : 𝜌𝑡+Δ𝑡 − Δ𝑡2∇2𝑝𝑡+Δ𝑡 = 𝜌𝑡 −
Δ𝑡𝜌𝑡+Δ𝑡∇ · v∗. To only have the two unknowns on the left-hand

side, we approximate the term on the right-hand side as 𝜌∗ =

𝜌𝑡 − Δ𝑡𝜌𝑡∇ · v∗ which finally leads to:

𝜌𝑡+Δ𝑡 − Δ𝑡2∇2𝑝𝑡+Δ𝑡 =𝜌∗ . (3)

For an incompressible material, we would now constrain the density

at the next time 𝜌𝑡+Δ𝑡 to the rest density 𝜌0. However, snow is

compressible and we therefore need to find another way to replace

the unknown density 𝜌𝑡+Δ𝑡 . Accordingly, we use an equation of state
to establish a linear relationship between 𝜌𝑡+Δ𝑡 and the unknown

pressure 𝑝𝑡+Δ𝑡 :

𝑝𝑡+Δ𝑡 =𝜆𝑡+Δ𝑡
(
𝜌𝑡+Δ𝑡

𝜌𝑡+Δ𝑡
0

− 1

)
. (4)

𝜆𝑡+Δ𝑡 indicates the stiffness of the material which is based on the

volume change, e.g., compression, of the snow. We simplify the

equation by approximating 𝜌𝑡+Δ𝑡
0

with 𝜌𝑡
0
and 𝜆𝑡+Δ𝑡 with 𝜆𝑡 . We

detail the computation of 𝜌𝑡
0
and 𝜆𝑡 in Subsection 3.3.2. By using

Eq. (4) to replace 𝜌𝑡+Δ𝑡 in Eq. (3) and further transformations, we

get the following linear equation with the only unknown being the

ACM Trans. Graph., Vol. 39, No. 4, Article 36. Publication date: July 2020.

An Implicit Compressible SPH Solver for Snow Simulation • 36:5

pressure at the next time 𝑝𝑡+Δ𝑡 :

−
𝜌𝑡
0

𝜆𝑡
𝑝𝑡+Δ𝑡 + Δ𝑡2∇2𝑝𝑡+Δ𝑡 =𝜌𝑡

0
− 𝜌∗ . (5)

Note that Eq. (5) is not a pressure Poisson equation (PPE). However,

in the limit of 𝜆𝑡 equaling infinity, Eq. (5) then is a PPE, e.g. as

shown by Band et al. [2018a]. Stomakhin et al. [2014] and Kwatra

et al. [2009] use a similar equation on a grid which they derive from

the pressure evolution equation. By applying Eq. (5) to every snow

particle 𝑖 in our simulation, we get a linear system of equations

which we solve to compute the pressure. The pressure gradient

results in the acceleration a𝜆 = − 1

𝜌 ∇𝑝 that counteracts compression.

Implementation.
We solve Eq. (5) with a matrix-free relaxed Jacobi solver. By employ-

ing a relaxed Jacobi solver, we can interleave each iteration of our

compressible pressure solver with the iterations of other iterative

pressure solvers, e.g., with the solvers by Ihmsen et al. [2014a]; Band

et al. [2018a]; Gissler et al. [2019]. This is in contrast to treating the

solvers of the separate phases as black boxes, e.g., as done by Akbay

et al. [2018]. Accordingly, on the right-hand side of Eq. (5), we need

to compute a divergence of the predicted velocity encoded in 𝜌∗.
On the left-hand side, we need to compute the Laplacian of the

pressure. Following the idea presented by Ihmsen et al. [2014a], we

discretize the Laplacian by two subsequent first-order derivatives:

First, we compute the gradient of the pressure and then we compute

the divergence of this pressure gradient. Accordingly, we need to

discretize the divergence of a vector field on both sides of Eq. (5).

We show the SPH discretization in the following using a generic

vector field v:

∇ · v𝑖 =
∑︁
𝑘

𝑉𝑘 (v𝑘 − v𝑖) · ∇𝑊𝑖𝑘 , (6)

where 𝑘 includes neighbors of all phases and boundary neighbors

and ∇𝑊 is the SPH kernel gradient. 𝑉𝑘 =
𝑚𝑘

𝜌𝑘
is the volume of

the respective particles, where𝑚𝑘 denotes the constant mass of a

particle. See Subsection 3.4 for more information on the volume of

a boundary particle. We discretize the pressure gradient as

∇𝑝𝑖 =
∑︁
𝑗

(
𝑝 𝑗 + 𝑝𝑖

)
𝑉𝑗∇𝑊𝑖 𝑗 +𝜓𝑝𝑖

∑︁
𝑏

𝑉𝑏∇𝑊𝑖𝑏 , (7)

where 𝑗 are fluid and snow neighbors and 𝑏 are boundary neighbors.

𝜓 is a parameter which we set to 1.5 inspired by the work of Akinci

et al. [2012]. Sincewe use a relaxed Jacobi solver, we need to compute

the diagonal element 𝑎𝑖𝑖 of the system matrix. This is done as:

𝑎𝑖𝑖 = −
𝜌𝑡
0

𝜆𝑡
− Δ𝑡2

∑︁
𝑗

𝑉𝑖𝑉𝑗
����∇𝑊𝑖 𝑗

����2
−Δ𝑡2 ©«

∑︁
𝑗

𝑉𝑗∇𝑊𝑖 𝑗 +𝜓
∑︁
𝑏

𝑉𝑏∇𝑊𝑖𝑏
ª®¬ ·

∑︁
𝑘

𝑉𝑘∇𝑊𝑖𝑘 ,

(8)

where 𝑗 are fluid and snow neighbors, 𝑏 are boundary neighbors

and 𝑘 are all three.

Equations (6) to (8) are used by the relaxed Jacobi solver of which

we show an overview in Algorithm 2. The pressure is updated in

each iteration 𝑙 using the relaxation factor 𝜔 = 0.5 and we iterate

until the error is lower than a user-defined threshold, typically

0.1 % density deviation. Note that we do not clamp the pressure in

contrast to what is typically done for fluid solvers, e.g., as discussed

by Ihmsen et al. [2014a]. Accordingly, we allow positive and negative

pressure values for our snow particles.

Algorithm 2 Solver steps of the proposed implicit compressible

pressure solver.

1: procedure Prepare
2: foreach particle 𝑖 do
3: compute 𝜌∗

𝑖
= 𝜌𝑡

𝑖
− Δ𝑡𝜌𝑡

𝑖
∇ · v∗

𝑖
⊲ using Eq. (6)

4: compute 𝑎𝑖𝑖 ⊲ see Eq. (8)

5: procedure Solve
6: while not converged do
7: foreach particle 𝑖 do
8: compute ∇𝑝𝑙

𝑖
⊲ see Eq. (7)

9: foreach particle 𝑖 do
10: compute (A𝑝𝑙)𝑖 ⊲ LHS of Eq. (5)

11: 𝑝𝑙+1
𝑖

= 𝑝𝑙
𝑖
+ 𝜔

𝑎𝑖𝑖

(
𝜌𝑡
0
− 𝜌∗ − (A𝑝𝑙)𝑖

)

3.2.2 Shear. Apart from the accelerations counteracting a volume

change, there are also large shear-based accelerations acting inside

of the snow. We describe the computation of these accelerations

in the following and start by giving a theoretical derivation of the

implicit system that we solve to compute these accelerations. For

readability, we omit the particle index 𝑖 in the theory section. This

system is based on a hyperelastic material model and inspired by

the work of Peer et al. [2018]. We then give implementation details

regarding the discretization with SPH and solving of the system.

Theory.
Since we use a hyperelastic material model, the Cauchy stress is

computed as 𝝈 = 2𝐺𝝐 + 𝜆𝑡𝑟 (𝝐) 1. We already computed the second

term on the right-hand side and the resulting acceleration is included

in a𝜆 as described in the previous section. Accordingly, we compute

𝝈𝑡+Δ𝑡
as

𝝈𝑡+Δ𝑡 =2𝐺𝑡𝝐𝑡+Δ𝑡 . (9)

Note that 𝝈𝑡+Δ𝑡
as computed in Eq. (9) contains a response to shear

and volume deformations. Only considering the shear, this would

need to read 2𝐺𝑡 (𝝐𝑡+Δ𝑡 − 1

3
𝑡𝑟 (𝝐𝑡+Δ𝑡)). We discuss the reason for

using the formulation shown in Eq. (9) in Subsection 3.5. We explain

the computation of the time- and particle-based shear modulus 𝐺𝑡

which we use as an approximation of 𝐺𝑡+Δ𝑡
in Subsection 3.3.2.

𝝐𝑡+Δ𝑡 is the strain at time 𝑡 + Δ𝑡 which encodes the deformation of

the material.

To build a linear implicit system, we start with the computation

of the velocity at time 𝑡 + Δ𝑡 based on the divergence of the Cauchy

stress as

v𝑡+Δ𝑡 = v∗∗ + Δ𝑡
1

𝜌𝑡
∇ · 𝝈𝑡+Δ𝑡 , (10)

where the predicted velocity v∗∗ includes all known accelerations

as v∗∗ = v𝑡 + Δ𝑡 (aother,𝑡 + afriction,𝑡 + a𝜆).
Following Eq. (9), 𝝈𝑡+Δ𝑡

in Eq. (10) depends on the elastic de-

formation of the snow at time 𝑡 + Δ𝑡 . In turn, the future elastic

ACM Trans. Graph., Vol. 39, No. 4, Article 36. Publication date: July 2020.

36:6 • Gissler et al.

deformation depends on the unknown velocity v𝑡+Δ𝑡 since the ve-
locities determine how the particles move relative to each other. By

following these successive dependencies, we can transform Eq. (10)

into the desired system of equations. Accordingly, we continue by

defining how we compute the strain 𝝐𝑡+Δ𝑡 . Since we use a corota-
tional model (cf. Subsection 3.3.1), we can follow the work of Peer

et al. [2018] and use the infinitesimal strain tensor to keep our model

linear:

𝝐𝑡+Δ𝑡 =
1

2

(
F𝑡+Δ𝑡𝐸 +

(
F𝑡+Δ𝑡𝐸

)⊤)
− 1 , (11)

where F𝑡+Δ𝑡
𝐸

is the elastic deformation gradient at time 𝑡 + Δ𝑡 . The
deformation gradient encodes how the deformation changes spa-

tially and is based on the displacement of the material over time.

Accordingly, we can compute F𝑡+Δ𝑡
𝐸

based on the current elastic

deformation gradient F𝑡
𝐸
and the change of displacement Δ𝑡∇v𝑡+Δ𝑡

as

F𝑡+Δ𝑡𝐸 =F𝑡𝐸 + Δ𝑡
(
∇v𝑡+Δ𝑡

)
F𝑡𝐸 . (12)

The differential update is frequently used inMPM, e.g., by Stomakhin

et al. [2013, 2014]; Hu et al. [2018] and we adopt this form. In the

beginning, the deformation gradient is initialized with the identity

matrix. Note that Eq. (12) is only an approximation of the steps we

use to integrate F𝐸 over time where we additionally use a rotation

extraction and a splitting of plastic and elastic deformations. We

use this approximation here to achieve a linear dependence of the

deformation gradient on the velocity v𝑡+Δ𝑡 . The details for the full
integration of F𝐸 are shown in Subsection 3.3.1. By using Eqs. (9), (11)

and (12) in Eq. (10) we get a linear system with unknown velocities

v𝑡+Δ𝑡 :

v𝑡+Δ𝑡 − Δ𝑡2

𝜌𝑡
∇ ·

(
𝐺𝑡

((
∇v𝑡+Δ𝑡

)
F𝑡𝐸 +

((
∇v𝑡+Δ𝑡

)
F𝑡𝐸

)⊤))
=v∗∗ + Δ𝑡

𝜌𝑡
∇ ·

(
𝐺𝑡

(
F𝑡𝐸 +

(
F𝑡𝐸

)⊤ − 21

))
,

(13)

where we moved all known terms to the right-hand side. In the

following, we explain how we discretize Eq. (13) using SPH and

solve the system of equations to get an acceleration a𝐺 .
Implementation.

Instead of solving for the velocity v𝑡+Δ𝑡
𝑖

, we directly solve for an

acceleration a𝐺
𝑖
in our implementation. By transforming Eq. (13) we

get

a𝐺𝑖 − Δ𝑡

𝜌𝑡
𝑖

∇ ·
(
𝐺𝑡
𝑖

((
∇a𝐺𝑖

)
F𝑡𝐸,𝑖 +

((
∇a𝐺𝑖

)
F𝑡𝐸,𝑖

)⊤))
=
1

𝜌𝑡
𝑖

∇ ·
(
2𝐺𝑡

𝑖

(
1

2

(
F∗∗𝐸,𝑖 +

(
F∗∗𝐸,𝑖

)⊤)
− 1

))
,

(14)

where F∗∗
𝐸,𝑖

= F𝑡
𝐸,𝑖

+Δ𝑡∇v∗∗
𝑖

F𝑡
𝐸,𝑖

is the predicted deformation gradient

due to the predicted velocities v∗∗
𝑖
. As outlined by Peer et al. [2018],

the linear system shown in Eq. (14) can be solved in a matrix-free

way.We need to discretize the gradient and divergence computations

in Eq. (14) for which we employ SPH as detailed in the following.

Gradient discretization.
The gradient of a vector fields needs to be computed on both sides

of Eq. (14). On the left-hand side, the gradient of the acceleration

a𝐺 is needed while on the right-hand side, the gradient of v∗∗ is

required. In the following, we show how we compute this gradient

with SPH. We use the same discretization on both sides of Eq. (14)

and therefore just show the discretization for a generic velocity v. In
order to capture rotational motion of the velocity field in the velocity

gradient ∇v𝑖 more accurately, we employ a first-order consistent

kernel gradient
˜∇𝑊 as proposed by Peer et al. [2018]. Accordingly,

we follow Bonet and Lok [1999] and compute a correction matrix

for the standard SPH gradient ∇𝑊:

L𝑖 =
©«
∑︁
𝑗

𝑉𝑗∇𝑊𝑖 𝑗 ⊗ x𝑗𝑖
ª®¬
−1

, (15)

where 𝑗 are snow and boundary neighbors of particle 𝑖 and x𝑗𝑖 =

x𝑗 − x𝑖 . If the particles are in a coplanar or colinear configuration,

the matrix cannot be inverted and we instead compute the Moore-

Penrose pseudoinverse as proposed by Peer et al. [2018]. L𝑖 from
Eq. (15) can be used to compute the corrected kernel gradient as

˜∇𝑊𝑖 𝑗 =L𝑖∇𝑊𝑖 𝑗 . (16)

Computing the velocity gradient using the corrected kernel gra-

dient improves the capturing of rotational movement. However,

we noticed that it often leads to an overestimation of the volume

change. To alleviate this problem, we combine the volume change

from a velocity gradient ∇v
′
𝑖
which we compute using the normal

kernel gradient with rotational and shear changes from a velocity

gradient
˜∇v𝑖 computed using the corrected kernel gradient. We

start by calculating uncorrected snow-based and boundary-based

velocity gradients as:

∇v
′
𝑖,𝑠 =

∑︁
𝑗

(
v𝑗 − v𝑖

)
⊗ 𝑉𝑗∇𝑊𝑖 𝑗 ,

∇v
′

𝑖,𝑏
=
∑︁
𝑏

(v𝑏 − v𝑖) ⊗ 𝑉𝑏∇𝑊𝑖𝑏 ,
(17)

where 𝑗 are neighboring snow particles and𝑏 are neighboring bound-

ary particles. Due to the definition of the corrected kernel gradient

(cf. Eq. (16)), the corrected velocity gradient can now simply be

computed as
˜∇v𝑖 = ∇v

′
𝑖,𝑠

L⊤
𝑖
+ 1

3
𝑡𝑟 (∇v

′

𝑖,𝑏
L⊤
𝑖
)1. Note that we only

consider the volume change with regard to the boundary. This is

motivated by the fact that we compute frictional forces separately

as shown in Subsection 3.4.

To get the final velocity gradient ∇v𝑖 , we take the volume change

of the uncorrected velocity gradient V
′
𝑖
= 1

3
𝑡𝑟 (∇v

′
𝑖,𝑠

+ ∇v
′

𝑖,𝑏
)1 and

combine it with the rotational part R̃𝑖 =
1

2
(˜∇v𝑖 − (˜∇v𝑖)⊤) and shear

part S̃𝑖 = 1

2
(˜∇v𝑖 + (˜∇v𝑖)⊤) − 1

3
𝑡𝑟 (˜∇v𝑖)1 of the corrected velocity

gradient:

∇v𝑖 =R̃𝑖 + V
′
𝑖 + S̃𝑖 . (18)

Divergence discretization.
After having computed the gradient as shown in the previous sec-

tion, the remaining spatial derivative in Eq. (14) is the divergence of

a vector field. Although there are some transformations in Eq. (14),

this is essentially the divergence of a stress tensor. Accordingly, in

the following, we show how we compute ∇ ·𝝈𝑖 with SPH for which

ACM Trans. Graph., Vol. 39, No. 4, Article 36. Publication date: July 2020.

An Implicit Compressible SPH Solver for Snow Simulation • 36:7

we also use the corrected kernel gradient:

∇ · 𝝈𝑖 =
©«
∑︁
𝑗

𝝈 𝑗

(
−𝑉𝑗 ˜∇𝑊𝑗𝑖

)
+ 𝝈𝑖𝑉𝑗 ˜∇𝑊𝑖 𝑗

+𝝈b

𝑏,𝑖

∑︁
𝑏

𝑉𝑏
˜∇𝑊𝑖𝑏

)
,

(19)

where 𝑗 are neighboring snow particles, 𝑏 are neighboring boundary

particles and 𝝈b

𝑏,𝑖
is a mirrored Cauchy stress tensor which we

compute as 𝝈b

𝑏,𝑖
= 1

3
𝑡𝑟 (𝝈𝑖) 1.

Solver.
We solve the linear system described in Eq. (14) using a Bi-CGSTAB

solver as proposed by van der Vorst [1992], since the system is

not symmetric and we did not investigate a potential symmetriza-

tion. The solver requires us to compute the right-hand side and the

matrix-vector product for a generic basis vector on the left-hand

side. Both can be implemented in a matrix-free way which is shown

in Algorithm 3.

Algorithm 3 Computation steps for the Bi-CGSTAB solver.

1: procedure Right-Hand-Side
2: foreach particle 𝑖 do
3: compute ∇v∗∗

𝑖
⊲ using Eqs. (15), (17) and (18)

4: foreach particle 𝑖 do

5:
1

𝜌𝑡
∇ ·

(
2𝐺𝑡

𝑖

(
1

2

(
F∗∗
𝐸,𝑖

+
(
F∗∗
𝐸,𝑖

)⊤)
− 1

))
⊲ RHS of Eq. (14)

6: procedure Left-Hand-Side(basis vector b)
7: foreach particle 𝑖 do
8: compute ∇b𝑖 ⊲ using Eqs. (15), (17) and (18)

9: foreach particle 𝑖 do

10: b𝑖 − Δ𝑡
𝜌𝑡
𝑖

∇ ·
(
𝐺𝑡
𝑖

(
(∇b𝑖) F𝑡

𝐸,𝑖
+

(
(∇b𝑖) F𝑡

𝐸,𝑖

)⊤))
⊲ LHS of Eq. (14)

3.3 Plastic deformation
As described in Subsection 3.2, our snow model computes an ac-

celeration for each particle to counteract the elastic deformation

of the snow. Additionally, the snow deforms plastically. This has

two effects: First, the rest configuration of the snow changes over

time. This is modeled by imposing a maximum elastic deformation

following the idea of Stomakhin et al. [2013]. Deformations larger

than this maximum are regarded as a permanent plastic deforma-

tion. This is explained in more detail in Subsection 3.3.1. The second

aspect is that the snow gets harder when it is compressed, i.e., the

elastic Lamè parameters 𝜆 and𝐺 used in the previous section change

depending on the compression of a snow particle. This hardening

of the snow is described in Subsection 3.3.2.

3.3.1 Maximum elastic deformation. Instead of evaluating a yield

function using the Cauchy stress and projecting the elastic defor-

mation gradient on the surface of this yield function, we adopt the

simpler approach used by Stomakhin et al. [2013] and change the

rest configuration of the snow by only allowing a maximum elastic

deformation. Deformations larger than this limit are considered

permanent. Following the proposal of Stomakhin et al. [2013], we

clamp the elastic deformation gradient F𝐸,𝑖 while integrating it. In
general, we update F𝐸,𝑖 with a differential update in the integration

step in each time step. We first update the velocities from v𝑡
𝑖
to

v𝑡+Δ𝑡
𝑖

using the previously computed accelerations. Then, using

the velocity gradient ∇v𝑡+Δ𝑡
𝑖

, we compute an intermediate elastic

deformation F
′
𝐸,𝑖

= F𝑡
𝐸,𝑖

+ Δ𝑡∇v𝑡+Δ𝑡
𝑖

F𝑡
𝐸,𝑖

.

We determine if the deformation was too large by using a singular

value decomposition (SVD) of F
′
𝐸,𝑖

= U𝑖Σ
′
𝑖
V⊤
𝑖
and clamping the

singular values with Σ𝑛 = clamp(Σ′
𝑛, [1 − 𝜃𝑐 , 1 + 𝜃𝑠]) for 1 ≤ 𝑛 ≤ 3

where Σ
′
𝑛 and Σ𝑛 are the singular values of Σ

′
𝑖
and the newmatrix Σ𝑖

respectively. 𝜃𝑐 and 𝜃𝑠 are user-defined parameters. Additionally, we

want to only keep the shear part of F
′
𝐸,𝑖

and remove the rotational

part. Since we already have the SVD, we can just reconstruct the

clamped elastic deformation gradient as F𝑡+Δ𝑡
𝐸,𝑖

= V𝑖Σ𝑖Vi
⊤
to leave

out the rotational part U𝑖V⊤
𝑖
.

3.3.2 Hardening. Snow gets harder when it is compressed. We

model this behavior by first estimating the current compression of

the snow based on the current particle configuration. For this, we

compute the current density of each particle 𝑖 using SPH:

𝜌𝑡𝑖 =
∑︁
𝑘

𝑚𝑘𝑊𝑖𝑘 (20)

where 𝑘 are particle neighbors and the kernel is evaluated based

on the current positions of all particles at time 𝑡 . 𝜌𝑡
𝑖
is the current

density of particle 𝑖 . This includes the compression which is due to a

permanent plastic deformation of the snow and the compression due

to the elastic deformation of the snow. For the computation of the

hardening effect of the snow, we only want to consider the plastic

deformation. This means we need to compute the rest density of

particle 𝑖 at the current time: 𝜌𝑡
0,𝑖
. Based on 𝜌𝑡

𝑖
, we can compute this

rest density by removing the elastic compression from it. Since we

know the elastic deformation gradient and since the determinant of

the deformation gradient indicates the volume change, we compute

𝜌𝑡
0,𝑖

as:

𝜌𝑡
0,𝑖 =𝜌

𝑡
𝑖

���𝑑𝑒𝑡 (
F𝑡𝐸,𝑖

)��� . (21)

Note that we use the absolute value of the determinant of the elastic

deformation gradient due to the fact that the elastic deformation

gradient may be inverted.

Using the current rest density 𝜌𝑡
0,𝑖
, we then compute the Lamé

parameters tomodel the hardening following the work of Stomakhin

et al. [2013]:

𝐺𝑡
𝑖 =

𝐸

2 (1 + 𝜈) 𝑒
𝜉
𝜌𝑡
0,𝑖

−𝜌
0

𝜌𝑡
0,𝑖 , (22)

𝜆𝑡𝑖 =
𝐸𝜈

(1 + 𝜈) (1 − 2𝜈) 𝑒
𝜉
𝜌𝑡
0,𝑖

−𝜌
0

𝜌𝑡
0,𝑖 . (23)

The Young modulus 𝐸, Poisson’s ratio 𝜈 and hardening coefficient 𝜉

can be set by the user to influence the snow behavior.

ACM Trans. Graph., Vol. 39, No. 4, Article 36. Publication date: July 2020.

36:8 • Gissler et al.

3.4 Boundary Handling
Our boundary handling is purely particle-based and builds on the

approaches proposed by Solenthaler and Pajarola [2008] and Akinci

et al. [2012] by sampling geometries with boundary particles 𝑏. To

sample triangle meshes with particles, we use an algorithm similar

to the one presented by Bell et al. [2005]. We then compute a volume

for each boundary particle as𝑉𝑏 = 𝜙ℎ3 1∑
𝑗 𝑊𝑏 𝑗

where 𝑗 are boundary

neighbors of 𝑏 and ℎ is the particle spacing. 𝜙 is a scaling factor

which we set to 0.8 motivated by Band et al. [2018a]. In contrast

to𝜓 used in Eq. (7) which only influences the pressure force at the

boundary, 𝜙 influences all computations which consider boundary

particles. For the implicit equation-of-state solver presented in Sub-

section 3.2.1, we integrate the boundary particles in Eqs. (6) to (8).

For the elastic solver proposed in Subsection 3.2.2, the boundary

particles are considered in Eqs. (15), (17) and (19).

Additionally, we consider the boundary in the computation of

accelerations that contribute to the predicted velocity v∗. This in-
cludes an acceleration due to adhesion and the frictional acceleration

afriction,𝑡 which we both detail in the following.

Adhesion.
Since we do not clamp the pressure to be positive, we have adhesive

behavior at the boundary if the pressure of a snow particle is nega-

tive. To be able to additionally influence the strength of the adhesive

behavior, we implemented an adhesion force acting between snow

and boundary particles based on the inter-particle force proposed

by Akinci et al. [2013].

Friction.
Snow often sticks to boundaries which may require large friction-

based accelerations for snow particles near the boundary. We com-

pute this frictional behavior using an SPH viscosity formulation. To

achieve a sticking behavior, a high friction value needs to be chosen

which would limit the time step severely when employing an explicit

viscosity model. Using an implicit model allows to use larger time

steps while remaining stable and thus improves performance. We

compute the friction acceleration based on the implicit viscosity for-

mulation proposed by Weiler et al. [2018]. In their approach, Weiler

et al. solve a linear system to compute the viscosity-based accelera-

tions. In contrast to their work, we use a different discretization for

the computation of the Laplacian. Weiler et al. compute the Lapla-

cian as proposed by Monaghan [2005]. However, this discretization

does not result in any force when two particles move tangentially

with respect to each other as detailed by Band et al. [2018b]. Instead,

we use the discretization of the Laplacian as presented by Morris

et al. [1997]. Interestingly, since we only compute friction between

snow and boundary and not in between snow particles, we can

solve this implicit system separately for each particle and thus do

not need to run a computationally expensive iterative solver. The

intuition behind this approach is that in our linear system of equa-

tions, the system matrix has non-zero entries only on the diagonal.

Accordingly, we compute the friction acceleration by dividing the

right-hand side of the viscosity system by the respective diagonal

element 𝑑𝑖𝑖 :

afriction,𝑡
𝑖

=
1

𝑑𝑖𝑖Δ𝑡

(
v𝑡𝑖 + Δ𝑡aother,𝑡

𝑖

−Δ𝑡𝜈𝑏
∑︁
𝑏

𝑉𝑏
x𝑖𝑏 · ∇𝑊𝑖𝑏

| |x𝑖𝑏 | |2 + 0.01ℎ2
v𝑏

)
,

(24)

where the friction coefficient 𝜈𝑏 is a user-defined parameter that

allows to change the strength of the friction effect. The diagonal

elements 𝑑𝑖𝑖 are computed as:

𝑑𝑖𝑖 =1 − Δ𝑡𝜈𝑏
∑︁
𝑏

𝑉𝑏
x𝑖𝑏 · ∇𝑊𝑖𝑏

| |x𝑖𝑏 | |2 + 0.01ℎ2
. (25)

3.5 Discussion
We presented a novel snow solver that combines two implicit solvers

to compute the material behavior. By using SPH as a discretization

method and coupling an implicit compressible pressure solver with

a hyperelastic material solver and introducing an implicit boundary

friction, we are able to simulate a wide range of scenarios as we will

show in Section 4.

The two combined solvers each compute a separate part of the

total elastic force of a snow particle. Each solver is essentially re-

sponsible for one term of the Cauchy stress 𝝈 = 2𝐺𝝐 + 𝜆𝑡𝑟 (𝝐). This
split allows us to compute the second term using a novel compress-

ible pressure solver such that it can be interleaved with existing

incompressible pressure solvers. While we use two solvers, this does

not correspond to a complete split into a volume-based part and a

shear-based part as stated in Subsection 3.2.2. This is due to the fact

that Eq. (9) still encodes a volume change in the strain. Completely

splitting the volume and shear reactions would mean we need to

use 𝐾 = 𝜆 + 2𝐺
3

as stiffness in the compressible pressure solver and

use 𝝈 = 2𝐺 (𝝐 − 1

3
𝑡𝑟 (𝝐)) instead of Eq. (9). However, volume and

shear changes are actually dependent on each other and we noticed

that either smaller time steps or multiple alternating runs of the

two solvers were needed to achieve highly shear-resistant snow

when using this formulation. Using the separation as proposed in

the previous sections allows us to reproduce a wide range of snow

behavior while keeping a good solver performance and enabling

the coupling with other phases.

It is also possible to solve the snow dynamics by only using the

solver described in Subsection 3.2.2. For this, Eq. (9) would need

to be replaced with 𝝈𝑡+Δ𝑡 = 2𝐺𝑡𝝐𝑡+Δ𝑡 + 𝜆𝑡 𝑡𝑟 (𝝐𝑡+Δ𝑡)1. While this

brings a performance benefit, it makes coupling with other phases

more challenging. To compare our proposed approach to computing

compression and shear with a single solver, we simulated the scene

shown in Fig. 11 with both approaches. While the results vary

slightly with the same parameters, it is possible to achieve a similar

visual appearance by slightly adapting them. Accordingly, we chose

to favor versatility (i.e., being able to couple our snow with other

materials) over performance. We additionally discuss the results of

the comparison simulations in Subsection 4.2.4.

4 RESULTS
In this section we demonstrate the capabilities of our snow solver by

simulating various experiments and showcases. We first show the

friction effects and the result of changing snow parameters on the

ACM Trans. Graph., Vol. 39, No. 4, Article 36. Publication date: July 2020.

An Implicit Compressible SPH Solver for Snow Simulation • 36:9

compression of the snow in Subsection 4.1. We also show a scene

where we couple the Youngmodulus to on an additional temperature

simulation. In Subsection 4.2, we investigate the properties of our

snow solver in more detail. For example, we show the behavior for

single particles, show interactionswith animated geometry, simulate

snow fall and accumulation, and compare our approach to an MPM-

based snow simulation. In Subsection 4.3, we present the coupling

of the snow solver with other phases. This includes the coupling

of single particles to a precomputed wind simulation. We further

demonstrate two-way coupling with rigid bodies. We also show the

interaction of snow and incompressible fluids and phase transitions

from fluid to snow and the interaction of snow with highly viscous

fluid. An overview over all scenes is given in Table 1. We rendered

all scenes using PreonLab by FIFTY2 Technology GmbH [2020].

Table 1. Overview of used particle spacing, maximum number of particles
and average simulation statistics for the presented scenes.

Scene particle number average

spacing of time- iter. iter. time per

particles step a𝜆 a𝐺 frame

Snowballs Fig. 2 2mm 122𝑘 0.2ms 2.7 35.1 28.7 s

Compression

20 kPa Fig. 3 3 cm 110𝑘 1.5ms 5.1 1.0 1.98 s

140 kPa Fig. 3 3 cm 110𝑘 1.5ms 4.76 1.17 1.87 s

IISPH Fig. 3 3 cm 110𝑘 1.5ms 8.93 1.0 1.91 s

Tire Fig. 6 1.5mm 5.5𝑀 0.15ms 3.2 4.2 2.6min

Oven bunnies Fig. 7 1mm 878𝑘 0.1ms 1.9 16.9 3.7min

Single particles Fig. 8 5mm 2028 0.5ms 3.2 2.0 0.49 s

Snow angel Fig. 9 1 cm 9.42𝑀 1ms 4.8 13.7 10min

City street Fig. 10 8 cm 5.07𝑀 3.1ms 3.1 27.2 3.24min

Armadillo

split 1 Fig. 11a 2.6 cm 5.37𝑀 1.6ms 5.1 17.4 4.5min

split 2 Fig. 11b 2.6 cm 5.37𝑀 1.6ms 5.28 7.79 2.6min

combined 1 Fig. 11c 2.6 cm 5.37𝑀 1.6ms 16.86 3.5min

combined 2 Fig. 11d 2.6 cm 5.37𝑀 1.6ms 4.54 1.6min

Rel. to MPM Fig. 12b 5mm 1350 0.5ms 3.6511.31 0.13 s

Density comp. Fig. 13 5mm 1171 0.1ms 2.64 7.05 0.14 s

Car snowing Fig. 1 5mm 5.04𝑀 0.1ms 3.6 1.9 8.7min

Sled race Fig. 14 1.5 cm 6.63𝑀 1.2ms 4.7 20.1 8.0min

Submarine Fig. 15 0.25m 6.52𝑀 5ms 14.4 16.1 28.1 s

Ice machine Fig. 16 1mm 953𝑘 0.1ms 3.0 9.4 3min

We simulated the experiments on a 16-core 3.1GHz Intel Xeon E5-

2687Wworkstation and by default used a framerate of 50 frames s
−1
.

We use a cubic spline kernel and a variant of the approach proposed

by Band et al. [2020] for the neighborhood search. If not indicated

otherwise, we use a snow density of 400 kgm
−3
. Furthermore, by

default, we set 𝐸 = 140 kPa, 𝜈 = 0.2, 𝜉 = 10, 𝜃𝑐 = 0.025 and 𝜃𝑠 =

0.0075.

4.1 Parameters
4.1.1 Snowballs. We show in a simple scene how different bound-

ary friction coefficients 𝜈𝑏 influence the interaction of snow with

the boundary. For this, we drop three snowballs on inclined planes

with friction coefficients of 0, 1 and 10. As seen in Fig. 2 and the

accompanying video, a friction coefficient of 0 leads to a slip bound-

ary condition while higher values converge to a no-slip behavior.

This scene is simulated with a frame rate of 250 frames s
−1
.

Fig. 2. Snowballs rolling down a inclined planes with different friction
coefficients.

Fig. 3. Compression test with three different settings and three cylinders
per setting. The three cylinders on the left show snow with 𝐸 = 20 kPa,
the three cylinders in the middle contain snow with 𝐸 = 140 kPa and the
three cylinders on the right use an IISPH implementation instead of our
compressible pressure solver.

4.1.2 Compression. Figure 3 shows a test scene with snow of vary-

ing compressibility in a cylinder in three different cases: under

gravity, under an additional load, and after removing the additional

load. The level of compression is adjusted by different values for

the Young modulus 𝐸, which is set to 20 kPa (𝜆0 ≈ 5.5 kPa) and

140 kPa (𝜆0 ≈ 38.8 kPa). In the third example, the Young modulus is

also set to 140 kPa but we replaced the compressible solver with an

incompressible pressure solver implementation based on IISPH as

proposed by Ihmsen et al. [2014a]. When we use the incompressible

SPH variant, the snow height is the same in all three cases. When

using the proposed compressible pressure solver, the snow com-

presses under gravity. It compresses more under the additional load

and this compression does not change after removing the additional

load. Detailed statistics regarding average number of neighbors and

performance of the solvers are shown in Figs. 4 and 5. The average

number of particle neighbors increases as the snow is compressed

for the 𝐸 = 20 kPa and 𝐸 = 140 kPa cases while it stays constant

ACM Trans. Graph., Vol. 39, No. 4, Article 36. Publication date: July 2020.

36:10 • Gissler et al.

when using the incompressible solver. Similarly, memory require-

ments increases and performance of the solver decreases under load.

While we use a variant of the neighborhood search proposed by

Band et al. [2020], we do not employ their proposed compression

scheme for the neighbor lists. However, it might be interesting to

integrate this in the future considering that snow particles have

significantly more neighbors when compressed.

0 1 2 3 4 5 6 7

35

40

time [s]

a
v
g
.
n
e
i
g
h
b
o
r
s

20 kPa

140 kPa

IISPH

Fig. 4. Average number of neighbors in the compression scene.

0 2 4 6

100

120

time [s]

c
o
m
p
u
t
a
t
i
o
n
t
i
m
e
[
m
s
]

20 kPa

140 kPa

IISPH 160

180

200

220

240

m
e
m
o
r
y
[
M
B
]

Fig. 5. Performance and memory consumption in the compression scene.
Solid lines indicate computation time per simulation step while dashed lines
indicate memory consumption.

4.1.3 Tire. As a more realistic experiment to show the effects of

varying the boundary friction coefficient 𝜈𝑏 , we simulate a tire

rolling through snow. Figure 6 shows close-ups of the two settings,

one with 𝜈𝑏 = 0 and one with 𝜈𝑏 = 1. It can be seen that the amount

of snow sticking to the tire surface varies drastically and that it is

possible to recreate the typical tire profile when rolling through

snow. This scene is simulated with a frame rate of 250 frames s
−1
.

4.1.4 Oven bunnies. We added a particle-based thermodynamics

simulation (cf., Brookshaw [1994]; Weiler et al. [2018]) to our solver

which enables us to couple snow parameters to temperatures sepa-

rately for each particle. To illustrate the possible effect, we simulate

multiple snow bunnies being put into an oven where they are slowly

being heated as shown in Fig. 7. To model the decreasing stiffness of

the snow when the temperature increases, we mapped the starting

temperature of −100 °C to a Young modulus of 600 kPa and let it

decrease to a value of 20 kPa for a temperature of 0 °C.

(a) 𝜈𝑏 = 0 (b) 𝜈𝑏 = 1

Fig. 6. A tire rolls through snow. Depending on the boundary friction coeffi-
cient 𝜈𝑏 , different amounts of snow stick to the surface of the tire.

Fig. 7. Snow bunnies are heated inside an oven. The Young modulus of the
snow particles varies depending on their temperature. The color of the snow
indicates the temperature with blue being −100 °C and red being 0 °C.

4.2 Snow solver
4.2.1 Single particles. As with all discretization approaches, our

SPH snow solver does not compute meaningful strains or stresses for

single samples with incomplete neighborhood. Without any neigh-

boring sample points, all involved SPH derivatives are evaluated to

zero. Nevertheless, single particles, i.e. small snow volumes, move

plausibly. Air interaction is handled with the drag force of Gissler

et al. [2017]. Solid boundaries are plausibly handled as contributions

frommissing neighbors are accounted for by the boundary handling

of Akinci et al. [2012]. Finally, the advection is straightforward in a

purely Lagrangian setting.

If single particles approach each other or larger volumes, the

pressure solver starts working and preserves particle volumes. Also,

the SPH derivatives start to give more meaningful values. When

ACM Trans. Graph., Vol. 39, No. 4, Article 36. Publication date: July 2020.

An Implicit Compressible SPH Solver for Snow Simulation • 36:11

particles finally reach a complete neighborhood, their behavior

adheres to the constitutive model.

As inmany other SPH solvers, e.g. in fluids, single particles behave

plausibly, but with limited material properties. Nevertheless, solid

boundaries and the interaction with air can be handled. Although

many SPH sums compute erroneous values for isolated samples,

the sums can always be computed and do not cause stability issues.

The transition of single particles to particle clusters with complete

neighborhood also does not cause stability issues as illustrated, e.g.,

in Fig. 8, but also in the snow fall scenes in Fig. 1, Fig. 10 and Fig. 13.

Particles with complete neighborhood follow the constitutive model.

Fig. 8. Demonstration that our solver produces plausible behavior for parti-
cles with few neighbors. Initially, all the particles are separated before being
formed into snow piles by moving boundaries.

4.2.2 Snow angel. To show the practicality of our approach, we

simulate a scene where the snow interacts with an animated mesh.

Figure 9 shows an image of the scene where a man walks through

snow and then falls on his back to make a snow angel with his

arms. The interaction with the animated mesh demonstrates the

wide range of motion that our snow solver can interact with and

the plausible results that are produced.

Fig. 9. A man is walking through snow before falling on his back andmaking
a snow angel with his arms.

4.2.3 City street. In this scene, we demonstrate snow accumulation

through snow fall on a city street. Then, as shown in Fig. 10, a truck

with a snow plow shield clears the street of the city. The snow has

a density of 200 kgm
−3

and overall we simulate the scene for more

than 1.5min of physical time.

Fig. 10. Snow is falling on a city street before a snow plow truck clears it.
Overall, more than 1.5min of physical time is simulated with up to 2.57𝑀

particles.

4.2.4 Armadillo. We simulate the Armadillo pushing a snow shovel

to clear snow as seen in Fig. 11. The snow deforms, compresses,

fractures and gets harder when compressed.

(a) split 1 (b) split 2

(c) combined 1 (d) combined 2

Fig. 11. The Armadillo clears snow using a snow shovel. As discussed in
Subsection 4.2.4, we simulate this scene with different parameters and
solver variants. (a) and (b) use our approach where two solvers are used to
compute the acceleration due to elastic deformation (referred to as split).
(c) and (d) are examples where only the elastic solver is used to compute
the acceleration (referred to as combined).

Following the discussion in Subsection 3.5, it is possible to use a

single solver to compute the acceleration due to elastic deformation

instead of using our proposed split-force approach if coupling with

other phases is not required. To evaluate this alternative approach,

we simulate the scene shown in Fig. 11 with the combined-force

approach where we only use the linear elastic solver. When using

the same parameters (𝜃𝑐 = 0.025, 𝜃𝑠 = 0.0075), the visual result

varies slightly as can be seen in the accompanying video and when

comparing Fig. 11a and Fig. 11c. However, we show that by slight

ACM Trans. Graph., Vol. 39, No. 4, Article 36. Publication date: July 2020.

36:12 • Gissler et al.

adaption of the parameters (𝜃𝑐 = 0.019, 𝜃𝑠 = 0.0075 for split 2 and
𝜃𝑐 = 0.025, 𝜃𝑠 = 0.0045 for combined 2), the snow behavior can be

tuned to be more similar.

(a) (b)

Fig. 12. Loosely and densely sampled snow with Taichi MPM (a) and our
SPH approach (b). The loosely and densely sampled MPM particles move
globally according to the snow model, but the loosely sampled MPM parti-
cles do not pack as in SPH.

4.2.5 Relation to MPM Snow. Our paper bases on the MPM snow

solver of Stomakhin et al. [2013]. One major contribution by Stom-

akhin et al. [2013] is a constitutive model that covers a practically

relevant range of snow behavior with an intuitive parameter control.

The other major contribution is the discretization of the respective

equations with MPM which has advanced the state-of-the-art in

MPM in general.

In contrast, we contribute to the state-of-the-art in SPH by solv-

ing SPH-specific challenges in the realization of the same material

behavior governed by Stomakhin et al.’s [2013] model. We discuss

a novel implicit compressible SPH pressure formulation and a novel

boundary handling. The relevance of SPH as a promising alternative

to MPM is shown in novel scenarios that have not been presented

with previously used discretization concepts. In particular, we show

snow fall and snow accumulation.

We are hesitant to postulate general benefits or drawbacks of SPH

compared to MPM or other discretization concepts. Instead, we see

a currently alleged drawback of a concept as a challenge that will be

resolved by future research. E.g., Zhu and Bridson [2005] mention

considerable computational expenses of MPM which have been

significantly reduced by Stomakhin et al. [2013]. Stomakhin et al.

[2013], on the other hand, state that SPH has issues in the handling

of volume preservation, stiffness, and plasticity. While this was true

back then, the proposed SPH formulations improve the situation for

SPH. SPH can be used for Stomakhin et al.’s [2013] model and we

even extend the range of scenarios that can be handled. To continue

that thought, we are rather confident that future MPM research

will find solutions for, e.g., snow fall and accumulation. Finally,

we are also convinced that MPM and SPH will be used for snow

simulations that go beyond the state presented in this paper, as both

discretization concepts are subject to continuous improvements.

Nevertheless, the relation between SPH and MPM can be dis-

cussed. While the snow behavior is the same for larger volumes in

both concepts, single particles seem to require different processing

in case of snow fall and accumulation. This is illustrated in a sce-

nario with loosely and densely sampled particles in Fig. 12. The SPH

particles naturally accumulate to a larger snow volume with our ap-

proach, but the Taichi MPM particles [Hu et al. 2019a] based on the

work of Hu et al. [2018] behave differently. As a whole, the loosely

and densely sampled MPM particles move globally according to the

snow model, but the loosely sampled MPM particles do not pack as

in SPH.

We speculate that the difference is due to implementation aspects.

Before discussing these aspects, we briefly summarize the concept

of Taichi MPM.

Taichi MPM.
Taichi MPM works with two sample sets, Lagrangian samples, i.e.

particles, and Eulerian samples, i.e. grid cells. It starts with veloci-

ties at particles which are interpolated at grid points. Deformation

gradient, strain and stress are considered at particles [Stomakhin

et al. 2013, 2014; Hu et al. 2018]. The resulting momentum change,

however, is computed at grid points from adjacent particles within

the support of a kernel function. The grid velocities are further

processed, e.g. boundary handling, and the final grid velocities are

used to update the deformation gradients at particles. Here, adjacent

grid points within the kernel support of a particle are used. Finally,

grid velocities are interpolated at particle positions, particles are ad-

vected, and the velocities of the advected particles are interpolated

at grid points. This results in updated velocities at both sample sets

and an updated deformation gradient at the particles.

Velocity divergence vs. density invariance.
There are two interesting differences in the Taichi MPM implemen-

tation compared to the proposed SPH realization. The first one is

related to the differential update of the deformation gradient with

the velocity gradient which suffers from drift. In particular, the

volume estimation is affected by the differential update from the

velocity divergence. Although the differential update of the defor-

mation gradient is considered in both settings, Taichi MPM and SPH,

it is less frequently applied in our approach. In Taichi MPM, com-

pression is exclusively deduced from the velocity divergence. Also,

the hardening, i.e. the update of the Lamé parameters, is deduced

from the determinant of the deformation gradient in Taichi MPM

without a notion of the actual volume. In contrast, our SPH approach

considers the actual particle volume in the hardening process, i.e.

in the computation of the Lamé parameters. Further, our pressure

solver considers the actually predicted compression which avoids

the volume drift. As there is no notion of the actual compression

in Taichi MPM, approaching particles might decelerate too early or

the hardening might be too strong, if a negative velocity divergence

is detected. This is not a conceptual issue. As discussed, e.g., for

SPH PPE solvers by Cornelis et al. [2019], the density invariance,

the velocity divergence or even combinations can be used in the

pressure computation and in the update of the Lamé parameters.

Thus, we speculate that the hardening and compression handling

ACM Trans. Graph., Vol. 39, No. 4, Article 36. Publication date: July 2020.

An Implicit Compressible SPH Solver for Snow Simulation • 36:13

in MPM could also employ the actual density deviation instead of

exclusively relying on the velocity divergence.

Two sample sets.
A second interesting aspect is the usage of two staggered sample sets

in MPM. Particle velocities are interpolated at grid points within the

kernel support which is typically two times the grid cell edge length,

e.g. as done by Hu et al. [2019a]. Thus, a 2D particle affects velocities

at 3 × 3 nearby grid points. Also, the (processed) velocities of 3 × 3

nearby grid points are used to update the deformation gradient

at a particle. I.e., whenever two particles in adjacent cells move

towards each other, the respective negative velocity divergence

is encoded as a compression in the deformation gradient at both

particles independent from their actual volume. This aspect is similar

to SPH, where particles within the kernel support distance influence

each other. Nevertheless, the kernel support in MPM tends to be

larger than in SPH. If, e.g., the 2D cell area is four times the size

of a 2D particle, the MPM kernel support would be four times the

particle diameter, while it is two times the diameter in our SPH

implementation.

4.2.6 Density computation. As already discussed in Subsection 4.2.5,
it is critical for the snow accumulation behavior how the current

compression and resulting hardening of the snow is computed. To

further illustrate this, we simulate a simple snow fall scene as shown

in Fig. 13. The density of particles falling into the left cylinder is

handled as shown in Eq. (21). In contrast, the rest density of the snow

on the right-hand side is computed based on the determinant of the

plastic deformation gradient which we additionally accumulated as

proposed by Stomakhin et al. [2013]. This scene is simulated with a

frame rate of 250 frames s
−1
.

Fig. 13. Falling snow accumulates differently depending on how the current
rest density of a particle is computed.

4.3 Coupling
4.3.1 Car snowing. Figure 1 shows a scene in which we simulate

snow fall on a car. Similar to the city scene, this scene demonstrates

that our solver is able to simulate single particles that accumulate

over time. Furthermore, the animated wipers and the car that drives

away at the end illustrate the ability of the snow to interact with

complex and moving geometries. The scene furthermore contains

an air flow and the snow-air interactions are computed based on

the drag force model presented by Gissler et al. [2017]. To model

the light snow flakes with single particles, we set the snow density

to 40 kgm
−3
.

4.3.2 Sled race. We demonstrate two-way coupling with the SPH-

based rigid body solver proposed by Gissler et al. [2019] by simulat-

ing sleds that drive down a hill. A frame of the scene is shown in

Fig. 14. The sleds are simulated as full rigid bodies with six degrees

of freedom.

Fig. 14. Sleds are racing down a hill before crashing into snowmen. This
scenes demonstrates two-way coupling with rigid bodies.

4.3.3 Submarine. To illustrate the interaction between snow and

fluid, we simulate a submarine that breaks through a layer of ice

as can be seen in Fig. 15. In this scene, we set the density of the

snow to 100 kgm
−3

and increased the Young modulus to 1MPa to

get a harder snow that behaves more like ice. The water is simulated

using the IISPH approach by Ihmsen et al. [2014a].

Fig. 15. A submarine breaks through ice which demonstrates the interaction
of an incompressible fluid phase with snow.

4.3.4 Ice machine. We demonstrate phase change from viscous

fluid to snow and phase interaction between viscous fluid, rigid

body objects and snow in the scene shown in Fig. 16. An ice cone,

ACM Trans. Graph., Vol. 39, No. 4, Article 36. Publication date: July 2020.

36:14 • Gissler et al.

simulated as rigid body, is filled with a viscous fluid which turns to

snow and then is covered with chocolate sauce simulated as viscous

fluid.

Fig. 16. Ice is filled into a cone and is then covered with chocolate sauce.

5 LIMITATIONS
As mentioned in Subsection 3.5, our proposed splitting of the force

computation leads to a decoupling of pressure and shear stress, i.e.,

our method is not fully implicit. In particular, since we first compute

the pressure and then the shear forces as detailed in Algorithm 1, it

might be that Eq. (5) is not fully satisfied at the end of a time step.

In practice, however, we did not perceive this to be a problem, e.g.,

as shown in Subsection 4.2.4.

Furthermore, while we compute the snow behavior with two

implicit solvers, we update the deformation gradient in the integra-

tion step and do not consider the plastic deformation during the

implicit solver iterations. While we do not observe any time step

related instabilities due to this in our test scenes, it might be that

the overall snow behavior depends on the used time step due to this

explicit plastic deformation update. It therefore would be interesting

to integrate more advanced physical models, e.g., similar to the one

proposed by Gaume et al. [2018, 2019], into our snow solver.

We presented an implicit friction formulation at the boundary and

additionally use an inter-particle adhesion force. This lets us model

different types of boundary interactions for the snow. However, in

reality, single snow flakes or ice crystals often bounce away after

first impacting on a surface. We cannot parametrize this behavior

with our current boundary handling approach. It would be beneficial

to be able to control the strength of the bounce using for example a

restitution coefficient.

6 CONCLUSION
We presented a novel SPH-based snow solver that combines two

implicit solvers. This combination of two solvers allows to simulate

snow and its interactions with other phases such as fluids. Using

SPH for the discretization simplifies the simulation of snow fall

and snow accumulation where single snow flakes are modeled as

single particles. Furthermore, we presented an implicit friction for-

mulation at the particle-based boundary. Overall, this enabled us to

efficiently simulate a wide range of snow effects including snow fall

and accumulation, deformation, breaking, compression and harden-

ing, phase change and phase interactions and boundary interactions

with complex, moving and deforming boundaries.

The implicit friction formulation and adhesion at the boundary

enables us to show different sticking behavior but we cannot param-

etrize a bounce effect of single particles as discussed in Section 5.

Accordingly, we plan to further work on the boundary handling

of snow in the future. We are also interested in trying the implicit

friction at the boundary for other use cases, e.g., for the boundary

friction of elastic solids based on the approach of Peer et al. [2018] or

for SPH-based rigid bodies based on the work of Gissler et al. [2019].

Furthermore, we think our proposed implicit compressible pressure

solver can also be used for other applications and scenarios. For ex-

ample, we plan to employ it for the simulation of compressible gases

such as air. We think investigating its features and applying this

novel solver to other use cases will inspire future research. Finally,

given our coupling with fluids, it would be natural to let snow melt

into water. However, we think this requires being able to simulate

an SPH fluid with varying particle sizes. We believe that this could

be an interesting future research direction, e.g., based on the work

of Winchenbach et al. [2017].

ACKNOWLEDGMENTS
We thank the team at FIFTY2 Technology GmbH for their support.

In particular, we would like to thank Marc Gißler for implementing

the thermodynamics solver, Fabian Meyer for his insights with

regard to MPM and Markus Ihmsen for his support. We also want to

thank Jennifer Weiche from AVL for her early feedback. We thank

the reviewers for their suggestions and proof-reading that helped

improve this work.

The walking man is courtesy of Renderpeople. The ice cone by

2ROBOTGUY is licensed under CC BY 3.0. The sled by fragar is li-

censed under CC BY 3.0. The duck bywillie is licensed under CC0 1.0.

The truck is courtesy of 1991 Chevy on 3dwarehouse.sketchup.com.

The city (upper and lower part) is courtesy of Demilune on 3dware-

house.sketchup.com. The Stanford Bunny and Armadillo are cour-

tesy of the Stanford University Computer Graphics Laboratory. The

gas oven by Francesco Coldesina is licensed under CC BY 4.0. The

submarine by ate135 is licensed under CC BY 3.0. The rim is cour-

tesy of BBS Motorsport GmbH. Additional models are either bought

or created by us using Blender by the Blender Online Community

[2020].

REFERENCES
Ahmed M. Abdelrazek, Ichiro Kimura, and Yasuyuki Shimizu. 2014. Numerical sim-

ulation of a small-scale snow avalanche tests using non-Newtonian SPH model.

Transactions of the Japan Society of Civil Engineers 70, 2 (2014), 681–690.
Muzaffer Akbay, Nicholas Nobles, Victor Zordan, and Tamar Shinar. 2018. An Extended

Partitioned Method for Conservative Solid-Fluid Coupling. ACM Trans. Graph. 37,
4, Article 86 (July 2018), 12 pages.

Nadir Akinci, Gizem Akinci, and Matthias Teschner. 2013. Versatile Surface Tension

and Adhesion for SPH Fluids. ACM Transactions on Graphics 32, 6, Article 182 (2013),
8 pages.

Nadir Akinci, Markus Ihmsen, Gizem Akinci, Barbara Solenthaler, and Matthias

Teschner. 2012. Versatile Rigid-fluid Coupling for Incompressible SPH. ACM Trans-
actions on Graphics 31, 4, Article 62 (2012), 8 pages.

Stefan Band, Christoph Gissler, Markus Ihmsen, Jens Cornelis, Andreas Peer, and

Matthias Teschner. 2018a. Pressure Boundaries for Implicit Incompressible SPH.

ACM Transactions on Graphics 37, 2, Article 14 (Feb. 2018), 11 pages.
Stefan Band, Christoph Gissler, Andreas Peer, and Matthias Teschner. 2018b. MLS

pressure boundaries for divergence-free and viscous SPH fluids. Computers &
Graphics 76 (2018), 37–46.

Stefan Band, Christoph Gissler, and Matthias Teschner. 2020. Compressed Neighbour

Lists for SPH. Computer Graphics Forum 39, 1 (2020), 531–542.

Markus Becker, Markus Ihmsen, and Matthias Teschner. 2009. Corotated SPH for

Deformable Solids. In Proceedings of the Fifth Eurographics Conference on Natural
Phenomena (Munich, Germany) (NPH ’09). Eurographics Association, Aire-la-Ville,
Switzerland, 27–34.

ACM Trans. Graph., Vol. 39, No. 4, Article 36. Publication date: July 2020.

https://www.avl.com/
https://renderpeople.com/free-3d-people/
https://renderpeople.com
https://www.thingiverse.com/thing:1778078
https://www.thingiverse.com/2ROBOTGUY
https://creativecommons.org/licenses/by/3.0/
https://www.thingiverse.com/thing:2281347
https://www.thingiverse.com/fragar
https://creativecommons.org/licenses/by/3.0/
https://www.thingiverse.com/thing:139894
http://www.thingiverse.com/willie
https://creativecommons.org/publicdomain/zero/1.0/
https://3dwarehouse.sketchup.com/model/d7bf2a329b34403bdb6d92187131d97f/2011-Ram-Plow-Truck
https://3dwarehouse.sketchup.com/user/0919521462066356204548342/1991-Chevy
https://3dwarehouse.sketchup.com
https://3dwarehouse.sketchup.com/model/ud4338980-6d0f-4ec6-b4f3-616ae320fc57/Upper-Depot-Street
https://3dwarehouse.sketchup.com/model/u225cdeec-88ab-4631-a838-7035911748fc/Lower-Depot-Street
https://3dwarehouse.sketchup.com/user/0775503525350188629333280/Demilune
https://3dwarehouse.sketchup.com
https://3dwarehouse.sketchup.com
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
https://graphics.stanford.edu/
https://sketchfab.com/3d-models/gas-oven-8cc35c739c834b27b72d4761578dca3e
https://sketchfab.com/topfrank2013
https://creativecommons.org/licenses/by/4.0/
https://www.thingiverse.com/thing:3728389
https://www.thingiverse.com/ate135
https://creativecommons.org/licenses/by/3.0/
http://bbs-motorsport-gmbh.com/

An Implicit Compressible SPH Solver for Snow Simulation • 36:15

Nathan Bell, Yizhou Yu, and Peter J. Mucha. 2005. Particle-Based Simulation of Granular

Materials. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Los
Angeles, California) (SCA ’05). Association for Computing Machinery, New York,

NY, USA, 77–86.

Jan Bender and Dan Koschier. 2017. Divergence-Free SPH for Incompressible and

Viscous Fluids. IEEE Transactions on Visualization and Computer Graphics 23, 3
(2017), 1193–1206.

Blender Online Community. 2020. Blender. http://www.blender.org.

J. Bonet and T.-S.L. Lok. 1999. Variational and momentum preservation aspects of

Smooth Particle Hydrodynamic formulations. Computer Methods in Applied Me-
chanics and Engineering 180, 1 (Nov. 1999), 97–115.

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.

Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans.
Graph. 33, 4, Article 154 (July 2014), 11 pages. https://doi.org/10.1145/2601097.

2601116

Christopher Brandt, Elmar Eisemann, and Klaus Hildebrandt. 2018. Hyper-Reduced

Projective Dynamics. ACM Trans. Graph. 37, 4, Article 80 (July 2018), 13 pages.

Christopher Brandt, Leonardo Scandolo, Elmar Eisemann, and Klaus Hildebrandt. 2019.

The Reduced Immersed Method for Real-Time Fluid-Elastic Solid Interaction and

Contact Simulation. ACM Trans. Graph. 38, 6, Article 191 (Nov. 2019), 16 pages.
L. Brookshaw. 1994. Solving the Heat Diffusion Equation in SPH. Memorie della Società

Astronomia Italiana 65 (Jan 1994), 1033.

G. Cordonnier, P. Ecormier, E. Galin, J. Gain, B. Benes, and M.-P. Cani. 2018. Inter-

active Generation of Time-evolving, Snow-Covered Landscapes with Avalanches.

Computer Graphics Forum 37, 2 (2018), 497–509.

Jens Cornelis, Jan Bender, Christoph Gissler, Markus Ihmsen, and Matthias Teschner.

2019. An optimized source term formulation for incompressible SPH. The Visual
Computer 35, 4 (2019), 579–590.

François Dagenais, Jonathan Gagnon, and Eric Paquette. 2016. An efficient layered

simulation workflow for snow imprints. The Visual Computer 32, 6 (June 2016),

881–890.

Mathieu Desbrun and Marie-Paule Gascuel. 1996. Smoothed particles: A new paradigm

for animating highly deformable bodies. In Computer Animation and Simulation ’96,
Vol. 96. Springer, Springer Vienna, Vienna, 61–76.

Yu Fang, Yuanming Hu, Shi-Min Hu, and Chenfanfu Jiang. 2018. A Temporally Adaptive

Material Point Method with Regional Time Stepping. Computer Graphics Forum 37,

8 (2018), 195–204.

Yu Fang, Minchen Li, Ming Gao, and Chenfanfu Jiang. 2019. Silly Rubber: An Implicit

Material Point Method for Simulating Non-Equilibrated Viscoelastic and Elastoplas-

tic Solids. ACM Trans. Graph. 38, 4, Article 118 (July 2019), 13 pages.

Paul Fearing. 2000. Computer Modelling of Fallen Snow. In Proceedings of the 27th
Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
’00). ACM Press/Addison-Wesley Publishing Co., USA, 37–46.

Bryan E. Feldman and James F. O’Brien. 2002. Modeling the Accumulation of Wind-

Driven Snow. In ACM SIGGRAPH 2002 Conference Abstracts and Applications (San
Antonio, Texas) (SIGGRAPH ’02). Association for Computing Machinery, New York,

NY, USA, 218.

Niels v. Festenberg and Stefan Gumhold. 2009. A Geometric Algorithm for Snow

Distribution in Virtual Scenes. In Eurographics Workshop on Natural Phenomena,
Eric Galin and Jens Schneider (Eds.). The Eurographics Association, Aire-la-Ville,

Switzerland, 17–25.

Niels v. Festenberg and Stefan Gumhold. 2011. Diffusion-Based Snow Cover Generation.

Computer Graphics Forum 30, 6 (2011), 1837–1849.

FIFTY2 Technology GmbH. 2020. PreonLab. https://fifty2.eu/.

Ming Gao, Xinlei Wang, Kui Wu, Andre Pradhana, Eftychios Sifakis, Cem Yuksel, and

Chenfanfu Jiang. 2018. GPU Optimization of Material Point Methods. ACM Trans.
Graph. 37, 6, Article 254 (Dec. 2018), 12 pages.

Theodore F. Gast, Craig Schroeder, Alexey Stomakhin, Chenfanfu Jiang, and Joseph M.

Teran. 2015. Optimization Integrator for Large Time Steps. IEEE Transactions on
Visualization and Computer Graphics 21, 10 (Oct. 2015), 1103–1115.

J. Gaume, T. Gast, J. Teran, A. van Herwijnen, and C. Jiang. 2018. Dynamic anticrack

propagation in snow. Nature Communications 9, 1 (08 2018), 681–690.
Johan Gaume, Alec van Herwijnen, Ted Gast, Joseph Teran, and Chenfanfu Jiang. 2019.

Investigating the release and flow of snow avalanches at the slope-scale using

a unified model based on the material point method. Cold Regions Science and
Technology 168 (2019), 102847.

Dan Gerszewski, Haimasree Bhattacharya, and Adam W. Bargteil. 2009. A Point-Based

Method for Animating Elastoplastic Solids. In Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (New Orleans, Louisiana)

(SCA ’09). Association for Computing Machinery, New York, NY, USA, 133–138.

Christoph Gissler, Stefan Band, Andreas Peer, Markus Ihmsen, and Matthias Teschner.

2017. Generalized drag force for particle-based simulations. Computers & Graphics
69 (2017), 1–11.

Christoph Gissler, Andreas Peer, Stefan Band, Jan Bender, and Matthias Teschner. 2019.

Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Coupling. ACM Transactions
on Graphics 38, 1, Article 5 (2019), 13 pages.

Prashant Goswami, Christian Markowicz, and Ali Hassan. 2019. Real-time Particle-

based Snow Simulation on the GPU. In Eurographics Symposium on Parallel Graphics
and Visualization, Hank Childs and Steffen Frey (Eds.). The Eurographics Association,
Aire-la-Ville, Switzerland, 49–57.

Håkan Haglund, Mattias Andersson, and Anders Hast. 2002. Snow Accumulation in

Real-time. In Proceedings from SIGRAD 2002. Linköping University Electronic Press;

Linköpings universitet, Linköping, Sweden, 11–15.

David Hahn and Chris Wojtan. 2015. High-Resolution Brittle Fracture Simulation with

Boundary Elements. ACM Trans. Graph. 34, 4, Article 151 (July 2015), 12 pages.

Xuchen Han, Theodore F. Gast, Qi Guo, Stephanie Wang, Chenfanfu Jiang, and Joseph

Teran. 2019. A Hybrid Material Point Method for Frictional Contact with Diverse

Materials. Proc. ACM Comput. Graph. Interact. Tech. 2, 2, Article 17 (July 2019),

24 pages.

Tommy Hinks and Ken Museth. 2009. Wind-driven Snow Buildup Using a Level

Set Approach. In Eurographics Ireland Workshop Series, Vol. 9. The Eurographics
Association, Aire-la-Ville, Switzerland, 19–26.

Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, and Chenfanfu Jiang. 2019a.

TaichiMPM:High-PerformanceMLS-MPMSolverwith Cutting andCoupling (CPIC).

https://github.com/yuanming-hu/taichi_mpm.

Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana, and Chen-

fanfu Jiang. 2018. AMoving Least Squares Material Point Method with Displacement

Discontinuity and Two-Way Rigid Body Coupling. ACM Trans. Graph. 37, 4, Article
150 (July 2018), 14 pages.

Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand.

2019b. Taichi: A Language for High-Performance Computation on Spatially Sparse

Data Structures. ACM Transactions on Graphics 38, 6, Article 201 (Nov. 2019),

16 pages.

Libo Huang, Torsten Hädrich, and Dominik L. Michels. 2019. On the Accurate Large-

Scale Simulation of Ferrofluids. ACM Trans. Graph. 38, 4, Article 93 (July 2019),

15 pages.

Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias

Teschner. 2014a. Implicit Incompressible SPH. IEEE Transactions on Visualization
and Computer Graphics 20, 3 (March 2014), 426–435.

Markus Ihmsen, Jens Orthmann, Barbara Solenthaler, Andreas Kolb, and Matthias

Teschner. 2014b. SPH Fluids in Computer Graphics. In Eurographics (State of the Art
Reports). The Eurographics Association, Aire-la-Ville, Switzerland, 21–42.

Ben Jones, April Martin, Joshua A. Levine, Tamar Shinar, and Adam W. Bargteil. 2016a.

Ductile Fracture for Clustered Shape Matching. In Proceedings of the 20th ACM SIG-
GRAPH Symposium on Interactive 3D Graphics and Games (Redmond, Washington)

(I3D ’16). Association for Computing Machinery, New York, NY, USA, 65–70.

Ben Jones, Nils Thuerey, Tamar Shinar, and Adam W. Bargteil. 2016b. Example-Based

Plastic Deformation of Rigid Bodies. ACM Trans. Graph. 35, 4, Article 34 (July 2016),

11 pages.

Dan Koschier, Jan Bender, Barbara Solenthaler, and Matthias Teschner. 2019. Smoothed

Particle Hydrodynamics Techniques for the Physics Based Simulation of Fluids and

Solids. In Eurographics 2019 - Tutorials, Wenzel Jakob and Enrico Puppo (Eds.). The

Eurographics Association, Aire-la-Ville, Switzerland, 1–41.

Nipun Kwatra, Jonathan Su, Jón T. Grétarsson, and Ronald Fedkiw. 2009. A method for

avoiding the acoustic time step restriction in compressible flow. J. Comput. Phys.
228, 11 (2009), 4146–4161. https://doi.org/10.1016/j.jcp.2009.02.027

Frank Losasso, Tamar Shinar, Andrew Selle, and Ronald Fedkiw. 2006. Multiple Inter-

acting Liquids. In ACM SIGGRAPH 2006 Papers (Boston, Massachusetts) (SIGGRAPH
’06). Association for Computing Machinery, New York, NY, USA, 812–819.

Günther Meschke, Changhong Liu, and Herbert A. Mang. 1996. Large Strain Finite-

Element Analysis of Snow. Journal of Engineering Mechanics 122, 7 (1996), 591–602.
J. J. Monaghan. 2005. Smoothed particle hydrodynamics. Reports on Progress in Physics

68, 8 (July 2005), 1703–1759.

J. J. Monaghan. 2012. Smoothed Particle Hydrodynamics and Its Diverse Applications.

Annual Review of Fluid Mechanics 44, 1 (2012), 323–346.
Joseph P. Morris, Patrick J. Fox, and Yi Zhu. 1997. Modeling Low Reynolds Number

Incompressible Flows Using SPH. J. Comput. Phys. 136, 1 (Sept. 1997), 214–226.
Nobuhiko Mukai, Yusuke Eto, and Youngha Chang. 2017. Representation Method of

Snow Splitting and Sliding on a Roof. In 5th International Conference on Advances in
Engineering and Technology. Eminent Association of Researchers in Engineering &

Technology (EARET), London, UK, 100–103.

Matthias Müller, David Charypar, and Markus Gross. 2003. Particle-based Fluid

Simulation for Interactive Applications. In Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (San Diego, California)

(SCA ’03). Eurographics Association, Aire-la-Ville, Switzerland, 154–159.
Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxerman, and Mark Carlson.

2006. Physically Based Deformable Models in Computer Graphics. Computer
Graphics Forum 25, 4 (2006), 809–836.

Tomoyuki Nishita, Hiroshi Iwasaki, Yoshinori Dobashi, and Eihachiro Nakamae. 1997.

AModeling and Rendering Method for Snow by Using Metaballs. Computer Graphics
Forum 16, 3 (1997), C357–C364.

ACM Trans. Graph., Vol. 39, No. 4, Article 36. Publication date: July 2020.

http://www.blender.org
https://doi.org/10.1145/2601097.2601116
https://doi.org/10.1145/2601097.2601116
https://fifty2.eu/
https://github.com/yuanming-hu/taichi_mpm
https://doi.org/10.1016/j.jcp.2009.02.027

36:16 • Gissler et al.

Andreas Peer, Christoph Gissler, Stefan Band, and Matthias Teschner. 2018. An Implicit

SPH Formulation for Incompressible Linearly Elastic Solids. Computer Graphics
Forum 37, 6 (Dec. 2018), 135–148.

Andreas Peer, Markus Ihmsen, Jens Cornelis, and Matthias Teschner. 2015. An Implicit

Viscosity Formulation for SPH Fluids. ACM Transactions on Graphics 34, 4 (2015),
114:1–114:10.

D. T. Reynolds, S. D. Laycock, and A. M. Day. 2015. Real-Time Accumulation of

Occlusion-Based Snow. The Visual Computer 31, 5 (May 2015), 689–700.

Barbara Solenthaler and Renato Pajarola. 2008. Density Contrast SPH Interfaces. In

ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Dublin, Ireland)

(SCA ’08). Eurographics Association, Aire-la-Ville, Switzerland, 211–218.
Barbara Solenthaler and Renato Pajarola. 2009. Predictive-Corrective Incompressible

SPH. ACM Transactions on Graphics 28, 3, Article 40 (July 2009), 6 pages.

Barbara Solenthaler, Jürg Schläfli, and Renato Pajarola. 2007. A unified particle model

for fluid-solid interactions. Computer Animation and Virtual Worlds 18, 1 (2007),
69–82.

Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle.

2013. A Material Point Method for Snow Simulation. ACM Trans. Graph. 32, 4,
Article 102 (July 2013), 10 pages.

Alexey Stomakhin, Craig Schroeder, Chenfanfu Jiang, Lawrence Chai, Joseph Teran,

and Andrew Selle. 2014. Augmented MPM for Phase-Change and Varied Materials.

ACM Trans. Graph. 33, 4, Article 138 (July 2014), 11 pages.

Robert W. Sumner, James F. O’Brien, and Jessica K. Hodgins. 1999. Animating Sand,

Mud, and Snow. Computer Graphics Forum 18, 1 (1999), 17–26.

Tetsuya Takahashi, Yoshinori Dobashi, Issei Fujishiro, Tomoyuki Nishita, and Ming C.

Lin. 2015. Implicit Formulation for SPH-Based Viscous Fluids. Comput. Graph.
Forum 34, 2 (May 2015), 493–502.

Tetsuya Takahashi and Issei Fujishiro. 2012. Particle-based Simulation of Snow Tram-

pling Taking Sintering Effect into Account. In ACM SIGGRAPH 2012 Posters (Los
Angeles, California) (SIGGRAPH ’12). Association for Computing Machinery, New

York, NY, USA, Article 7, 1 pages.

Andre Pradhana Tampubolon, Theodore Gast, Gergely Klár, Chuyuan Fu, Joseph Teran,

Chenfanfu Jiang, and Ken Museth. 2017. Multi-Species Simulation of Porous Sand

and Water Mixtures. ACM Trans. Graph. 36, 4, Article 105 (July 2017), 11 pages.

H. A. van der Vorst. 1992. Bi-CGSTAB: A Fast and Smoothly Converging Variant of

Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM J. Sci. Statist. Comput.
13, 2 (1992), 631–644.

ChangboWang, ZhangyeWang, Tian Xia, and Qunsheng Peng. 2006. Real-time snowing

simulation. The Visual Computer 22, 5 (May 2006), 315–323.

Stephanie Wang, Mengyuan Ding, Theodore F. Gast, Leyi Zhu, Steven Gagniere, Chen-

fanfu Jiang, and Joseph M. Teran. 2019. Simulation and Visualization of Ductile

Fracture with the Material Point Method. Proc. ACM Comput. Graph. Interact. Tech.
2, 2, Article 18 (July 2019), 20 pages.

Marcel Weiler, Dan Koschier, and Jan Bender. 2016. Projective Fluids. In Proceedings of
the 9th International Conference on Motion in Games (Burlingame, California) (MIG
’16). Association for Computing Machinery, New York, NY, USA, 79–84. https:

//doi.org/10.1145/2994258.2994282

Marcel Weiler, Dan Koschier, Magnus Brand, and Jan Bender. 2018. A Physically

Consistent Implicit Viscosity Solver for SPH Fluids. Computer Graphics Forum 37, 2

(2018), 145–155.

Rene Winchenbach, Hendrik Hochstetter, and Andreas Kolb. 2017. Infinite Continuous

Adaptivity for Incompressible SPH. ACM Transactions on Graphics 36, 4, Article 102
(2017), 10 pages.

Chris Wojtan, Nils Thürey, Markus Gross, and Greg Turk. 2009. Deforming Meshes

That Split and Merge. ACM Transactions on Graphics 28, 3, Article 76 (July 2009),

10 pages.

Joshuah Wolper, Yu Fang, Minchen Li, Jiecong Lu, Ming Gao, and Chenfanfu Jiang.

2019. CD-MPM: Continuum Damage Material Point Methods for Dynamic Fracture

Animation. ACM Trans. Graph. 38, 4, Article 119 (July 2019), 15 pages.

Sai-Keung Wong and I-Ting Fu. 2015. Hybrid-based snow simulation and snow ren-

dering with shell textures. Computer Animation and Virtual Worlds 26, 3-4 (2015),
413–421.

Joel Wretborn, Rickard Armiento, and Ken Museth. 2017. Animation of crack propa-

gation by means of an extended multi-body solver for the material point method.

Computers & Graphics 69 (2017), 131–139.
Yongning Zhu and Robert Bridson. 2005. Animating Sand as a Fluid. ACM Trans. Graph.

24, 3 (July 2005), 965–972.

ACM Trans. Graph., Vol. 39, No. 4, Article 36. Publication date: July 2020.

https://doi.org/10.1145/2994258.2994282
https://doi.org/10.1145/2994258.2994282

	Abstract
	1 Introduction
	2 Related work
	3 Method
	3.1 Overview
	3.2 Elastic deformation
	3.3 Plastic deformation
	3.4 Boundary Handling
	3.5 Discussion

	4 Results
	4.1 Parameters
	4.2 Snow solver
	4.3 Coupling

	5 Limitations
	6 Conclusion
	Acknowledgments
	References

