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Figure 1: A pure SPH simulation showcasing the capabilities of the proposed particle-based strong coupling between pressure forces applied in the fluid and
at rigid bodies as well as dry friction forces between rigid bodies. Particles are used to represent the simulated rigid bodies, the shown fluid and boundary
geometry. The tower, consisting of over 600 blocks, is brought to fall by two rigid ducks. When collapsing into a basin filled with fluid, our solver is able to
robustly handle fluid incompressibility, fluid-rigid interaction, rigid-rigid collision forces and dry friction forces.

Abstract
We propose a novel monolithic pure SPH formulation to simulate fluids strongly coupled with rigid bodies. This includes fluid
incompressibility, fluid-rigid interface handling and rigid-rigid contact handling with a viable implicit particle-based dry fric-
tion formulation. The resulting global system is solved using a new accelerated solver implementation that outperforms existing
fluid and coupled rigid-fluid simulation approaches. We compare results of our simulation method to analytical solutions, show
performance evaluations of our solver and present a variety of new and challenging simulation scenarios.

CCS Concepts
• Computing methodologies → Physical simulation; Collision detection;

1. Introduction

Rigid body dynamics, as well as fluid simulations are subject of
an extensive amount of research motivated by great interest in ap-
plications in computer graphics, robotics and industrial prototyp-
ing [BET14, IOS∗14, Bri15]. Even though most of the work fo-
cuses on exclusively simulating either the dynamics of rigid bod-
ies or the motion of fluids, there exist more recent approaches
combining fluids and rigid bodies into one simulation framework
[AIA∗12, MMCK14, KB17, HFG∗18, GPB∗19, BKWK19]. It is
easy to see that these combined methods vastly expand the range
of possible applications and simulation scenarios. Usually, in com-
bined approaches, rigid contacts are resolved using a body rep-

resentation and simulation method distinct from the fluid repre-
sentation, fluid-rigid interface handling and internal fluid pressure
force computation [AIA∗12, MMCK14, KB17, HFG∗18]. Even in
approaches that resolve rigid body contacts based on a particle
representation, a concept well known from e.g. [CS79, BYM05,
TSIHK06, Ngu07, MMCK14, Coe17], the rigid-rigid contact han-
dling typically still uses different methods than the fluid-rigid inter-
face handling and the fluid solver. For instance, He et al. [HBH∗18]
and Peng et al. [PZWZ21] use smoothed particle hydrodynamics
(SPH) to simulate fluids, yet employ a discrete element method to
handle rigid contacts and fluid-rigid interaction. Similarly, Macklin
et al. [MMCK14] implement a position-based SPH fluid, but on the
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other hand a collision detection method similar to the molecular dy-
namics method [BYM05] together with shape matching constraints
is used for rigid bodies. Due to impulsive collision responses, rigid
contact handling strongly influences fluid-rigid constraints and con-
sequently the internal fluid state. Equivalently, internal fluid forces
might also have a great effect on neighboring rigid bodies that
needs to be considered when solving rigid contacts. By solving
fluid and rigid body contact constraints sequentially, the mutual de-
pendencies between the constraints are neglected, leading to unsta-
ble and inefficient coupled simulations. However, due to heteroge-
neous solving procedures for rigid bodies and fluids, mixed simu-
lation methods have difficulties solving fluid and rigid body con-
straints in a combined manner. To overcome these issues, Gissler et
al. [GPB∗19] propose to simulate fluids, rigid bodies and their in-
teractions exclusively with SPH and as such are able to build an in-
tuitive and stable strong coupling between particle fluids and rigid
bodies. However, even though realistic dry friction forces are cru-
cial in order to authentically replicate rigid body behavior, the dry
friction force proposed by Gissler et al. [GPB∗19] lacks basic fea-
tures such as the ability to reproduce stiction and conservation of
momentum. Additionally, despite the fact that it is common prac-
tice to compute contact and dry friction forces at once in order to
maintain simulation stability [KSJP08,BET14], the explicit friction
proposed by Gissler et al. [GPB∗19] is applied separately from the
contact handling procedure.

1.1. Contributions

Motivated by promising results of existing coupled simulation
methods, our overall goal in this paper is to develop a monolithic
simulation method that implements a strong coupling between flu-
ids and rigid bodies which is as far-reaching as possible. For this,
we build one global system that encodes all constraints for fluid
volumes, fluid-rigid interface handling and rigid-rigid contacts. In
contrast to existing coupled approaches such as the interleaved Ja-
cobi solvers proposed by Gissler et al. [GPB∗19], our unified sys-
tem not only allows a more precise analysis of system properties
(e.g. diagonal elements), it also enables us to use a nonlinear con-
jugate gradient method, promising increased solver convergence
speed. Since the capabilities of our rigid contact handling should
match those of a designated rigid body simulator, we also develop a
new implicit particle-based dry friction formulation for rigid-rigid
contacts. This friction formulation addresses many shortcomings
of the explicit friction force used by Gissler et al. [GPB∗19], in-
cluding the preservation of momentum and the ability to reproduce
stiction. As the major improvement to Gissler et al. [GPB∗19], our
friction formulation is directly embedded in the global system and
as such friction forces are included in the strong coupling between
fluid pressure forces and rigid contact forces. To our best knowl-
edge, there exist no other simulation method that implements such
a far-reaching strong coupling between fluids and rigid bodies.

In summary, in this paper we present

• a novel particle-based implicit dry friction formulation based on
the exact Coulomb friction model

• a new monolithic, implicit SPH solver that unifies fluid pressure,
fluid-rigid interface forces and rigid-rigid contact handling in-

cluding dry friction forces into one system that is solved using a
nonlinear conjugate gradient method

• results that validate our friction formulation and additionally
demonstrate the capabilities and versatility of the proposed sim-
ulation method, as already hinted at in Figure 1.

2. Related Work

Computational methods to simulate rigid body contact dynamics
have been studied extensively since quite a long time [MW88,
Hah88,Bar89,Bar90,Bar91,Bar93a,Bar93b,Mir96,Bro99,Ste00].
We refer to the report written by Bender et al. [BET14] for a
great summary of earlier work and a general introduction to rigid
body simulation. Previous work has shown that computing fric-
tional forces is challenging due to their non-linear and non-smooth
relation to relative velocities and normal forces [BET14, YSC∗18,
LDN∗18, PAK∗19, LFS∗20, LJBBD20, LDW∗22]. Often, instead
of directly using the Coulomb friction model, it is modified such
that the resulting optimization problem is better behaved. Lin-
earizing the friction cone allows formulating Coulomb friction as
a linear complementarity problem (LCP) [ST96, AP97, KSJP08],
however, solutions might not satisfy the principle of maximum
dissipation as frictional forces do not exactly oppose relative
sliding velocities and the system size grows with the number
of facets of the linearized cone [MEM∗19, AE21]. Nevertheless,
LCPs became a popular model to formulate rigid contact prob-
lems [Bar89, Bar93a, Bar94, Bar95, Ste00, GZO10, AO11, BET14,
AE21] and a number of methods to solve LCPs have been devel-
oped [Bar94, KSJP08, CA09, Ebe10, CM11, Erl13]. The box fric-
tion model [OTSG09, TBV12, GNKT16, PAK∗19, ANEK21] can
be used to reduce the number of variables by ignoring the cou-
pling between friction directions. As a consequence, friction forces
might violate the Coulomb constraint and there are no guarantees
concerning the principle of maximum dissipation [Erl17]. Alter-
natively, smoothing the velocity-force relation eliminates the dis-
continuous jump of the friction force and the resulting computa-
tional burden at stick-slip transitions [PRM19, GHZ∗20, LFS∗20,
FLS∗21, MEM∗20, CLL∗22, LKL∗22]. Even though in most ap-
proaches the amount of smoothing is parametrized and can be re-
duced to get a better approximation of the true velocity-force rela-
tion at the cost of less computational stability, the friction force at
zero velocity is always null and thus, these models cannot exactly
reproduce stiction [PRSV16, PRM19, LKL∗22]. Some approaches
model static friction as linear springs which pull contacts back to-
gether over multiple simulation steps [YN06, XZB14]. In contrast
to the methods described above, our friction computation is based
on the exact Coulomb friction model including stiction, and we
are able to directly embed the principle of maximum dissipation
into our implementation without any further error-introducing sim-
plifications. Newton-based approaches have shown to be able to
implement the exact Coulomb friction model as well, by formulat-
ing the complementarity problem as non-smooth functions whose
roots are found using a generalized version of Newton’s method
[BDCDA11, DBDB11, KTS∗14, MEM∗19]. Newton’s method is
quadratically convergent, which is especially useful when solving
poorly conditioned problems, but in each iteration a linear system
needs to be solved [MEM∗19, AE21]. The solver used in our im-
plementation can also achieve superlinear convergence with only
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slightly increased computational costs per solver iteration com-
pared to a standard Jacobi iteration [SHNE10]. Proximal operators,
as already employed in [JM92, JAJ98], can be used as a tool to im-
plement a friction force computation following the exact Coulomb
friction law [Erl17]. Additionally, implementations based on prox-
imal operators have shown to be easily extendable to employ other
friction models such as anisotropic friction [EMAK19] and models
considering frictional torque [LG03, Erl17]. Our proposed simula-
tion approach utilizes proximal operators as the basis for a more
advanced conjugate gradient method.

Even though implicit formulations have gotten more attention in
the last few years, explicit pressure solvers are still widely used
in the context of SPH fluids [BT07, AIA∗12, IOS∗14, RHEW17].
For less complex scenarios (e.g. low fluid depth, softer require-
ments regarding incompressibility), explicit formulations benefit
from lower computational costs per simulation step while the in-
creased simulation stability through implicit formulations cannot
outweigh their higher computational burden [KBST19, KBST22].
Similarly, explicit penalty methods for rigid body simulations are
easy to implement and require little computational cost per step
[MW88, BET14]. For our simulation method however, we still
chose to employ an implicit formulation. This not only allows us to
handle rigid contact constraints similar to fluid incompressibility,
we are also able to simultaneously solve for pressure in the fluid,
pressure forces at the fluid-rigid interface and between rigid bodies
as well as friction. Computing friction and contact forces at once is
known to be beneficial for simulation robustness and performance,
since frictional forces can have a significant effect on pressure con-
straints at contacts and vice versa [KSJP08,BET14]. In Section 5.1
we demonstrate that explicit friction formulations, such as the one
proposed by Gissler et al. [GPB∗19], can have trouble reproducing
stiction. We are not aware of an existing explicit simulation method
that is able to stably simulate the complex scenarios presented in
Section 5, including large mass ratios, fragile structures and high
stacks of rigid bodies.

Two-way coupled simulation methods that combine rigid body
contact handling with fluid dynamics have been heavily in-
vestigated in many contexts including Lattice-Boltzmann flu-
ids [TIR06], height-field fluids [TMFSG07, CM10, SBC∗11], La-
grangian vortex methods [VHLL14], MPM fluids [YLCH18,
HFG∗18], Eulerian fluids [CMT04, GSLF05, BBB07, EWC∗10]
and Lagrangian fluids [MST∗04,BTT09,AIA∗12,MMCK14,TL16,
KB17, BKWK19, GPB∗19]. For a detailed discussion on the colli-
sion handling used by the mentioned simulation methods we re-
fer to Gissler et al. [GPB∗19] and instead focus on how frictional
forces between rigid bodies are considered in coupled simulation
approaches. Akinci et al. [AIA∗12] sample rigid bodies with par-
ticles and handle rigid-fluid contacts by first computing pressure
using WCSPH [BT07] or PCISPH [SP09] and deriving pressure
forces that are then applied to fluid and rigid particles. Friction is
only mentioned to be computed at the fluid-rigid interface employ-
ing a laminar artificial viscosity force. Rigid-rigid contacts, includ-
ing dry frictional forces, are handled separately using an external
simulation software such as Bullet [Cou22]. In contrast, our simu-
lation method unifies fluid pressure forces with rigid contact han-
dling and friction, resulting in more stable fluid-rigid interfaces as
already demonstrated in [GPB∗19]. Macklin et al. [MMCK14] in-

troduce a position-based particle simulation framework that com-
bines many object types, including fluids and rigid bodies. Particles
representing rigid bodies are treated as if they were unconnected
during a solver iteration and shape matching constrains are applied
afterwards to ensure rigidity. It is mentioned that the cost of shape
matching grows quickly with the number of particles and impulse
propagation is rather slow [MMC∗20]. They present a pairwise par-
ticle friction model for granular materials which is also applied to
rigid body particles. Frictional forces are computed and applied it-
eratively during the constraint solving procedure of a simulation
step. The authors state that the simulation method aims at real-
time performance while making compromises in realism, and as
such there is no validation shown for the correctness of frictional
forces depending on the parameterizable coefficient of friction. In-
stead, the authors report that frictional forces strongly depend on
the iteration count of the constraint solver [MMCK14]. The devel-
opment of extended position-based dynamics (XPBD) [MMC16]
mitigates the dependency of constraint forces on the iteration count
in position-based simulation approaches but does not explicitly dis-
cuss frictional forces. Subsequent publications based on XPBD do
not demonstrate the physical correctness of the computed frictional
forces either [MMC∗20]. Our simulation method uses the coeffi-
cient of friction µ as a physically meaningful input parameter and
is able to replicate the expected friction behavior. In their coupled
fluid-rigid simulation approach, Koschier and Bender [KB17] ex-
ternalize the rigid-rigid contact handling, but still apply an explicit
Coulomb friction force on fluid particles next to a rigid bound-
ary that uses pressure values to estimate normal force magnitudes.
While our implicit friction implementation will use a similar idea
to estimate normal force magnitudes between rigid bodies, we also
determine contact normal directions based on SPH pressure forces.
This way, in contrast to Koschier and Bender [KB17], no boundary
geometry description other than the particle representation is re-
quired. Hu et al. [HFG∗18] present an MPM method implementing
a two-way coupling between rigid bodies and objects such as fluids,
elastic and elastoplastic materials. However, for rigid-rigid contacts
they also use an external rigid body dynamics software. Accord-
ingly, frictional forces between rigid bodies are not discussed. In
their partitioned approach, Akbay et al. [ANZS18] couple black-
box solvers for fluids, other deformable objects as well as rigid bod-
ies through a small reduced-order system. As an example, this way
they are able to couple the Lagrangian fluid solver DFSPH [BK15]
with the position-based rigid body solver presented by Deul et
al. [DCB14]. Partitioned simulation methods have the advantage
that existing specialized solvers can be reused for a combined sim-
ulation. However, the authors mention that in general, compared to
partitioned approaches, monolithic approaches that unify all simu-
lated quantities in one system are expected to be more efficient in
computing a strongly coupled solution [ANZS18].

More recently, Gissler et al. [GPB∗19] presented a partitioned
simulation method to couple particle fluids with particle-based
rigid bodies. Both, the fluid solver and the rigid body solver are
purely based on SPH, such that interleaving both solvers is particu-
larly straightforward. The rigid body solver detects potential colli-
sions between bodies by considering density deviations at particles
and prevents interpenetrations using pressure forces. To model fric-
tion between rigid bodies they propose to use an explicit Coulomb
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friction implementation. As we will demonstrate in Section 5.1,
this friction implementation cannot reproduce static friction and is
not guaranteed to result in the physically correct amount of fric-
tion force. Also, frictional forces are not guaranteed to preserve
momentum. Our rigid body solver uses density deviations to de-
tect contacts and pressure to resolve collisions as well, however, in
contrast to Gissler et al. [GPB∗19], we present a truly monolithic
solver that strongly couples rigid body contact handling with a par-
ticle fluid simulation. Additionally, the pressure system is extended
by a novel momentum-conserving implicit Coulomb friction force
formulation that correctly reproduces static friction and stick-slip
transitions. This way, we need to solve only one global system to si-
multaneously handle fluid incompressibility constraints, fluid-rigid
interface forces, rigid-rigid contacts as well as rigid-rigid friction
forces. The unified system makes it easier to use more advanced
solving methods, such as the nonsmooth nonlinear conjugate gra-
dient method (NNCG) proposed by Silcowitz et al. [SHNE10].
Compared to the relaxed Jacobi method employed by Gissler et
al. [GPB∗19], we are able to show performance gains above a fac-
tor of ten.

3. Method

A complete rigid body contact handling procedure includes resolv-
ing potential collisions between simulated bodies and computing
corresponding frictional effects. In this section, we describe the
main concepts of our monolithic simulation method that is purely
based on SPH discretizations. Section 3.1 shows how SPH can be
used to detect contacts between rigid bodies as well as contacts
at the interface between fluid and rigid bodies. The definition of
contact is then used in Section 3.2 to construct the pressure lin-
ear complementarity problem (LCP) which forms the main opti-
mization problem that needs to be solved in order to handle rigid
contacts and fluid incompressibility. Similarly, in Section 3.3 we
introduce the optimization problem for frictional forces following
the exact Coulomb friction model. We will see that both optimiza-
tion problems form a system since they mutually depend on each
other. Afterwards, in Section 4 we describe how this system can be
solved in an implementation.

3.1. Contact Detection

Typical simulation methods, that are handling contacts between
bodies represented as triangle meshes, perform a collision detec-
tion step at the beginning of each simulation iteration in order to
identify all contact points in the scene. This is a nontrivial task
and the quality of the contacts generated by the collision detec-
tion can severely impact performance, robustness and correctness
of the simulation result [BET14, Erl18, AE21, WFS∗21]. To make
matters worse, good quality of contact points is elusive and nei-
ther rigorously understood nor defined [Erl18]. Additionally, com-
paring simulators becomes difficult as often the underlying con-
tact generation method is not sufficiently specified [Erl18]. In our
particle-based simulation framework on the other hand, inspired
by previous work (e.g. [AIA∗12, GPB∗19]), the surface of rigid
bodies is sampled with SPH particles such that collision detec-
tion can be boiled down to a volume estimation of particles us-
ing a local particle-neighborhood. Neighboring particles can be

reliably found using well studied neighborhood search methods
[IABT11,IOS∗14,WSG∗18,BGT19]. Using SPH, we compute the
volume Vr of a particle r that lies on the surface of a rigid body R
with

Vr =
1

∑rr
Wrrr +∑rk

Wrrk +∑rb
Wrrb

(3.1)

where rr are neighboring rigid particles belonging to the same rigid
body R as r, rk represent neighboring rigid particles belonging to
other rigid bodies and rb are neighboring particles that are part of a
kinematic boundary. W is the SPH smoothing kernel function. We
use the notation Wrrr shorthand for W

(
|⃗xr− x⃗rr |

)
with particle po-

sitions x⃗. Additionally, if no time index is given we refer to current
positions x⃗(t). Following Solenthaler and Pajarola [SP08], Akinci
et al. [AIA∗12] and Gissler et al. [GPB∗19], the rest volume V 0

r of
particle r is approximated at the start of the simulation by consid-
ering surrounding particles rr sampling the same rigid body R:

V 0
r =

γ

∑rr
Wrrr

(3.2)

We now define that a particle r belonging to a rigid body is in a
state of collision if

Vr <V 0
r . (3.3)

In Equation 3.2, γ is a correction coefficient that accounts for the
fact that rigid bodies are only sampled at the surface, whereas an
SPH approximation of the volume assumes a complete particle-
neighborhood. With γ, we can control how many contributions from
neighboring particles are necessary for a particle r to be considered
in a state of collision [GPB∗19] as illustrated in Figure 2. In our
simulations γ is set equal to 0.7 as we found this value to be high
enough such that contacts between small and thin structures are still
detected.

Traditionally, collision detection algorithms search for vertex-
face and edge-edge collisions with the aim of returning a set of col-
lisions that individually describe the contact between exactly two
bodies [BFA02, KSJP08, OTSG09, BET14, AE21]. As a major dif-
ference to most existing approaches, we do not explicitly define
contact points between rigid bodies since the volume of a particle
r can be influenced by particles rk belonging to multiple rigid bod-
ies nearby, and a contact between rigid bodies can cause multiple
particles on both sides of the contact to be in a state of collision.
Consequently, our contact handling and friction force computation
will also be based on the particle description of rigid bodies instead
of generated collision points.

We want to point out that most recent SPH-based pressure
solvers use a similar constraint on the volumes of fluid particles f to
define incompressibility. Here, the solvers preserve a compression
free fluid state where no fluid particle f has

V f <V 0
f (3.4)

throughout the simulation to prevent any volume loss in the
fluid [SP09, ICS∗14, BK15]. Fluids are sampled volumetrically, so
the rest volume V 0

f of fluid particles f is set to

V 0
f = h3, (3.5)
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where h is the particle spacing. The current volume V f can be ap-
proximated using

V f =
1

∑ f f
W f f f +∑ fk

W f fk +∑ fb
W f fb

(3.6)

with neighboring fluid particles f f , neighboring particles fk that
sample rigid bodies and neighboring particles fb belonging to a
kinematic boundary. In Section 3.2, we will see that the similar-
ity between incompressibility constraints allows us to comfortably
combine the volume constraints of rigid and fluid particles into one
global system.

3.1.1. Discussion

Using particles to detect and handle rigid body collisions entails in-
teresting differences compared to traditional mesh-based schemes.
Precision of contact handling no longer purely depends on mesh
geometry, but instead the sampling density of particles governs
the resolution of contact handling. Existing work such as Allard et
al. [AFC∗10] indicate that it can be advantageous to abstract con-
tacts away from traditional vertex-triangle and edge-edge collision
pairs. In the specific case of Allard et al. [AFC∗10], one intersec-
tion volume is constructed per contact which is then subdivided by
a regular grid into multiple subvolumes to resolve contacts more
accurately. By adjusting the grid resolution and particle sampling
density respectively, Allard et al. [AFC∗10] and our approach both
can tune contact resolution independently of the complexity of the
underlying mesh. As a consequence demonstrated in Section 5.4,
highly detailed meshes can be simulated using a more appropriate
precision. On the other hand, even though at first glance it seems
excessive to sample simple meshes with a high number of parti-
cles, the increased contact resolution allows us to simulate pres-
sure and friction distributions over contacting surface patches since
potentially all particles within the contact area are detected to be
in a state of collision. This contrasts with most rigid body simula-
tion methods which only consider a few distinct collision points per
contact area [BET14,Erl18]. We refer to Allard et al. [AFC∗10] for
an interesting demonstration on how the number of contact points
per colliding bodies is indeed relevant for replicating realistic body
motion.

As a disadvantage of the employed contact detection using par-
ticle volumes, it shall be mentioned that if geometrically highly
accurate collision points based on mesh descriptions of bodies are
required, the number of particles necessary to achieve such a high
resolution might significantly reduce simulation performance.

Parameter γγγ: Next to the particle resolution, parameter γ ∈
(0,1) influences contact detection for rigid bodies by scaling the
rest volumes of rigid particles. The effect of γ is illustrated in Fig-
ure 2. As already mentioned, decreasing γ towards zero increases
the required contributions from neighboring particles before a rigid
particle is considered to be in a state of collision. Thus, we need
to make sure γ is set sufficiently large such that no thin body fea-
tures, sampled with few particles, can penetrate through another
body surface without causing a collision to be detected. On the flip
side, setting γ too close to one causes particles to be already con-
sidered in collision even if rigid bodies are still quite far away from
each other. This problem could be mitigated by offsetting particles

γ = 0.3 γ = 0.7 γ = 1.0

Figure 2: An illustration of the effect of γ on the contact detection between
two rigid bodies. With γ = 0.3, interpenetrations between bodies may oc-
cur since contributions from neighboring particles might not be enough to
detect a collision. This is especially problematic for thin geometry features
such as the yellow rod displayed. Setting γ = 1.0 causes large gaps between
rigid bodies and finer features such as the notch in the gray body are ignored
due to the collision between the bodies being detected too early. We achieve
the desired result by setting γ around 0.7.

along the surface normal towards the inside of the body. However,
similar to Gissler et al. [GPB∗19], as a more general solution re-
quiring less hand tuning and that works for open meshes, we found
that using γ = 0.7 results in a robust and accurate contact detec-
tion with no need to offset particles. A more theoretical motivation
behind γ = 0.7 is given by Gissler et al. in [GPB∗19].

3.2. Pressure System

In this section we define the pressure LCP that constrains all par-
ticle volumes. By solving the pressure LCP as shown in Section 4,
we obtain pressure forces that preserve the volume of all particles
in the simulation and as such we ensure that fluid incompressibil-
ity is met and no rigid bodies are intersecting. After defining the
pressure LCP, in this section we also derive the relations between
pressure and particle volume since they are required in a solver im-
plementation.

To derive the pressure LCP, we start by defining a volume error
V err

i at each particle i with

V err
i (t +∆t) := 1− V 0

i
Vi(t +∆t)

(3.7)

and reconsider the incompressibility constraint from Equations 3.3
and 3.4 at the next timestep t +∆t for some fluid or rigid particle i:

Vi(t +∆t)≥V 0
i (3.8a)

⇔ V err
i (t +∆t)≥ 0 (3.8b)

Note that only negative volume error corresponds to a compression
of a particle, while positive volume error indicates that a particle is
in a stress-free state with larger volume compared to its rest volume.

The goal of the pressure solver is to compute pressure values pi
such that Equation 3.8b holds true, meaning that the predicted vol-
ume error V err

i at the next timestep t +∆t must be greater or equal
to zero for all rigid and fluid particles i. Since we consider volume
errors at particles at the next timestep V err

i (t +∆t), which already
depend on current pressure, we obtain an implicit pressure formu-
lation. Similar to Gissler et al. [GPB∗19], we solve for unknown
pressure values pi at rigid and fluid particles i and derive pressure
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forces F⃗P
i based on those pressure values. To prevent unphysical

behavior, we further restrict pi to be non-negative. This is a known
method used in SPH pressure solvers [ICS∗14, BK15] to prevent
attraction forces between particles due to negative pressure and can
be compared to the non-negativity constraint of normal forces act-
ing at rigid body contacts [Erl07, Erl13, BET14, MEM∗19, AE21].
Additionally, we only allow pi to be non-zero if the predicted vol-
ume error at the next timestep V err

i (t +∆t) equals zero. Together,
the constraints on V err

i (t +∆t) and pi form an LCP [ANE17] which
can be written down using the more compact notation

0≤ pi ⊥ V err
i (t +∆t)≥ 0. (3.9)

Note that on a high level, this pressure LCP closely resembles
LCPs known from traditional mesh-based contact handling meth-
ods [BET14, Erl13, MEM∗19]. Typically, solving the LCPs means
finding scalar values for normal forces, or in our case pressure
values, that cause some collision term, often a relative velocity
[BET14] but in our case V err

i (t +∆t), to become non-negative. Typ-
ical velocity-level contact handling approaches require constraint
stabilization methods to prevent bodies from drifting into each
other over time [TBV12, BET14, Erl17, AE21]. These methods of-
ten introduce ad-hoc forces into the simulation and are known for
causing stability issues [BET14, Erl07, MEM∗19]. In contrast, our
simulation method explicitly computes volumes in each simulation
step based on the distances to neighboring particles and thus the
necessity for any constraint stabilization that prevents intersections
over time is eliminated. Due to the similarity of the LCPs, in prin-
ciple the same solving mechanisms employed in traditional mesh-
based simulation methods can be used to solve Equation 3.9.

To be able to find a solution to Equation 3.9, we must know how
V err

i (t +∆t) depends on all unknown pressure values p. Thus, in
the following we derive the relation between V err

i (t +∆t) and p for
rigid particles r and fluid particles f .

Rigid Particles: We begin with the definition of the volume error
from Equation 3.7 and also consider Equation 3.1 describing the
computation of Vr. Distances between particles r and rr belonging
to the same rigid body never change, so contributions from the first
sum are constant in time. In our simulation, we employ an Euler-
Cromer time integration scheme. Together with a first order Taylor
expansion of W (t +∆t) we can write

V err
r (t +∆t)≥ 0

⇔ 1− V 0
r

Vr(t)
−V 0

r ∆t ∑
rk

(⃗
vr(t +∆t)− v⃗rk (t +∆t)

)
· ∇⃗W rrk

−V 0
r ∆t ∑

rb

(⃗
vr(t +∆t)− v⃗rb(t +∆t)

)
· ∇⃗W rrb ≥ 0

(3.10)

Equation 3.10 approximates the dependency of the predicted vol-
ume error V err

r (t +∆t) on the velocity field v⃗ at the next timestep
t +∆t. Velocities of kinematic boundary particles rb are predefined
and not influenced by pressure forces. What remains is finding the
relation between the velocity v⃗r(t +∆t) of a rigid particle r, pres-
sure forces F⃗P and pressure values p. We predict v⃗r(t +∆t) with

v⃗r(t +∆t) = v⃗R(t +∆t)+ ω⃗R(t +∆t)×
(⃗
xr(t)− x⃗R(t)

)
(3.11a)

v⃗R(t +∆t) = v⃗∗R +∆t
1

MR
∑
r̃∈R

(⃗
FP

r̃ + F⃗F
r̃

)
(3.11b)

ω⃗R(t +∆t) = ω⃗
∗
R +∆tI−1

R (t) ∑
r̃∈R

(⃗
xr̃(t)− x⃗R(t)

)
× F⃗P

r̃

+∆tI−1
R (t) ∑

r̃∈R
τ⃗

F
r̃ .

(3.11c)

Here, v⃗R and ω⃗R are translational and angular velocities of rigid
body R, R also represents the set of all rigid particles r̃ sampling
R, MR is the mass of body R, x⃗R is the center of mass of R, and
I−1

R denotes the inverted inertia tensor of R. The velocities v⃗∗R and
ω⃗
∗
R represent intermediate translational and angular velocity body R

has right before the pressure solve. Thus, v⃗∗R and ω⃗
∗
R include all ex-

plicitly computed forces and accelerations which, for a rigid body,
typically are gravity g⃗ and the gyroscopic force [Ben07, BET14]:

v⃗∗R = v⃗R(t)+∆tg⃗ (3.12a)

ω⃗
∗
R = ω⃗R(t)+∆tI−1

R (t)
(
IR(t )⃗ωR(t)

)
× ω⃗R(t). (3.12b)

Now, the last unknown in Equation 3.11 are pressure forces F⃗P

and frictional effects F⃗F and τ⃗
F . Section 3.3 describes in detail how

frictional forces are computed, however, their embedding in the
pressure system already indicates the employed strong coupling
between frictional and pressure forces. To compute F⃗P, we use a
symmetric pressure gradient estimation that uses a volume formu-
lation (as shown before by e.g. [BGI∗18]):

F⃗P
r =−∑

rk

(
V 0

rkV
0
rk prk +V 0

r V 0
r pr

)
∇⃗W rrk

−∑
rb

(
V 0

rbV
0
rb prb +V 0

r V 0
r pr

)
∇⃗W rrb

−∑
r f

V 0
r f V

0
r f pr f ∇⃗W rr f

(3.13)

Our method is flexible about the computation of pressure values
prb at kinematic boundary particles rb, in the sense that any bound-
ary handling method that defines a pressure value at neighboring
boundary particles rb (e.g. [AIA∗12, BGI∗18, BGPT18]) could be
used to define prb . In the following, we will assume pressure is set
to zero prb := 0 as proposed by [BWJ23]. Also note that pressure
values of neighboring fluid particles pr f are considered in the pres-
sure force estimation, enabling our strong coupling between rigid
bodies and fluids. In summary, Equations 3.10, 3.11, 3.12 and 3.13
describe the relation between the volume error V err

r of a rigid parti-
cle r and the vector of all unknown pressure values p.

Fluid Particles: In our simulation method, pressure at fluid par-
ticles f and pressure at rigid particles r are computed simultane-
ously. Since both have the same constraint on the volume to enforce
incompressibility, we can derive the dependency of V err

f (t +∆t) on
p for fluid particles f in a very similar manner. Expanding Equa-

Author’s version.
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tion 3.8b yields

1−
V 0

f

V f (t)
−V 0

f ∆t ∑
f f

(⃗
v f (t +∆t)− v⃗ f f (t +∆t)

)
· ∇⃗W f f f

−V 0
f ∆t ∑

fk

(⃗
v f (t +∆t)− v⃗ fk (t +∆t)

)
· ∇⃗W f fk

−V 0
f ∆t ∑

fb

(⃗
v f (t +∆t)− v⃗ fb(t +∆t)

)
· ∇⃗W f fb ≥ 0.

(3.14)
The computation of v⃗ fk (t +∆t) for rigid particles fk is already
known from Equation 3.11, the velocity v⃗ f (t +∆t) of fluid parti-
cles f is predicted using

v⃗ f (t +∆t) = v⃗∗f +∆t
1

m f
F⃗P

f

= v⃗∗f −∆t
1

m f
∑
f f

(
V 0

f f V
0
f f p f f +V 0

f V 0
f p f

)
∇⃗W f f f

−∆t
1

m f
∑
fb

(
V 0

fbV
0
fb p fb +V 0

f V 0
f p f

)
∇⃗W f fb

−∆t
1

m f
∑
fk

V 0
f V 0

f p f ∇⃗W f fk

(3.15)
where m f =V 0

f ρ
0
f is the mass of fluid particle f with fluid rest den-

sity ρ
0. Due to their symmetry, Equations 3.13 and 3.15 guarantee

that pressure forces conserve momentum exactly. As a small but
important detail we want to point out that pressure forces between
fluid particle f and neighboring rigid particle fk are solely defined
by fluid pressure p f . We do not consider p fk to prevent high pres-
sure accelerations of relatively lightweight fluid particles f next to
a rigid-rigid contact that typically causes much higher but punctual
pressure at contacting rigid particles fk. Again, v⃗∗f is the velocity of
particle f including all forces computed prior to the pressure solve,
so we have

v⃗∗f = v⃗ f (t)+∆tg⃗+∆t
1

m f
F⃗E

f (3.16)

where F⃗E
f are additionally computed forces such as viscosity (e.g.

[Mon92, WKBB18]) and surface tension (e.g. [AAT13]). Using
Equations 3.10, 3.11, 3.12 and 3.13 to 3.16, the pressure solver
presented in Section 4 aims at computing pressure values that fulfill
Equation 3.9 at all fluid and rigid particles, and as such all at once
prevents rigid bodies from penetrating into each other, handles in-
terface forces between fluids and rigid bodies and guarantees fluid
incompressibility.

3.3. Frictional Forces

In the previous section, we defined the optimization problem that
can to be solved for pressure values p that prevent compressions at
all particles. Here, we do the same for friction forces. We first define
the underlying optimization problem and then provide details that
will be required by the solving procedure described in Section 4.

We chose to model frictional forces according to the exact
Coulomb friction constraint. More precisely, we are searching for

friction multipliers λ⃗r that are bound by the friction cone Fr:

λ⃗r ∈ Fr (3.17a)

Fr :=
{

λ⃗ ∈ R3 ∣∣ λ⃗ · n⃗r = 0 ∧ |⃗λ| ≤ µr |⃗FN
r |
}

(3.17b)

where n⃗r is the contact normal direction, µr is the coefficient of
friction and F⃗N

r represents some measurement of the normal force
acting at particle r. Note that we distinguish between frictional mul-
tipliers λ⃗ and frictional forces F⃗F or frictional torque τ⃗

F as friction
multipliers λ⃗r only consider frictional effects at particle r due to
normal forces induced by pressure at particle r. Those frictional
effects encoded in λ⃗r need to be mirrored onto neighboring rigid
particles to result in physically correct frictional forces F⃗F

r and fric-
tional torque τ⃗

F
r . We will describe this in greater detail later in this

section. In addition to the Coulomb constraint, frictional multipli-
ers should follow the principle of maximum dissipation stating that
from all possible λ⃗ inside the friction cone Fr, the friction multi-
plier λ⃗r should fulfill [Erl17]

λ⃗r = argmin
λ⃗∈Fr

λ⃗ · v⃗tang
r

=−µr |⃗FN
r |

v⃗tang
r

|⃗vtang
r |

if v⃗tang
r ̸= 0⃗

(3.18)

with tangential velocities v⃗tang
r . By considering tangential veloci-

ties v⃗tang
r (t +∆t) at the next timestep t +∆t we obtain an implicit

friction force formulation.

Particle Framework: Computing frictional forces in a particle
framework imposes further challenges concerning the contact ge-
ometry. While mesh-based collision detection usually returns one
contact point and a contact normal direction [AE21], for a particle
that is detected to be in a state of collision, these properties need
to be estimated from neighboring particles. Gissler et al. [GPB∗19]
propose to use an SPH summation to estimate the contact normal
direction n⃗r at a particle r:

n⃗r = x⃗r−
∑rk

x⃗rkWrrk

∑rk
Wrrk

(3.19)

Here, n⃗ solely depends on neighboring particle positions and the
normal force F⃗N

r needs to be estimated separately using collision
impulses. Since our simulation method solves pressure and fric-
tional forces simultaneously, we propose to directly use intermedi-
ate pressure values p to estimate F⃗N

r and n⃗r. For this, we consider
the contribution of pr to its pressure force F⃗P

r for each particle r as
described in Equation 3.13:

F⃗N
r = − prV 0

r V 0
r ∑

rk

∇⃗W rrk

− prV 0
r V 0

r ∑
rb

∇⃗W rrb

(3.20a)

n⃗r =
F⃗N

r

|⃗FN
r |

(3.20b)

This does not only eliminate the need for a separate contact normal
estimation process including all associated difficulties, but we can
also directly relate pressure forces with the normal force used in
the friction computation. In Section 5.2, we show that this new ap-
proach does not suffer from problems associated with wrongly es-
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timated contact normals and thus trivially handles all degenerated
test cases proposed by K. Erleben [Erl18]. We note that Koschier
and Bender [KB17] as well as Winchenbach et al. [WAK20] also
use the pressure force magnitude as an estimate for the normal force
magnitude when computing frictional forces at the fluid-rigid inter-
face. However, they do not compute the contact normal directions
based on normal forces but instead derive them from the boundary
geometry.

Tangential Velocities: Equation 3.18 requires the computa-
tion of tangential velocities v⃗tang

r (t +∆t). They can be estimated
with a standard SPH approximation to compute a relative velocity
v⃗rel

r (t +∆t) at particle r and projecting v⃗rel
r (t +∆t) onto the tangen-

tial contact plane afterwards using n⃗r:

v⃗rel
r (t +∆t) = ∑

rk

Vrk

(⃗
vr(t +∆t)− v⃗rk (t +∆t)

)
Wrrk

+ ∑
rb

Vrb

(⃗
vr(t +∆t)− v⃗rb(t +∆t)

)
Wrrb

(3.21a)

v⃗tang
r (t +∆t) =

(
1− n⃗r⃗n⊤r

)
v⃗rel

r (t +∆t) (3.21b)

with the identity matrix 1. From Equation 3.14 we already know
how to compute v⃗r(t +∆t) and v⃗rk (t +∆t). v⃗rb(t +∆t) is inde-
pendent of pressure and friction forces, so in this context we set
v⃗rb(t +∆t) = v⃗rb(t).

Friction Force Mirroring: Friction multipliers λ⃗r need to be
mirrored onto neighboring rigid bodies to result in physically con-
sistent friction forces. Equivalent to pressure forces, we distribute
the friction multipliers considering the weighting by the kernel gra-
dient. The actual friction forces F⃗F

r and torques τ⃗
F
r applied to rigid

particles r are then given by

F⃗F
r =∑

rk

F⃗F
r←rk +∑

rb

F⃗F
r←rb

=∑
rk

(
Ṽr⃗λr− Ṽrk λ⃗rk

)
Wrrk

+∑
rb

Ṽr⃗λrWrrb

(3.22a)

τ⃗
F
r =∑

rk

τ⃗
F
r←rk +∑

rb

τ⃗
F
r←rb

=∑
rk

(
1
2

x⃗r +
1
2

x⃗rk − x⃗R

)
×
(

Ṽr⃗λr− Ṽrk λ⃗rk

)
Wrrk

+∑
rb

(
1
2

x⃗r +
1
2

x⃗rb − x⃗R

)
× Ṽr⃗λrWrrb

(3.22b)

with

Ṽr =
1

∑rk
Wrrk +∑rb

Wrrb

=
1

1
Vr(t)
− γ

V 0
r

.
(3.23)

It is easy to see that the friction force F⃗F
r includes its own friction

multiplier λ⃗r as well as mirrored contributions from neighboring
rigid particles rk. The friction force mirroring guarantees exact con-
servation of linear and angular momentum. Even though momen-
tum conservation is no concern when interacting with kinematic

boundaries, neighboring particles rb belonging to such a boundary
are treated consistently. Equations 3.22a and 3.22b describe linear
relationships between F⃗F

r , τ⃗
F
r and the vector of all unknown friction

multipliers λλλ, and as such can be smoothly embedded into our sys-
tem relating v⃗tang

r (t +∆t) with λλλ. The modified volume Ṽr is easily
computed on-the-fly as described in Equation 3.23. In Section 5.1
we demonstrate the correctness and accuracy of the computed fric-
tion forces.

Summary: Since we employ an implicit force computation
model, we need to be able to describe the relation between the
vector of all unknown friction multipliers λλλ and v⃗tang

r (t +∆t) for
all particles r. In the following, we give a short summary on how
v⃗tang

r (t +∆t) is computed. Given the frictional multipliers λλλ speci-
fied by Equations 3.17 and 3.18, we start by mirroring λλλ onto neigh-
boring bodies using Equations 3.22a and 3.22b, to obtain frictional
forces F⃗F and torques τ⃗

F for all rigid particles. Frictional forces
and torques, together with pressure forces F⃗P, can be plugged into
Equation 3.11 to obtain an estimate of v⃗r(t +∆t) for all r. The
newly estimated velocities are inserted into Equation 3.21 to com-
pute v⃗tang

r (t +∆t).

We point out that the estimate for V err
i (t +∆t) required in the

pressure system as well as the estimate for v⃗tang
r (t +∆t) required

in the friction system both simultaneously consider pressure forces
acting in the fluid, at fluid-rigid interfaces and between rigid bod-
ies together with frictional forces. This way, we achieve a strong
coupling between contact forces and friction through one global
monolithic system, which is crucial for simulation stability when
considering rigid bodies [KSJP08]. While this is common practice
in pure rigid body simulation frameworks [BET14,Erl17,PAK∗19,
MEM∗19,MEM∗20,FLS∗21], we are not aware of an existing sim-
ulation method that strongly couples internal fluid pressure forces,
fluid-rigid interface forces, rigid-rigid contact forces with dry fric-
tion forces. In Section 4, we provide an illustration of an efficient
solver implementation that is able to compute p and λλλ satisfying
the constraints given in Equations 3.9, 3.17 and 3.18.

4. Implementation

The optimization problems presented in Equations 3.9, 3.17
and 3.18 form the foundation of the pressure and friction solving
procedure. In this section we now build a solver implementation
that is able to efficiently solve the previously presented optimiza-
tion problems for pressure p and friction λλλ. For this purpose, both,
the pressure LCP (Equation 3.9) and the friction computation prob-
lem (Equations 3.17 and 3.18) are translated into an equivalent
fixed point formulation [JAJ98, SNT11, Erl17]:

pi = proxPi

[
pi−α

P
i V err

i (t +∆t)
]

(4.1a)

λ⃗r = proxFr

[⃗
λr−α

F
r v⃗tang

r (t +∆t)
]

(4.1b)

where Pi is the allowed solution space of pi and Fr the set of all
friction forces inside the friction cone:

Pi :=
{

p ∈ R
∣∣ p≥ 0

}
(4.2)

Fr :=
{

λ⃗ ∈ R3 ∣∣ λ⃗ · n⃗r = 0 ∧ |⃗λ| ≤ µr |⃗FN
r |
}

(3.17b revisited)
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The proximal operator proxS projects its input onto the nearest
point in some given set S:

proxS [x] := argmin
s∈S

|s− x|2 (4.3)

We refer to Schindler et al. [SNT11] for a thorough derivation of
Equation 4.1 from the pressure LCP and the friction constraints.
In Equation 4.1, the scalar parameters α

P and α
F have no effect

on the analytical solution of a fixed point as long as α
P,αF > 0.

In an implementation however, they greatly influence convergence
speed and stability of an iterative solver. By iteratively updating
pi and λ⃗r using Equation 4.1, one generates a sequence of iter-
ates that converges locally if the spectral radius of the Jacobian
of the right-hand side of Equation 4.1 is smaller than one [Erl17].
This requirement can be met by setting α

P and α
F sufficiently

small [FGNU06, PB14]. While there exist approaches that employ
backtracking strategies to find safe values for α

P and α
F [Erl17],

we found that using values that correspond to a modified Jacobi
update similar to Tonge et al. [TBV12] and Gissler et al. [GPB∗19]
also leads to a robust and performant simulation.

4.1. Jacobi Scheme

We can now build an iterative Jacobi scheme to solve the fixed point
problem in Equation 4.1 by choosing appropriate values for α

P
i and

α
F
r . Similar to Gissler et al. [GPB∗19], we compute α

P
i such that

Equation 4.1a corresponds to a relaxed Jacobi update step with re-
laxation coefficient υ where for rigid particles, the number of con-
tacts nR of body R is additionally taken into account:

α
P
r =

υ

nR

(
∂

∂pr
V err

r (t +∆t)

)−1

(4.4a)

α
P
f = υ

(
∂

∂p f
V err

f (t +∆t)

)−1

(4.4b)

The terms ∂/∂pi V err
i (t +∆t) are an inherent part of the Jacobi

update. They are used as an estimate of how much V err
i (t +∆t)

changes depending on the unknowns pi. Contrary to the suggestion
of K. Erleben [Erl17], we do not use a Gauss-Seidel variant to solve
Equations 4.1a and 4.1b. While the increased stability might out-
weigh the loss of parallel computation power for mesh-based rigid
body simulators, in our particle-based contact handling method in-
cluding fluids, there are easily hundreds of thousands of simulta-
neously active contacts at each simulation step. Handling this large
number of contacts requires a parallelized solving procedure. It has
been shown that Jacobi methods require additional stabilizing when
treating rigid contacts [TBV12, GPB∗19], which is why we divide
the relaxation coefficient by nR. The number of contacts nR is up-
dated in each Jacobi iteration using

nR = ∑
r̃∈R

{
1 if V err

r̃ (t +∆t)< 0 or pr̃ > 0
0 else

(4.5)

where V err
r̃ (t +∆t) is the current prediction for the volume error

at particle r̃ at the next timestep and pr̃ the current guess for its
pressure. The interlinked pressure computation method by Gissler
et al. [GPB∗19] uses a generic pressure solver to compute pres-
sure in fluids. However, generic fluid solvers are not able to capture

the effect velocity changes of rigid particles fk due to pressure p f
have onto the volume error V err

f . Thus, there are missing contribu-
tions in the computation of ∂/∂p f V err

f (t +∆t) that can impact the
convergence behavior of the Jacobi solver. In contrast, our method
unifies the pressure computation for rigid and fluid particles into
one system, and thus the dependency of v⃗ fk (t +∆t) on p f can be
correctly included in the computation of ∂/∂p f V err

f (t +∆t). The
derivation and an efficient computation implementation of the ele-
ments ∂/∂pi V err

i (t +∆t) are shown in Section A.

Friction Update: When applying a fixed point iteration for fric-
tional forces as shown in Equation 4.1b, we found it to be important
that α

F truly is a positive scalar value. Blocked Jacobi schemes that
use a matrix for α

F [CPS09] often cause α
F
r v⃗tang

r (t +∆t) to point
into a different direction than v⃗tang

r (t +∆t). This has the effect that
frictional multipliers λ⃗r fulfilling the principle of maximum dissi-
pation are no longer a solution to the fixed point problem described
in Equation 4.1b. K. Erleben [Erl17] evaluated the convergence be-
havior of blocked solver strategies in a very similar context and the
results seem to support our claim. Similar to the blocked approach,
considering α

F independently for each coordinate direction of λ⃗r
introduces the same problem, which is why in our implementation
we choose

α
F =

υ

nR

1
3

tr

[
∂

∂⃗λr
v⃗tang

r (t +∆t)

]−1

(4.6)

where tr is the trace operator. Again, an efficient implementation to
compute ∂/∂⃗λr v⃗tang

r (t +∆t) is derived in Section A.

Further, we slightly modify the Jacobi update for frictional mul-
tipliers λ⃗r given in Equation 4.1b. Based on the observation that for
two rigid particles r1 and r2 with

v⃗tang
r2 (t +∆t) = c⃗vtang

r1 (t +∆t) with c≫ 1

v⃗tang
r1 (t +∆t) ̸= 0⃗

µr2 |⃗F
N
r2 |= µr1 |⃗F

N
r1 |,

(4.7)

λ⃗r1 and λ⃗r2 should converge to the same vector. However, by look-
ing at Equation 4.1b we notice that since v⃗tang

r2 (t +∆t) is much
larger than v⃗tang

r1 (t +∆t), λ⃗r2 will converge much faster compared
to λ⃗r1 . This causes severe stability issues in the solving process for
large relaxation coefficients υ or alternatively impractically slow
convergence for smaller υ. To stabilize the solving process we in-
troduce a friction target λ⃗

∗
r into the solving process whose magni-

tude is clamped at µr |⃗FN
r | and reformulate the fixed point problem

from Equation 4.1b to

λ⃗
∗
r = proxFr

−
1

3
tr

[
∂

∂⃗λr
v⃗tang

r (t +∆t)

]−1

v⃗tang
r (t +∆t)


λ⃗

k+1
r = proxFr

[⃗
λ

k
r +

υ

nR
λ⃗
∗
r

]
.

(4.8)
Again, this does not change the analytical solution of the fixed point
problem but merely improves convergence behavior.

Author’s version.
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4.2. Nonsmooth Nonlinear Conjugate Gradient

Relaxation methods such as the Jacobi method are known for their
simplicity, robustness and flexibility, but also come with slow con-
vergence speed, especially considering poorly conditioned prob-
lems [CPS09, SNE09, PAE10, Erl13]. To improve the performance
of the proximal operator method, K. Erleben [Erl17] suggests
studying a combination of proximal operators, embedded into a
generalized conjugate gradient method. We follow this suggestion
by extending our Jacobi iteration into a nonsmooth nonlinear con-
jugate gradient (NNCG) method as described by Silcowitz-Hansen
et al. [SHNE10]. Here, differences between iterates of the projected
Jacobi solver are seen as residuals r

rk :=
(

pk+1−pk,λλλ
k+1−λλλ

k
)

= PJ
[
pk,λλλ

k
]
−
(

pk,λλλ
k
) (4.9)

where PJ returns the iterates after applying one projected Jacobi it-
eration as described in Equations 4.1a and 4.8. The residuals simul-
taneously equal the negative gradient of some function f (pk,λλλ

k
) :=

1
2 |r

k|2. Finding p and λλλ such that f becomes zero is equivalent to
solving the fixed point problems given in Equations 4.1a and 4.8.
To find a local minimum of f , the Fletcher-Reeves nonlinear con-
jugate gradient method can be employed [NW06, SHNE10, AE21]
as it only requires information about the gradient ∇⃗ f = −r. The
implementation of the NNCG method is illustrated in detail in Sec-
tion 4.3. Performance comparisons between the standard Jacobi
method and NNCG are shown in Section 5.3.

4.3. Algorithm

We use this section to give an overall view of our simulation method
and discuss some remaining implementation details. Algorithm 1
shows a summary of our particle-based fluid-rigid simulation loop,
which closely resembles the typical structure of a simulation based
on SPH [IOS∗14]. As we can see, a simulation step starts by search-
ing and storing particle neighborhoods as these are required multi-
ple times later on in various SPH summations. Similarly, the current
volume Vi(t) is precomputed for all rigid and fluid particles i using
Equations 3.1 and 3.6, as its value is repeatedly used. Using SPH,
we are able to explicitly compute forces such as viscosity and sur-
face tension and apply them using Equation 3.16 to get intermediate
velocities v⃗∗f . Similarly, we compute intermediate velocities v⃗∗R and
ω⃗
∗
R for all rigid bodies R as shown in Equation 3.12. The interme-

diate velocities are used in the pressure and friction solver which is
embedded into the simulation loop in line 1. For now, we treat the
solver as a black box and end the simulation step by integrating the
resulting pressure and frictional forces onto fluid particles f , rigid
bodies R and rigid particles r. A precise description of how veloc-
ities and positions are integrated in time is moved to Section B as
the expressions become quite lengthy without adding much to the
understanding of the simulation method.

The pressure and friction solver shown in Algorithm 2 is the
core of our simulation method. Based on predicted particle veloc-
ities v⃗i(t +∆t) we implicitly compute pressure values that prevent
collisions and matching frictional forces. The implemented NNCG
solver bases on Jacobi updates which are described in Algorithm 3.

1 t← 0
2 while simulating do
3 foreach particle i do
4 Find all neighbors of i
5 Compute Vi(t) ▷ eq. 3.1 and 3.6

6 foreach fluid particle f do
7 Compute v⃗∗f ▷ eq. 3.16

8 foreach rigid body R do
9 Compute v⃗∗R ▷ eq. 3.12a

10 Compute ω⃗
∗
R ▷ eq. 3.12b

11 Solve for p and λλλ ▷ alg. 2
12 Integrate x, v, q, ωωω

13 t← t +∆t

Algorithm 1: A fluid and rigid body simulation loop based on
SPH particles. The pressure and friction solver embedded in
line 1 is presented in detail in Algorithm 2.

Before each Jacobi step we need to evaluate predicted volume er-
rors V err

i (t +∆t) and tangential velocities v⃗tang
r (t +∆t) based on

current pressure vector p and friction vector λλλ. While this proce-
dure is computationally expensive, we are able to implement it in
an efficient and fully parallelized manner as demonstrated in Al-
gorithm 4. To make Algorithm 2 easy to reimplement, a detailed
explanation on how to compute the diagonal elements is given in
Section A.

Typical SPH pressure solvers use the average predicted volume
error of particles as a measurement for convergence [SP09,ICS∗14,
IOS∗14, BK15, GPB∗19]. While this ensures that volumes are pre-
served, there is no guarantee that resulting pressure values are a so-
lution to the LCP shown in Equation 3.9. More precisely, pressure
values that are too high are not considered as an error, what can re-
sult in an overcorrection of volume errors. To ensure that pressure
values p are a true solution to Equation 3.9, we follow Macklin
et al. [MEM∗19] and use the average absolute Fischer-Burmeister
function as a measurement of convergence of the pressure iterates.
Similarly, to measure how close friction multipliers λλλ are to a true
solution, we use the same friction constraint function as Macklin et
al. [MEM∗19].

5. Results

In this section we demonstrate the capabilities of our monolithic
solver. We begin with a validation of our friction computation
method by comparing simulation results to analytical solutions in
Section 5.1 and perform some basic robustness tests in Section 5.2.
To motivate the usage of the NNCG solver, we compare its conver-
gence speed to that of a standard projected relaxed Jacobi solver
in Section 5.3. More challenging scenarios are showcased in Sec-
tion 5.4, including difficult frictional settings, large mass ratios,
complex geometries, interaction with fluids and large numbers of
simulated rigid bodies. Please refer to the supplementary video for
a more detailed insight into the simulation scenarios.
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1 Function Solve for p and λλλ:
2 p0← 0
3 λλλ

0← 0
4 Compute Diagonals
5 Update Verr and vtang (p0, λλλ

0) ▷ alg. 4

6 p1,λλλ
1← PJ (p0, λλλ

0) ▷ alg. 3

7 ∇⃗ f 0←−(p1−p0,λλλ
1−λλλ

0
)

8 s0←−∇⃗ f 0

9 k← 1
10 Update Verr and vtang (p1, λλλ

1) ▷ alg. 4
11 while not converged do
12 pk+1,λλλ

k+1← PJ (pk, λλλ
k) ▷ alg. 3

13 ∇⃗ f k←−(pk+1−pk,λλλ
k+1−λλλ

k
)

14 β← |∇⃗ f k|2/|∇⃗ f k−1|2
15 if β > 1 then
16 sk← 0
17 else
18 (pk+1,λλλ

k+1
)← (pk+1,λλλ

k+1
)+βsk−1

19 sk← βsk−1−∇⃗ f k

20 k← k+1

21 Update Verr and vtang (pk, λλλ
k) ▷ alg. 4

Algorithm 2: A NNCG implementation to solve for unknown
p and λλλ using the projected Jacobi step as an estimate for
the function gradient. Afterwards, we can compute the desired
pressure forces F⃗P

i and frictional effects F⃗F
r and τ⃗

F
r from p and

λλλ.

1 Function PJ (pk, λλλ
k):

2 foreach fluid particle f do
3 Compute pk+1

f ▷ eq. 4.1a

4 foreach rigid particle r do
5 Compute pk+1

r ▷ eq. 4.1a

6 Compute λ⃗
k+1
r ▷ eq. 4.8

7 return pk+1, λλλ
k+1

Algorithm 3: The projected relaxed Jacobi step to update pres-
sure p and friction multipliers λλλ. Note that in line 3 we use the
improved Jacobi step from Equation 4.8 to update λ⃗r.

5.1. Validation

We use a rigid body placed onto an inclined plane as a basic test
for the precision of our friction formulation. Given the slope of
the plane θ, it is known that the rigid body R should slide down
the ramp if µR < tanθ with coefficient of friction µR. In our test
scenario, the plane has a slope of θ = 30°, we start with µR = 1
and reduce µR with constant speed over time. Figure 3 visualizes
the scenario and gives a first impression of the test results. As we
can see, the friction model proposed by Gissler et al. [GPB∗19]
is not able to replicate stiction as the rigid body slides down the
slope even for µR = 1. On the other hand, our friction formula-
tion correctly causes the body to stick to the surface as long as

1 Function Update Verr and vtang (pk, λλλ
k):

2 foreach fluid particle f do
3 Compute v⃗ f (t +∆t) ▷ eq. 3.15

4 foreach rigid body R do
5 foreach rigid particle r ∈ R do
6 Compute F⃗P

r ▷ eq. 3.13
7 Compute F⃗F

r ▷ eq. 3.22a
8 Compute τ⃗

F
r ▷ eq. 3.22b

9 Compute v⃗R(t +∆t) ▷ eq. 3.11b
10 Compute ω⃗R(t +∆t) ▷ eq. 3.11c

11 foreach fluid particle f do
12 Compute V err

f (t +∆t) ▷ eq. 3.11a and 3.14

13 foreach rigid particle r do
14 Compute V err

r (t +∆t) ▷ eq. 3.10 and 3.11a
15 Compute v⃗tang

r (t +∆t) ▷ eq. 3.11a and 3.21

Algorithm 4: The procedure to compute predicted volume er-
rors Verr(t +∆t) and tangential velocities vtang(t +∆t) based on
current pressure values pk and friction multipliers λλλ

k. Since
predicted velocities of rigid particles v⃗r(t +∆t) can be com-
puted on-the-fly based on v⃗R(t +∆t) and ω⃗R(t +∆t) using
Equation 3.11a, we only have to iterate twice over all particles.

µR > tan30° ≈ 0.577. Figure 4 gives a more detailed insight into
the relation between coefficient of friction and velocity of the rigid
body simulated using our friction formulation.

5.2. Solver Robustness

To hint at the robustness of our particle based contact han-
dling, we simulate the degenerated test cases proposed by K. Er-
leben in [Erl18]. These special-cases of contacts between bod-
ies are challenging for traditional mesh-based contact handling
schemes [FLS∗21]. As shown in Figure 5, our simulation method
does not show any difficulties when simulating these constellations.
However, we still like to mention that contact normals computed in
our simulation only approximately match the ones listed by K. Er-
leben in [Erl18] due to the particle sampling of surfaces. The small
errors in the contact normal computation have negligible effect on
the overall simulation results which is why we do not consider them
any further, but instead refer to work published by Koschier and
Bender [KB17] as well as Bender et al. [BKWK19] that addresses
a very similar issue.

5.3. Solver Performance

Large mass ratios between interacting bodies are traditionally hard
to handle. As shown in Figure 6, our method is able to stably simu-
late a rigid cube resting on top of a second cube, whereby the upper
cube is one thousand times heavier. We use the same scenario to
evaluate the performance of our NNCG solver, in comparison to a
default Jacobi solver as used by Gissler et al. [GPB∗19]. For that,
we simulate one second of the blocks dropping and resting on each

Author’s version.
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µR = 1 µR = 0.578 µR = 0.4

Gissler et al. [GPB∗19]

µR = 1 µR = 0.578 µR = 0.4

our friction model

Figure 3: A rigid duck is placed onto an inclined surface. The friction coef-
ficient µR of the rigid duck is reduced over time until the duck starts sliding
down the slope. As we can see, the friction model by Gissler et al. [GPB∗19]
is not able to replicate stiction, the duck moves no matter how high µR is
set. Our friction model on the other hand is able to simulate stiction and
correctly reproduces the stick-slip transition around µR ≈ 0.577.

0.59 0.58 0.57 0.56 0.55
0

0.01

0.02

µR

|⃗v
R
|(

m
/s

)

Figure 4: The relation between the coefficient of friction µR of rigid body R
and the magnitude of its translational velocity v⃗R using our friction model.
We can see that R starts accelerating as soon as µR < 0.577 which is in good
agreement with the analytical solution. Note that the velocity increases in a
quadratic manner as µR decreases.

other. In both cases we set ∆t = 0.001s, υ = 0.5 with particle dis-
tance h = 0.02m and the same desired residual. As we can see in
the top diagram in Figure 7, the default Jacobi solver on average
requires approximately five times more iterations compared to the
NNCG solver. This speedup by far overcompensates for the slightly
higher computational cost per NNCG iteration, resulting in a signif-
icant performance advantage for the NNCG solver in this scenario.
However, we note that this scenario represents a special case of a
very challenging body constellation, which is why we additionally
evaluate the solver performance at a more common and better be-
haved body arrangement. We simulate a stack of eight rigid boxes
with equal masses using the same parameter setting as before, and
again compare the solver iterations of the NNCG solver against the
iterations required by the Jacobi solver. The result is visualized in
the center of Figure 7. As we can see, the difference in the number
of solver iterations is a little less severe compared to the previous

Figure 5: Degenerated test cases proposed by K. Erleben [Erl18] which can
be challenging for mesh-based contact handling methods. For each of the
nine constellation, we show the initial setting and right next to it a snapshot
of the simulation. The bodies are given some initial velocity as described
in [Erl18]. Visually, our particle-based contact handling shows no problems
whatsoever when simulating the shown constellations.

scenario and in some simulation steps the NNCG solver takes al-
most as many iterations as the Jacobi solver. However, conforming
to the previous scenario, on average, the Jacobi solver still requires
more than three times as many iterations as the NNCG solver when
simulating the stacked boxes. To evaluate the solver performance
in a coupled fluid-rigid simulation, we simulate a fluid pillar with a
rigid duck swimming on the surface. State-of-the-art particle fluid
solvers such as PCISPH [SP09], PBF [MM13], IISPH [ICS∗14]
and DFSPH [BK15] use a Jacobi-style solving method comparable
to the one presented by Gissler et al. [GPB∗19]. We evaluate our
implementation in relation to a standard Jacobi solver similar to
Gissler et al. [GPB∗19] in order to classify the performance of the
NNCG solver in the context of fluid and coupled fluid-rigid simula-
tions. The required solver iterations of the Jacobi and NNCG solver
are displayed at the bottom of Figure 7. The difference in number
of solver iterations in this scenario is especially significant as the
Jacobi solver requires more than ten times the iterations the NNCG
solver needs to reach an equal residual.

Motivated by the presented performance advantages, as a last
test scenario we evaluate how the Jacobi and NNCG solver scale
for increasing scenario complexity. A commonly used factor to de-
termine scenario complexity is depth of a fluid body under grav-
ity [KBST19]. We simulate a fluid pillar that grows in height during
the simulation and measure the required solver iterations over time.
The results are displayed in Figure 8. As we can see, the Jacobi iter-
ations increase approximately linearly with increasing fluid depth,
while the number of NNCG iterations show sublinear growth. Thus,
in this specific scenario, for rising fluid depth, the significance of
the performance advantage of the NNCG solver increases. In sum-
mary, in all tested scenarios, the NNCG solver maintains a consid-
erable performance advantage over the Jacobi solver.

Author’s version.



T. Probst & M. Teschner / Monolithic Friction and Contact Handling for Rigid Bodies and Fluids using SPH 13

Figure 6: A heavy rigid block (yellow) is dropped on a much lighter block
(red) where it then comes to rest. The mass ratio between the blocks is
1000 : 1. Our contact handling method is able to robustly handle this chal-
lenging constellation.
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Figure 7: The required solver iterations of the default Jacobi solver (blue)
as well as the NNCG solver (red), to simulate a heavy block falling on a
lighter block (top), to simulate a stack of eight boxes (center) and to sim-
ulate a fluid pillar (bottom). The ratios between both iteration counts are
indicated by the gray dotted line. In the upper two scenarios, we can clearly
see the first contacts between the bodies as a spike in solver iterations at
the start of the simulation. In the example with the high body mass ratio, at
the initial contact, the Jacobi solver requires approximately ten times more
iterations compared to the NNCG solver to achieve the same residual error.
After the bodies came to rest, the Jacobi solver on average still requires five
times as many iterations. To simulate the stacked boxes, the Jacobi solver
requires a little less than four times as many solver iterations, and in the
fluid pillar example the Jacobi solver even requires over ten times more
iterations. In all three test scenarios our NNCG solver has a significant per-
formance advantage over a standard Jacobi method.
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Figure 8: The required solver iterations of the default Jacobi solver (blue)
and the NNCG solver (red) in relation to an estimate of the fluid pillar depth
in particles. The ratio between the Jacobi iterations and NNCG iterations is
indicated as a gray dotted line. Over time, the fluid pillar grows in height and
as such the number of required solver iterations increase. We can see that
for the Jacobi solver the required solver iterations increase approximately
linearly with fluid depth, while the NNCG iterations only show sublinear
growth. Thus, in the shown scenario, for high fluid depth the performance
advantage of the NNCG solver becomes increasingly significant.

Figure 9: A Lewis lifting mechanism. When pulled upwards, the inner
pyramid shaped piece presses the wedges against the outer weight. Solely
due to frictional forces, the outer weight is lifted.

5.4. Versatility and Scalability

We demonstrate the capabilities of our simulation method by show-
casing a number of simulation scenarios we deemed to be challeng-
ing to the friction and pressure solver due to many interacting rigid
bodies, complex interactions between fluids and rigid geometry
as well as scenarios requiring precisely computed friction forces.
For each scenario, average timesteps, required solver iterations and
computation times are listed in Table 1.

Lewis Lifting Mechanism: Inspired by Ferguson et al.
[FLS∗21], we simulate a Lewis lift which is a mechanism that can
lift weights relying on frictional forces. As Figure 9 shows, our fric-
tion solver is able to handle static friction in a correct and precise
manner without revealing any visible artifacts.

Modified Card House: Simulating houses of cards is a pop-
ular way to demonstrate correctness and precision of frictional
forces [KSJP08, BET14, LFS∗20, FLS∗21]. To show that our fric-
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Figure 10: A modified card house is simulated using our contact handling
method. Frictional forces enable the structure to stand upright by holding all
cards in place. All cards are given the same mass and are actively simulated
without being put to sleep. The card house collapses after a rigid duck (red)
crashes into it.

tion handling matches the ability of state-of-the-art friction com-
putation methods, we simulate a seven-story card house. To further
increase difficulty, we added a hole in the middle of the card house
making the structure even more fragile. Figure 10 shows the card
house and its destruction.

Breaking Dam: A dam consisting of stacked rigid blocks is
holding back a body of water whose depth is continuously rising.
Here, the strong coupling between fluid pressure forces and dry
friction is especially important to ensure a stable and robust simu-
lation at the interface between fluid and dam. As soon as pressure
forces caused by the fluid are growing larger than the static fric-
tion forces between the blocks can compensate for, the dam starts
to break. As illustrated in Figure 11, the released fluid causes a
flood and parts of the dam knock over a bridge standing down-
stream. During the simulation, the fluid is sampled by a maximum
of 2.5 million particles, the dam and bridge are build from 128 rigid
blocks sampled by 600 thousand particles and the kinematic bound-
ary is sampled with 1.2 million particles.

Tower: Simulating high stacks of rigid bodies is inherently dif-
ficult as contact information needs to be propagated through the
stack to ensure incompressibility of all rigid bodies and correct
friction handling [Erl07]. Our solver is able to stably simulate an
over 40-story high tower standing upright. By shooting two rigid
bodies into the tower we let it collapse into a basin filled with fluid,
showcasing the robustness of the monolithic simulation method.
Figure 12 gives an overview of the simulation using 3.6 million
fluid particles, 1.4 million rigid particles sampling 658 rigid bodies
and 4.9 million particles belonging to kinematic boundaries.

Bulk Simulation: We showcase a bulk simulation to hint at the
wide range of possible applications of our simulation method. As
shown in Figure 13, the bulk consists of thousands of rigid bod-
ies in the shape of armadillos. Each armadillo is sampled with 622
rigid particles, giving a good approximation of the complex under-
lying geometry. To demonstrate the robustness of our solver when
confronted with complex interacting geometry under difficult con-
ditions, the armadillos are caught in a net consisting of actively sim-
ulated rigid chain links. Over time, a pile of armadillos is formed
which is held in place by static friction forces. In total, there are
8700 armadillos and 670 chain links sampled with 5.7 million rigid
particles. The kinematic geometry is sampled using 5.0 million par-
ticles.

Chain: Simulating long chains of rigid bodies is inherently dif-

Figure 11: The outlet of a dam can not release fluid volume fast enough,
so the water level behind the dam keeps rising. At some point, the pressure
forces exerted by the fluid body onto the dam become larger than the static
friction forces that are keeping the dam in place. The dam breaks, causing
the destruction of a bridge built downstream. The lighter parts of the bridge
are carried away by the flow. It is easy to see that our proposed strong cou-
pling between fluid pressure and rigid friction forces helps to guarantee a
stable simulation of the water-dam interface.

ficult due to mutual dependencies of individual chain links over
long distances. Contacts need to be resolved very precisely to pre-
vent elongations and elastic behavior of the chain. Illustrated in
Figure 14, we demonstrate that our solver is able to simulate a one
hundred rigid links long chain, with no need for an extra long-range
constraint stabilization technique such as proposed in [MCMJ17].
Additionally, to further increase difficulty, some chain links are
shaped as hollow letters containing fluid and small rigid ducks.
The chain is rolled up on an axle causing challenging simulation
circumstances with high pressure and friction forces between con-
tacting chain links, diverse sizes and geometries of links and rapid
velocity changes in the chain including the contained fluid. In to-
tal, the chain consists of over 100 rigid bodies, sampled by 600
thousand particles. The fluids are represented using 270 thousand
particles.
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Figure 12: Over 600 rigid blocks are used to build a tower. Frictional forces
ensure that the tower is able to stand upright, even with fluid pushing against
the base of the tower. Using a waterslide, two rigid ducks crash into the
tower causing it to collapse.

computation time per
∆t solver iter. step simulated s

Lewis Lift 2.0 ms 15.9 1.38 s 689 s
Card House 0.5 ms 20.0 0.35 s 691 s
Dam 1.0 ms 20.0 5.44 s 5436 s
Tower 1.9 ms 10.0 3.73 s 2013 s
Bulk 0.3 ms 4.0 4.59 s 18547 s
Chain 0.2 ms 20.0 1.52 s 6826 s

Table 1: Averaged computational costs of the named simulation scenarios.
From left to right we list the average timestep ∆t, required solver itera-
tions, computation time required per simulation step and computation time
required per simulated second. All computations are performed on a 24-
core 2.7 GHz Intel Xeon E5-2697 v2 workstation. Note that for all listed
scenarios, except for the Lewis Lift, we chose a relatively high number of
minimum solver iterations such that the convergence criterion is typically
fulfilled before the minimum number of solver iterations is reached. This
has the effect that solver iterations are constant most of the time during the
simulation, which we found to be beneficial for simulating fragile struc-
tures.

Nine thousand rigid armadillos are pushed through a pipe using a spiral
feeder. Armadillos falling out of the pipe are caught in a net consisting of
670 actively simulated rigid chain links.

The armadillos collected in the net are
able to form a stable pile due to static fric-
tion forces.

Each armadillo is sampled
with 622 rigid particles.

Figure 13: A bulk material simulation using our rigid body solver. Each
grain is simulated as a rigid body in the shape of an Armadillo sampled
with particles. The concave and complex Armadillo geometry causes the
bodies to get caught up in the net. Stable piles of Armadillos are formed in
the net and on the surrounding ground surface.

6. Limitations

Since the number of particles used to sample rigid body geometry
mostly depends on body and particle size instead of complexity of
the geometry, simple shapes with large flat surfaces still might re-
quire thousands of sample particles. In this situation, a pure rigid
body simulation ignoring rigid-fluid interaction is likely to be more
efficient when using a mesh-based rigid body representation. Our
simulation method uses the same size for rigid body particles, fluid
particles and boundary particles. While this allows a straightfor-
ward interaction between particles, the resolution of the contact
handling between rigid bodies is directly coupled to the fluid res-
olutions. In the future, approaches that implement different parti-
cle sizes such as described in [WHK17, WK21] could be investi-
gated to enable a more flexible simulation resolution. Due to the
velocity-based friction formulation drift might occur between con-
tacting rigid bodies even if static friction forces are applied. This
drift can be reduced at the cost of more solver iterations, but it
cannot be eliminated entirely. In the future, it might be interesting
to additionally implement a stabilization scheme that guarantees
static contacts such as described by Xu et al. [XZB14] or O. Ding
& C. Schroeder [DS20]. In our simulation, we employed a simple
Coulomb friction model. However, we believe that in the future, the
described solver could be easily extended to handle more sophisti-
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The chain is rolled up. While the axle continues spinning, the chain is able
to untangle itself until its momentum does not suffice anymore to keep it
stretched out while rotating.

A closeup view on the entangled chain.

Figure 14: A simulation of a chain. Each of the over 100 chain links is
formed by an individual rigid body. The hollow letters are filled with fluid
and small rigid ducks (red). Our simulation method is able to robustly han-
dle the challenging mixture of large pressure and friction forces propagated
over long distances and complex interactions between fluid and rigid bod-
ies, while high precision solver results are indispensable.

cated friction models such as anisotropic friction [Erl17,EMAK19]
or torque due to dry friction resisting spinning [BNT∗15].

7. Conclusion

We have introduced a monolithic SPH solver for particle-based flu-
ids and rigid bodies including dry frictional forces. Our simulation
method calculates predicted volume errors as a simple and robust
way to detect collisions between rigid bodies as well as compressed
fluid particles. Volume errors are resolved by computing pressure
and pressure forces, a concept well known from existing particle-
based pressure solvers [SP09,ICS∗14,BK15,GPB∗19]. Strong cou-
pling between pressure and friction forces is achieved by directly
incorporating the effects of pressure and fictional forces into the
computation of predicted velocities, which in turn influence the cur-
rent pressure and friction computation. A friction mirroring step is
build into the pressure and friction system to guarantee conserva-
tion of momentum. Building on top of the relaxed-Jacobi solver,
a nonlinear nonsmooth conjugate gradient method is employed to
accelerate the solving procedure. Depending on the scenario, this
can result in a significant reduction of solver iterations. Further,
we have shown that our implicit friction formulation can handle
static friction, produces correct behavior at stick-slip transitions
and scales to large numbers of simultaneous rigid body contacts.
The strong coupling between pressure and friction allows us to sta-
bly simulate complex structures of rigid bodies interacting with flu-
ids, opening the door for a whole range of new interesting simula-
tion scenarios.
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Appendix A: Diagonal Elements

Deriving the relationship between pi and V err
i (t +∆t) as well as the

relation between λ⃗r and v⃗tang
r (t +∆t) is required when building a

Jacobi iteration from Equation 4.1 in order to compute correct val-
ues for α

P and α
F . As indicated in Algorithm 2, the diagonal ele-

ments are precomputed at the beginning of each solving procedure.
Algorithm 5 presents an overview of the computation steps.

1 Function Compute Diagonals :
2 foreach fluid particle f do
3 Compute ∂

∂p f
V err

f (t +∆t) ▷ alg. 7

4 foreach rigid particle r do
5 Compute ∂

∂pr
V err

r (t +∆t) ▷ alg. 6

6 Compute ∂

∂⃗λr
v⃗tang

r (t +∆t) ▷ alg. 8

Algorithm 5: The relation between pi and V err
i (t +∆t) as well

as between λ⃗r and v⃗tang
r (t +∆t) are computed and stored for

later use in the Jacobi updates.

Pressure

In the case of pressure, we have to distinguish between rigid par-
ticles r and fluid particles f . We start by deriving an expression
for

∂

∂pr
V err

r (t +∆t). (A.1)

Plugging in Equation 3.10 and applying the chain rule yields

∂

∂pr
V err

r (t +∆t)

= −V 0
r ∆t ∑

rk

(
∂

∂pr
v⃗r(t +∆t)− ∂

∂pr
v⃗rk (t +∆t)

)
· ∇⃗W rrk

−V 0
r ∆t ∑

rb

(
∂

∂pr
v⃗r(t +∆t)− ∂

∂pr
v⃗rb(t +∆t)

)
· ∇⃗W rrb

(A.2)

which, together with Equation 3.11 gives us

∂

∂pr
v⃗r(t +∆t) =

∂

∂pr
v⃗R(t +∆t)

+
∂

∂pr
ω⃗R(t +∆t)× (⃗xr− x⃗R)

(A.3a)

∂

∂pr
v⃗R(t +∆t) = ∆t

1
MR

∑
r̃∈R

∂

∂pr
F⃗P

r̃ (A.3b)
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∂

∂pr
ω⃗R(t +∆t) = ∆tI−1

R ∑
r̃∈R

(⃗xr̃− x⃗R)×
∂

∂pr
F⃗P

r̃ (A.3c)

∂

∂pr
v⃗rk (t +∆t) =

∂

∂pr
v⃗K(t +∆t)

+
∂

∂pr
ω⃗K(t +∆t)× (⃗xrk − x⃗K)

(A.3d)

∂

∂pr
v⃗K(t +∆t) = ∆t

1
MK

∑
k̃∈K

∂

∂pr
F⃗P

k̃ (A.3e)

∂

∂pr
ω⃗K(t +∆t) = ∆tI−1

K ∑
k̃∈K

(⃗
xk̃− x⃗K

)
× ∂

∂pr
F⃗P

k̃ (A.3f)

∂

∂pr
v⃗rb(t +∆t) = 0⃗ (A.3g)

with all particles r̃ belonging to the same rigid body R as r does
and with all particles k̃ belonging to the same rigid body K as rk
does. Pressure pr influences F⃗P

r̃ only for r̃ = r, so we can simplify
Equations A.3b and A.3c to

∂

∂pr
v⃗R(t +∆t) = ∆t

1
MR

∂

∂pr
F⃗P

r (A.4a)

∂

∂pr
ω⃗R(t +∆t) = ∆tI−1

R (⃗xr− x⃗R)×
∂

∂pr
F⃗P

r (A.4b)

The last remaining pieces are the dependencies of F⃗P
r and F⃗P

k̃ on pr.
By using Equation 3.13 we get

∂

∂pr
F⃗P

r = −∑
rk

V 0
r V 0

r ∇⃗W rrk

−∑
rb

V 0
r V 0

r ∇⃗W rrk

(A.5a)

∂

∂pr
F⃗P

k̃ = −V 0
r V 0

r ∇⃗W k̃r. (A.5b)

Note that ∂/∂pr F⃗P
k̃ equals zero if particle k̃ is not a neighbor of

r, so in Equations A.3e and A.3f it suffices to sum over particles
k̃ ∈ K neighboring r. We made the assumption that prb = pr, which
corresponds to the boundary handling by Akinci et al. [AIA∗12].
When employing a different boundary handling scheme one may
accurately use the exact expression for prb , or use prb = pr nonethe-
less as it still approximates prb well enough. In combination, Equa-
tions A.2, A.3a, A.3d to A.3g, A.4 and A.5 can be used to evaluate
∂/∂pr V err

r (t +∆t). Even though this procedure looks complex, it
can be implemented efficiently as shown in Algorithm 6.

For fluid particles f , the relation between pressure p f and pre-
dicted volume error V err

f (t +∆t) can be computed equivalently.
Similar to Equation A.2, we first plug in the expression for the vol-

1 Function Pressure - Volume Error Relation of r:
2 Compute ∂

∂pr
v⃗r(t +∆t) ▷ eq. A.3a, A.4 and A.5a

3 foreach neighboring rigid body K do
4 Compute ∂

∂pr
v⃗K(t +∆t) ▷ eq. A.3e and A.5b

5 Compute ∂

∂pr
ω⃗K(t +∆t) ▷ eq. A.3f and A.5b

6 Compute ∂

∂pr
V err

r (t +∆t) ▷ eq. A.2, A.3d and A.3g

7 return ∂

∂pr
V err

r (t +∆t)

Algorithm 6: The procedure to efficiently compute the relation
between pressure pr and volume error V err

r (t +∆t) for a rigid
particle r. All quantities that are explicitly computed in the al-
gorithm are precomputed and used again later while quantities
that are not mentioned are computed on-the-fly.

ume error of a fluid particle f given in Equation 3.14:

∂

∂p f
V err

f (t +∆t)

= −V 0
f ∆t ∑

f f

(
∂

∂p f
v⃗ f (t +∆t)− ∂

∂p f
v⃗ f f (t +∆t)

)
· ∇⃗W f f f

−V 0
f ∆t ∑

fk

(
∂

∂p f
v⃗ f (t +∆t)− ∂

∂p f
v⃗ fk (t +∆t)

)
· ∇⃗W f fk

−V 0
f ∆t ∑

fb

(
∂

∂p f
v⃗ f (t +∆t)− ∂

∂p f
v⃗ fb(t +∆t)

)
· ∇⃗W f fb

(A.6)
Here, we can clearly see that in contrast to the generic fluid solvers
used by Gissler et al. [GPB∗19], our method indeed does con-
sider the effect of p f onto v⃗ fk (t +∆t) during the computation of
∂/∂p f V err

f (t +∆t). By considering Equations 3.11 and 3.15 we
have

∂

∂p f
v⃗ f (t +∆t) = ∆t

1
m f

∂

∂p f
F⃗P

f (A.7a)

∂

∂p f
v⃗ f f (t +∆t) = ∆t

1
m f f

∂

∂p f
F⃗P

f f (A.7b)

∂

∂p f
v⃗ fk (t +∆t) =

∂

∂p f
v⃗K(t +∆t)

+
∂

∂p f
ω⃗K(t +∆t)×

(⃗
x fk − x⃗K

) (A.7c)

∂

∂p f
v⃗K(t +∆t) = ∆t

1
MK

∑
k̃∈K

∂

∂p f
F⃗P

k̃ (A.7d)

∂

∂p f
ω⃗K(t +∆t) = ∆tI−1

K ∑
k̃∈K

(⃗
xk̃− x⃗K

)
× ∂

∂p f
F⃗P

k̃ (A.7e)

∂

∂p f
v⃗ fb(t +∆t) = 0⃗. (A.7f)

Here, k̃ are all particles belonging to the same rigid body K as fk
does. Similar to Equations A.3e and A.3f, in order to evaluate Equa-
tions A.7d and A.7e it suffices to sum over particles k̃ ∈ K neigh-
boring f . The dependency of a fluid particle’s pressure force F⃗P on

Author’s version.
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p f is also given in Equation 3.15:

∂

∂p f
F⃗P

f = −∑
f f

V 0
f V 0

f ∇⃗W f f f

−∑
fb

V 0
f V 0

f ∇⃗W f fb

−∑
fk

V 0
f V 0

f ∇⃗W f fk

(A.8a)

∂

∂p f
F⃗P

f f =−V 0
f V 0

f ∇⃗W f f f (A.8b)

Again, we assume that p fb = p f is used as an estimate for pressure
values at kinematic boundary particles fb. By using Equation 3.13
we find the expression

∂

∂p f
F⃗P

k̃ = −V 0
f V 0

f ∇⃗W k̃ f . (A.9)

Together, Equations A.6, A.7, A.8 and A.9 describe the relation
between p f and volume error V err

f . Again, to maintain an overview,
we summarized the computation procedure in Algorithm 7.

1 Function Pressure - Volume Error Relation of f :
2 Compute ∂

∂p f
v⃗ f (t +∆t) ▷ eq. A.7a and A.8a

3 foreach neighboring rigid body K do
4 Compute ∂

∂p f
v⃗K(t +∆t) ▷ eq. A.7d and A.9

5 Compute ∂

∂p f
ω⃗K(t +∆t) ▷ eq. A.7e and A.9

6 Compute ∂

∂p f
V err

f (t +∆t) ▷
eq. A.6, A.7b, A.7c,
A.7f and A.8b

7 return ∂

∂p f
V err

f (t +∆t)

Algorithm 7: Similar to Algorithm 6, we can efficiently
compute the relation between pressure p f and volume error
V err

f (t +∆t) for a fluid particle f . Again, all quantities that are
explicitly computed in the algorithm are precomputed and used
again later while quantities that are not mentioned are computed
on-the-fly.

Friction

Inside the modified Jacobi iteration for friction given in Equa-
tion 4.8, we need to compute ∂/∂⃗λr v⃗tang

r (t +∆t). Similar to be-
fore, we find an expression for ∂/∂⃗λr v⃗tang

r (t +∆t) by successively
applying the chain rule. Starting with Equation 3.21b we have

∂

∂⃗λr
v⃗tang

r (t +∆t) =
(
1− n⃗r⃗n⊤r

)
∂

∂⃗λr
v⃗rel

r (t +∆t). (A.10)

Note that n⃗r depends on normal forces F⃗N
r which in turn depend

on pressure values p that are computed simultaneously to frictional
forces. However, the direction of F⃗N

r does not change during the
solving procedure, so we can precompute the term F⃗N

r /pr and use
it to estimate n⃗r as well as an efficient way to compute F⃗N

r given pr:

F⃗N
r

pr
= −V 0

r V 0
r ∑

rk

∇⃗W rrk

−V 0
r V 0

r ∑
rb

∇⃗W rrb

(A.11a)

n⃗r =
F⃗N

r /pr

|⃗FN
r /pr|

(A.11b)

The term ∂/∂⃗λr v⃗rel
r (t +∆t) in Equation A.10 is also constant dur-

ing one simulation step. Using Equation 3.21a, we can write

∂

∂⃗λr
v⃗rel

r (t +∆t)

= ∑
rk

Vrk

(
∂

∂⃗λr
v⃗r(t +∆t)− ∂

∂⃗λr
v⃗rk (t +∆t)

)
Wrrk

+ ∑
rb

Vrb

(
∂

∂⃗λr
v⃗r(t +∆t)− ∂

∂⃗λr
v⃗rb(t +∆t)

)
Wrrb

(A.12)

where velocities can be written as described in Equation 3.11:

∂

∂⃗λr
v⃗r(t +∆t) =

∂

∂⃗λr
v⃗R(t +∆t)

− [⃗xr− x⃗R]×
∂

∂⃗λr
ω⃗R(t +∆t)

(A.13a)

∂

∂⃗λr
v⃗rk (t +∆t) =

∂

∂⃗λr
v⃗K(t +∆t)

− [⃗xrk − x⃗K ]×
∂

∂⃗λr
ω⃗K(t +∆t)

(A.13b)

∂

∂⃗λr
v⃗rb(t +∆t) = 0 (A.13c)

Note that we switched the order of the cross products to express
them as matrix multiplications. Frictional forces F⃗F and torque
τ⃗

F are computed in the friction mirroring step described in Equa-
tion 3.22. This gives us

∂

∂⃗λr
v⃗R(t +∆t) = ∆t

1
MR

∑
r̃∈R

∂

∂⃗λr
F⃗F

r̃

= ∆t
1

MR
∑
rk

Ṽr1Wrrk

+ ∆t
1

MR
∑
rb

Ṽr1Wrrb

(A.14a)

∂

∂⃗λr
ω⃗R(t +∆t) = ∆tI−1

R ∑
r̃∈R

∂

∂⃗λr
τ⃗

F
r̃

= ∆tI−1
R ∑

rk

[
1
2

x⃗r +
1
2

x⃗rk − x⃗R

]
×

Ṽr1Wrrk

+ ∆tI−1
R ∑

rb

[
1
2

x⃗r +
1
2

x⃗rb − x⃗R

]
×

Ṽr1Wrrb

(A.14b)

∂

∂⃗λr
v⃗K(t +∆t) = ∆t

1
MK

∑
k̃∈K

∂

∂⃗λr
F⃗F

k̃

= ∆t
1

MK
∑

k̃∈K

−Ṽr1Wk̃r

(A.14c)
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∂

∂⃗λr
ω⃗K(t +∆t) = ∆tI−1

K ∑
k̃∈K

∂

∂⃗λr
τ⃗

F
k̃

= ∆tI−1
K ∑

k̃∈K

−
[

1
2

x⃗k̃ +
1
2

x⃗r− x⃗K

]
×

Ṽr1Wk̃r.

(A.14d)

Again, we see that in Equations A.14c and A.14d it suffices to
sum over particles k̃ ∈ K that neighbor r. In combination, Equa-
tions A.10, A.11, A.12, A.13 and A.14 can be used to compute
∂/∂⃗λr v⃗tang

r (t +∆t). The computation procedure is summarized in
Algorithm 8.

1 Function Friction - Tangential Velocity Relation of r:

2 Compute ∂

∂⃗λr
v⃗r(t +∆t) ▷

eq. A.13a,
A.14a
and A.14b

3 foreach neighboring rigid body K do
4 Compute ∂

∂⃗λr
v⃗K(t +∆t) ▷ eq. A.14c

5 Compute ∂

∂⃗λr
ω⃗K(t +∆t) ▷ eq. A.14d

6 Compute F⃗N
r /pr and n⃗r ▷ eq. A.11

7 Compute ∂

∂⃗λr
v⃗tang

r (t +∆t) ▷
eq. A.10, A.12,
A.13b
and A.13c

8 return ∂

∂⃗λr
v⃗tang

r (t +∆t)

Algorithm 8: An efficient implementation to compute the re-
lation between frictional multiplier λ⃗r and tangential velocity
v⃗tang

r (t +∆t) for a rigid particle r. Again, quantities that are
explicitly mentioned in the algorithm are precomputed for re-
peated use later on, all others are computed ad-hoc.

Appendix B: Time Integration

During the derivation of our implicit pressure and friction force
computation model, we assumed that positions x⃗i(t +∆t) and ve-
locities v⃗i(t +∆t) depend on forces computed at timestep t. To re-
flect this, we integrate positions and velocities in a semi implicit
manner. Starting with fluid particles, the integration step is quite
simple:

v⃗ f (t +∆t) = v⃗∗f +∆t
1

m f
F⃗P

f (3.15 revisited)

x⃗ f (t +∆t) = x⃗ f (t)+∆t⃗v f (t +∆t) (B.1a)

Integrating velocities and positions of rigid particles by using
the predicted velocities from Equation 3.11 would result in par-
ticle velocities v⃗r that do not match the body’s velocities v⃗R and
ω⃗R at timestep t +∆t since positions x⃗r(t) are used in the predic-
tion. Additionally, integrating particle positions using x⃗r(t +∆t) =
x⃗r(t)+∆t⃗vr(t +∆t) would have the effect that distances between
particles sampling the same rigid body change over time. To pre-
vent this, we first integrate the body’s position x⃗R, orientation qR,
translational velocity v⃗R and angular velocity ω⃗R using

v⃗R(t +∆t) = v⃗∗R +∆t
1

MR
∑
r̃∈R

(⃗
FP

r̃ + F⃗F
r̃

)
(3.11b revisited)

ω⃗R(t +∆t) = ω⃗
∗
R +∆tI−1

R ∑
r̃∈R

(⃗
xr̃(t)− x⃗R(t)

)
× F⃗P

r̃

+∆tI−1
R ∑

r̃∈R
τ⃗

F
r̃ .

(3.11c revisited)

x⃗R(t +∆t) = x⃗R +∆t⃗vR(t +∆t) (B.2a)

qR(t +∆t) =

cos
∆t
∣∣⃗ωR(t +∆t)

∣∣
2

,

sin
∆t
∣∣⃗ωR(t +∆t)

∣∣
2

ω⃗R(t +∆t)∣∣⃗ωR(t +∆t)
∣∣
qR(t).

(B.2b)

We use quaternions to represent orientations and employed a time
integration scheme proposed by F. Zhao & B. Wachem [ZW13] that
is able to integrate quaternions with no need for renormalization.
Afterwards, we compute the new particle positions and velocities
directly based on x⃗R(t +∆t), qR(t +∆t), v⃗R(t +∆t) and ω⃗R(t +∆t):

x⃗r(t +∆t) = x⃗R(t +∆t)

+qR(t +∆t)
[
0,⃗xr(0)− x⃗R(0)

]
q−1

R (t +∆t)
(B.3a)

v⃗r(t +∆t) = v⃗R(t +∆t)

+ ω⃗R(t +∆t)×
(⃗
xr(t +∆t)− x⃗R(t +∆t)

) (B.3b)

Algorithm 9 summarizes the time integration step.

1 Function Integrate x, v, q, ωωω:
2 foreach fluid particle f do
3 Compute v⃗ f (t +∆t) ▷ eq. 3.15
4 Compute x⃗ f (t +∆t) ▷ eq. B.1a

5 foreach rigid body R do
6 Compute v⃗R(t +∆t) ▷ eq. 3.11b
7 Compute ω⃗R(t +∆t) ▷ eq. 3.11c
8 Compute x⃗R(t +∆t) ▷ eq. B.2a
9 Compute qR(t +∆t) ▷ eq. B.2b

10 foreach rigid particle r do
11 Compute x⃗r(t +∆t) ▷ eq. B.3a
12 Compute v⃗r(t +∆t) ▷ eq. B.3b

Algorithm 9: The implementation of the Euler-Cromer time
integration scheme used in our simulation.
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