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Fig. 1. Rain on the Lucy statue. At first, our friction and surface tension formulation together allow droplets to stick to the statue. Only after the droplets
grow larger they start rolling downwards, leaving wet trails behind them. The trails mark preferred paths downwards for other droplets due to less frictional
resistance, causing the formation of small fluid streams. Over ten million fluid particles of size 1mm were used to simulate the rain water. The Lucy statue
stems from the Stanford 3D Scanning Repository, we use a version modified by Melllla.

Fluid droplets behave significantly different from larger fluid bodies. At
smaller scales, surface tension and friction between fluids and the boundary
play an essential role and are even able to counteract gravitational forces.
There are quite a few existing approaches that model surface tension forces
within an SPH environment. However, as often as not, physical correctness
and simulation stability are still major concerns with many surface tension
formulations. We propose a new approach to compute surface tension that
is both robust and produces the right amount of surface tension.

Conversely, less attentionwas given to friction forces at the fluid-boundary
interface. Recent experimental research indicates that Coulomb friction can
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be used to describe the behavior of droplets resting on a slope. Motivated
by this, we develop a novel friction force formulation at the fluid-boundary
interface following the Coulomb model, which allows us to replicate a new
range of well known fluid behavior such as the motion of rain droplets on a
window pane.

Both forces are combined with an IISPH variant into one unified solver
that is able to simultaneously compute strongly coupled surface tension,
friction and pressure forces.
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1 Introduction
Gravity, pressure, surface tension and frictional effects at the fluid-
solid interface are the main driving forces acting on small fluid
volumes such as droplets and water splashes. The overall objective
of this work is to develop a simulation method that is able to repli-
cate these small-scale fluid effects shown in fig. 1 within a Smoothed
Particle Hydrodynamics (SPH) environment. While gravity is trivial
to implement, in the past, the SPH community invested significant
work in the development of pressure solvers such as PCISPH [So-
lenthaler and Pajarola 2009], IISPH [Ihmsen et al. 2014a], DFSPH
[Bender and Koschier 2015] and others [Becker and Teschner 2007;
Macklin and Müller 2013]. Also, a large selection of surface tension
formulations have been proposed [Adami et al. 2010; Akinci et al.
2013; Becker and Teschner 2007; He et al. 2015b; Jeske et al. 2023;
Morris 2000; Wang et al. 2017; Zorilla et al. 2020]. The implicit pres-
sure solvers enable impressive water simulations with high fluid
depth and scene complexity, while at the same time the underlying
particle method remains easily extendible to other materials and
forces [Bobzin et al. 2023; Gissler et al. 2020, 2019; Ihmsen et al.
2014b; Löschner et al. 2023; Mokrov et al. 2024; Peer et al. 2018].
Existing pairwise surface tension models typically focus on a ro-
bust and performant replication of expected surface tension effects,
resulting in visually pleasing simulations of smaller scale fluid be-
havior. However, physical correctness of surface tension forces is
often not discussed [Akinci et al. 2013; Becker and Teschner 2007;
Duan et al. 2020; Jeske et al. 2023]. Continuum surface force (CSF)
models [Brackbill et al. 1992] on the other hand offer a physically
more consistent surface tension description, but there are serious
concerns about conservation of momentum and simulation stability
[Adami et al. 2010; Akinci et al. 2013; Becker and Teschner 2007; He
et al. 2015b; Hyde et al. 2020]. With our new particle-based surface
tension, we aim at developing a force formulation that is similarly
robust and easy to implement as previous pairwise methods, while
still being consistent with the underlying physical models.
Up to now, less attention was given to the frictional contact

handling between SPH fluids and boundary. Here, friction at the
solid-fluid interface is often implemented by simply incorporating
boundary particles in the fluid viscosity computation [Bender et al.
2020; Müller et al. 2004; Peer et al. 2015; Peer and Teschner 2017;
Weiler et al. 2018], with the downside that fluid droplets are not able
to come to rest on an inclined surface. Recent research indicates
that Coulomb friction can be used to model the tangential force
component droplets experience when sticking to a solid surface
[Gao et al. 2018; Hardt and McHale 2022; McHale et al. 2022]. Even
though there exist works mentioning the use of a friction force for
fluid particles that is inspired by Coulomb friction [Koschier and
Bender 2017; Winchenbach et al. 2020; Zhang et al. 2012], we are
not aware of an existing proper formulation of the Coulomb friction
law for fluid particles at the fluid-solid interface.

Thus, in this paper, to model small scale fluid behavior, we focus
on the following contributions:

• We develop a novel versatile SPH surface tension implemen-
tation that combines the robustness and intuitiveness of pair-
wise force models with the physical correctness of CSF mod-
els.

• We use a modified SPH formulation of a Coulomb friction
force for the fluid-boundary interface that, in contrast to pre-
vious work, allows us to simulate fluid droplets truly sticking
to inclined surfaces.
• We propose a single unified solving mechanism that com-
bines our surface tension and friction computations with an
incompressible SPH variant. The simultaneously solved pres-
sure, surface tension and friction forces are all consistent with
each other in the sense that during their computation process
they already consider the effects of each other on the state of
the fluid. We demonstrate that this unified solving procedure
is superior compared to a separated approach, and further
present a thorough evaluation of our solver’s capabilities.

The rest of the paper is structured as follows: In section 2 we com-
pare our solver and its individual force components to existing work
in the literature. Section 3 gives an overview of the physical con-
cepts behind pressure, surface tension and friction forces and their
embedding into an SPH framework. Building on these concepts,
in section 4 we translate the forces into an implicit formulation
and describe how we can solve them in a unified and consistent
manner. Section 5 discusses remaining implementation details and
optimal parameter values. Finally, section 6 presents and discusses
simulation experiments, which are summarized in sections 7 and 8.

2 Related Work
Since the early beginning of SPH [Gingold and Monaghan 1977;
Lucy 1977] and its introduction to the computer graphics commu-
nity [Desbrun and Gascuel 1996], many publications focused on
expanding the range of effects that can be simulated with an SPH
fluid [Gissler et al. 2020, 2019; Ihmsen et al. 2014b; Koschier et al.
2022; Macklin et al. 2014]. Improvements in the pressure computa-
tion enabled the simulation of incompressible fluids [Becker and
Teschner 2007; Bender and Koschier 2015; Ihmsen et al. 2014a; Mack-
lin and Müller 2013; Solenthaler and Pajarola 2009], highly viscous
materials are modelled utilizing implicit solving mechanisms [Peer
et al. 2015; Peer and Teschner 2017; Takahashi et al. 2015; Weiler
et al. 2018] and even ferrofluids can be simulated within an SPH
framework [Huang et al. 2019]. Multiphase approaches [Gissler et al.
2019; Ren et al. 2014; Solenthaler and Pajarola 2008] have shown
that particle methods allow intuitive implementations of multiple in-
teracting fluids and materials. Here, surface tension forces are often
used to maintain separate fluid bodies with well-defined interfaces
[Solenthaler and Pajarola 2008; Tartakovsky et al. 2016].

2.1 Surface Tension
Surface tension arises from an imbalance of attractive forces be-
tween molecules at the fluid surface [Cross and Plunkett 2014].
Although this simple description is not entirely uncontroversial as
it fails to explain tension parallel to the surface [Berry 1971], there
exist many surface tension models that imitate said microscopic
effects with pairwise attractive forces between particles [Becker
and Teschner 2007; Hong et al. 2008; Jeske et al. 2023; Nugent and
Posch 2000; Tartakovsky and Meakin 2005; Yang et al. 2016, 2017].
Tartakovsky and Meakin [2005], Akinci et al. [2013] and Jeske et al.
[2023] mitigate undesired particle clustering that is reported for
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some pairwise force models [Huber et al. 2015] by constructing spe-
cialized SPH kernel functions for the surface tension computation.
Yang et al. [2016, 2017] argue that an insufficient number of particle
neighbors at the surface causes inaccurate surface tension forces,
and demonstrate that the surface smoothness can be improved by
increasing kernel support size. Even though our force derivation is
distinct from pairwise force models, in section 3.2 we can see that
our surface tension formulation shares the same intuitive structure
as pairwise models, while not relying on specialized kernel func-
tions. Similar to Yang et al. [2016, 2017] we also use a slightly larger
kernel support for the surface tension computation. Our motivation,
however, is different from Yang et al. [2016, 2017] as discussed in
section 5.1. In contrast to our surface tension formulation, pairwise
force models are criticized for their inability to replicate the correct
amount of surface tension depending on the curvature of the surface
[Duan et al. 2020], which we also discuss in section 6.2. Nevertheless,
they represent a class of robust, fast and easy to implement surface
tension formulations that can replicate most of the expected visual
effects of fluid surface tension.

2.1.1 Continuum surface force models. Another approach to model
surface tension for particle-based fluids, developed by Brackbill et al.
[1992], is the CSF method. They propose to compute surface tension
forces based on the interface curvature at surface particles. Instead
of sharp boundaries between fluid phases, a mollifier is used to
construct smoothed color interfaces. This allows the computation
of color gradients that act as estimates of the interface normals
required in the curvature calculation [Brackbill et al. 1992]. The CSF
method was initially formulated as a particle-in-cell (PIC) approach
and later adopted for SPH fluids by Morris [2000]. Due to its straight-
forward integration into an SPH framework, the CSF method was
repeatedly used in subsequent works [Adami et al. 2010; Akinci et al.
2013; Hu and Adams 2006; Müller et al. 2003; Wang et al. 2017; Zo-
rilla et al. 2020]. However, some CSF formulations do not conserve
momentum [Adami et al. 2010; Morris 2000] and the normal estima-
tion through normalized color gradients is noisy for particles inside
the fluid body [Akinci et al. 2013; Becker and Teschner 2007; Hyde
et al. 2020]. Our method, on the other hand, naturally conserves
linear and angular momentum and does not rely on the estimation
of surface normals. Hu and Adams [2006] avoid the normal computa-
tion by directly computing forces using surface stress tensors based
on the color gradients. Müller et al. [2003] present a modification
that enables the CSF method to be used in free-surface simulations.
Since the curvature is proportional to the second derivative of the
color field, curvature estimation with SPH is sensitive to particle
disorder, especially at the free surface where particle neighborhoods
are incomplete [Akinci et al. 2013; Becker and Teschner 2007; Jeske
et al. 2023]. To alleviate the estimation sensitivity, He et al. [2015b]
propose to compute surface tension in a two-step process: first the
color gradients are estimated and then surface tension forces are
computed as gradients of the squared norm of the color gradients.
In section 6.2, we refer to their approach as robust CSF. Similar to
He et al. [2015b], the method of Orthmann et al. [2013] uses the
magnitude of the gradient of a signed-distance function between
the center of the local iso-density distribution and particle position
to estimate a particles’ contribution to the surface. In contrast, our

method avoids any stability problems associated with an approxi-
mation of second order derivatives at surface particles by detecting
particle surface contributions using number densities.

2.1.2 Hybrid models. Approaches such as Akinci et al. [2013] and
Wang et al. [2017] combine pairwise attraction forces with curvature-
based surface tension computation in an attempt to combine ad-
vantages of both methods. Detailed comparisons between pairwise
and CSF surface tension models have been presented by Huber et al.
[2015], Yang et al. [2019] and Arai et al. [2020].

Instead of a surface tension formulation purely based on SPH par-
ticles, there are approaches that first explicitly reconstruct surfaces
based on the underlying fluid particle representation. The force
computation is then performed based on this secondary surface
description: Yu et al. [2012] and Xing et al. [2022] build a triangle
mesh from particle positions that models the fluid surface. Similarly,
Boyd and Bridson [2012] reconstruct the interface as a level-set from
the positions of particles simulated with the Fluid-Implicit-Particle
(FLIP) method. To represent the surface of their fluid simulated with
a material point method, Hyde et al. [2020] sample fluid interfaces
with particles, arguing that it is easier to implement compared to
most front tracking and unstructured discretization approaches that
require dynamic remeshing. Thürey et al. [2010] compute surface
tension on a grid and employ a mesh-based surface representa-
tion for sub-grid surface flow. Zhang et al. [2012] simulate small
droplets entirely based on a surface mesh description, arguing that
the droplet motion is dominated by its boundary surface forces.
Other publications focus on the simulation of thin sheets phenomena
such as bubbles and fluid splashes [Batty et al. 2012; Da et al. 2015;
Ishida et al. 2017; Zhu et al. 2015, 2014]. Wang et al. [2020] describe
the construction and tracking of surface meshes as tedious. They
propose a codimensional moving-least-square method that directly
bases on the particle representation. Surface particles are explicitly
classified by their feature type where codimensionality-0 means a
particle is inside a fluid volume, particles with codimensionality-1
are part of a thin fluid sheet, particles forming filaments are labeled
with codimensionality-2, and fluid points have codimensionality-3.
In our approach, surface tension forces are also computed directly
based on SPH particles. No secondary surface representation is re-
quired. Similar to Wang et al. [2020] and Zorilla et al. [2020], we
also perform a surface particle detection by estimating to what part
particles contribute to interfaces, but unlike Wang et al. [2020] we
do not require an explicit classification of their codimensionality
in order to simulate the thin fluid features shown in sections 6.1.1
and 6.6.3.

2.2 Fluid Friction
To some degree, depending on the material, fluid droplets stick to an
inclined surface. On a smooth underlying surface, surface tension
alone does not oppose the sliding motion of droplets and as such is
not suited to model this phenomenon [Akinci et al. 2013]. Earlier
approaches try to model fluid-boundary friction by integrating the
boundary in the fluid viscosity computation [Akinci et al. 2012;
Becker and Teschner 2007; Bender et al. 2020; Gissler et al. 2020;
Macklin and Müller 2013; Morris et al. 1997; Müller et al. 2004; Peer
et al. 2015; Peer and Teschner 2017; Schechter and Bridson 2012;
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Stomakhin et al. 2019; Weiler et al. 2018]. Similar to viscous forces,
Ren et al. [2018] employ a friction force that scales with the rela-
tive velocity between fluid and boundary mesh to simulate surface
flows. Considering viscous forces at the fluid-boundary interface is
important to replicate the no-slip condition that is assumed in many
theoretical flow solutions. However, since the magnitude of these
forces approaches zero for small relative velocities to the bound-
ary, droplets can not truly stick through viscous forces alone when
positioned on a slope [Pennestri et al. 2016]. In addition, viscous
forces do not necessarily act in a direction tangential to the bound-
ary surface [Koschier and Bender 2017]. In their more recent work,
Koschier and Bender [2017] and Winchenbach et al. [2020] mention
the use of an explicit friction model for fluid particles at the bound-
ary inspired by the Coulomb friction law, though in their final force
formulation, friction is still proportional to the relative velocity
between fluid and boundary. As such, neither of them shows the
desired effect of fluid coming to rest on an inclined surface. Zhang
et al. [2012] employ a tangential friction force that is also quite
similar to Coulomb friction in their droplet simulation, but do not
consider the influence of the normal force magnitude on friction.
Motivated by multiple current publications, including experimental
research indicating that Coulomb friction can indeed be used to
accurately describe the behavior of droplets on sloped planes [Gao
et al. 2018; Hardt and McHale 2022; McHale et al. 2022], we propose
an implicit particle-based proper Coulomb friction force that can
be used to model physically meaningful tangential forces at the
fluid-solid interface.

2.3 Unified Force Computation
There is a long-lasting trend in the computer graphics SPH com-
munity to prefer implicit force computation methods over their
explicit counterparts [Ihmsen et al. 2014b; Jeske et al. 2023; Koschier
et al. 2022], but traditional approaches typically utilize separate and
independent solvers for each individual simulated force [Bender
and Koschier 2015; Ihmsen et al. 2014a; Koschier et al. 2022; Peer
et al. 2018, 2015; Weiler et al. 2018]. In contrast to this, more re-
cent publications such as Macklin et al. [2014], Wang et al. [2020],
Takahashi and Batty [2020], Liu et al. [2022], Probst and Teschner
[2023] and Jeske et al. [2023] propose and evaluate unified solving
mechanisms for a combined computation of forces with promising
results. Encouraged by their previous work, in this paper we develop
a novel implicit unified solver that is able to simultaneously handle
incompressibility, surface tension and fluid friction.

3 Forces
In this section, we formulate pressure, surface tension and friction
forces for fluid particles in an SPH environment. A summary of
abbreviations and notation used throughout the paper is given in
tables 1 and 2. As a pressure solver, we employ a variant of the well
established IISPH method [Ihmsen et al. 2014a]. New formulations
are developed for surface tension and fluid-boundary friction.

3.1 Pressure
The purpose of pressure forces is to preserve the fluid volume. For
an incompressible particle fluid 𝐹 , this means that all particles 𝑓 ∈ 𝐹

Table 1. Notation used throughout the paper.

symbol description
𝑓 fluid particle
𝑏 boundary particle
𝑓𝑓 fluid neighbors of 𝑓
𝑓𝑏 boundary neighbors of 𝑓
𝑏 𝑓 fluid neighbors of 𝑏
𝑏𝑏 boundary neighbors of 𝑏
𝐹 fluid body, set of particles 𝑓
𝐵 boundary, set of particles 𝑏

FV fluid-vapor interface
FF fluid-fluid interface
FB fluid-boundary interface
BV boundary-vapor interface
BF boundary-fluid interface

should maintain a volume𝑉𝑓 (m3) bigger or equal to their respective
rest volume 𝑉 0

𝑓
(m3). In a three-dimensional setting, 𝑉 0

𝑓
is typically

set equal to ℎ3 with particle spacing ℎ (m). We define a volume error

𝑉 err
𝑓 ≡ 1 −

𝑉 0
𝑓

𝑉𝑓
(1)

which becomes negative if and only if particle 𝑓 is compressed. Since
we consider incompressible fluids, forces due to pressure 𝑝 (Nm−2)
at fluid particles 𝑓 should maintain𝑉 err

𝑓
≥ 0 for all 𝑓 . In addition, 𝑝 𝑓

is constrained to always be non-negative and can only become non-
zero if 𝑉 err

𝑓
≤ 0, meaning that we do not allow positive pressure in

parts where current fluid volume𝑉 is greater than its rest volume𝑉 0.
Together, these constraints form a linear complementarity problem
[Andersen et al. 2017] that can be written down in short as

0 ≤ 𝑝 𝑓 ⊥ 𝑉 err
𝑓 ≥ 0. (2)

A basic SPH interpolation can be employed to approximate 𝑉 err
𝑓

:

𝑉 err
𝑓 = 1 −𝑉 0

𝑓

∑︁
𝑓𝑓

𝑊 P
𝑓 ,𝑓𝑓
−𝑉 0

𝑓

∑︁
𝑓𝑏

𝑊 P
𝑓 ,𝑓𝑏

. (3)

Here, fluid neighbors of particle 𝑓 are denoted by 𝑓𝑓 while boundary
neighbors are written as 𝑓𝑏 .𝑊 P

𝑖, 𝑗 is a shorthand notation for the
SPH smoothing kernel function𝑊 (x𝑖 − x𝑗 , ℏP) with pressure kernel
support ℏP (m) and positions x. After calculating pressure 𝑝 that
satisfies eq. (2), pressure forces FP (N) are computed with

FP𝑓 = −𝑉 0
𝑓 ∇𝑝 𝑓

= −𝑉 0
𝑓

∑︁
𝑓𝑓

𝑉 0
𝑓𝑓

(
𝑝 𝑓 + 𝑝 𝑓𝑓

)
∇𝑊 P

𝑓 ,𝑓𝑓

−𝑉 0
𝑓

∑︁
𝑓𝑏

𝑉 0
𝑓𝑏

(
𝑝 𝑓 + 𝑝 𝑓𝑏

)
∇𝑊 P

𝑓 ,𝑓𝑏
.

(4)

This approximation for pressure forces conserves linear and angu-
lar momentum exactly. Note that there are many ways to define
pressure at boundary particles 𝑝 𝑓𝑏 [Akinci et al. 2012; Band et al.
2018a,b; Bender et al. 2019, 2020, 2023; Koschier and Bender 2017],
all of which can be used here. We follow the recent idea of Bender
et al. [2023] and set 𝑝 𝑓𝑏 = 0. In section 4, we describe the pressure
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Table 2. Summary of used symbols. Units are given for a three-dimensional
setting.

symbol description unit
𝐴 interface area m2

𝐴0 rest area m2

𝐶 contribution to an interface
𝐸 energy Nm
F force N
FF friction force N
F∗ target friction force N
F𝑁 normal force N
FP pressure force N
FST surface tension force N
F set of allowed friction values
ℎ particle size m
ℏP pressure kernel support m
ℏST surface tension kernel support m
ℏF friction kernel support m
I identity matrix
𝑚 mass kg

max𝜖 (𝐶, 0) smoothed clamping of 𝐶
𝑝 pressure Nm−2
P set of all positive pressure values

prox ( ) proximal operator
𝑆 derivative of max𝜖 w.r.t. 𝐶
𝑡 time s
v velocity ms−1

vrel relative velocity ms−1
vtang tangential relative velocity ms−1

𝑉 volume m3

𝑉 0 rest volume m3

𝑉 err volume error
𝑊 SPH smoothing kernel m−3
𝑊 P kernel with support radius ℏP m−3
𝑊 ST kernel with support radius ℏST m−3
𝑊 F kernel with support radius ℏF m−3
x position m

𝛼 fixed-point convergence coefficient
𝛾 surface energy density Nm−1
Δ𝑡 timestep s
𝜖 smoothing strength
𝜇 coefficient of friction
𝜌0 rest density kgm−3
𝜛 Jacobi relaxation coefficient

solver used to calculate 𝑝 and its connection to the surface tension
and friction computation procedure in greater detail.

3.2 Surface Tension
Surface tension forces arise due to potential energy that is required
to form an interface between different phases. In the literature, the
potential surface energy 𝐸 (J) is often defined by the interface area𝐴
(m2) and the respective surface tension coefficient𝛾 (J m−2) [Lautrup

2011]:
𝐸 = 𝐴𝛾. (5)

Similar to He et al. [2015b] and Hyde et al. [2020], our surface
force computation is derived from an estimation of 𝐸. For this, we
first consider the total surface energy in our particle simulation
by summing up contributions of all fluid particles 𝑓 and boundary
particles 𝑏:

𝐸 =
∑︁
𝑓

𝐸𝑓 +
∑︁
𝑏

𝐸𝑏 . (6)

Note that also boundary particles 𝑏 contribute to the total surface
energy in our simulation as the boundary-vapor interface can store
potential surface energy too. In section 3.2.1 we will see that contri-
butions from boundary particles greatly determine fluid behavior
at the fluid-boundary-vapor contact line. For reasons of simplicity,
instead of requiring a user to provide surface tension coefficients
𝛾 for all possible pairs of fluid phases and boundaries, in our simu-
lation all particles 𝑓 belonging to the same fluid phase 𝐹 are given
one surface tension coefficient for the fluid-vapor interface 𝛾FV, one
coefficient 𝛾FF that describes the interface energy density to other
fluid phases and one coefficient 𝛾FB for the fluid-boundary interface.
Fluid phases 𝐹 are sets of fluid particles, where each fluid particle 𝑓
belongs to exactly one fluid phase 𝐹 . Likewise, per boundary 𝐵 we
allow users to define the boundary-vapor interface energy density
𝛾BV and the boundary-fluid interface energy density 𝛾BF. To give a
better intuition, in fig. 2 we sketch the interface forces arising due
to 𝛾 and in section 6.1.4 we showcase the resulting fluid behavior
for a selection of different configurations of 𝛾 . The surface energy
of a particle including all possible interfaces can now be written as

𝐸𝑓 =𝛾FV𝑓 𝐴FV
𝑓 + 𝛾FF𝑓 𝐴FF

𝑓 + 𝛾FB𝑓 𝐴FB
𝑓 (7a)

𝐸𝑏 =𝛾BV𝑏 𝐴BV
𝑏 + 𝛾BF𝑏 𝐴BF

𝑏 . (7b)
Here, 𝐴FV

𝑓
, 𝐴FF

𝑓
and 𝐴FB

𝑓
represent the estimated interface area fluid

particle 𝑓 has to the vapor phase, other fluid phases and to the
boundary respectively. 𝐴BV

𝑏
and 𝐴BF

𝑏
are the estimated interface

areas of boundary particle 𝑏 to the vapor phase and to adjacent
fluids. The way interface areas 𝐴 are approximated is crucial for
the effectiveness and robustness of the force computation [He et al.
2015b]. Approaches based on the CSF method [Brackbill et al. 1992;
He et al. 2015b; Hu and Adams 2006; Morris 2000; Müller et al. 2003]
utilize a color gradient as a tool to measure the contribution of a
particle to the interface. The normalized color gradients can then be
used to approximate the local curvature of the interface from which
surface tension forces are computed. This approach however entails
multiple problematic aspects. First, the color gradients should be-
come zero inside the fluid, so one has to be careful when computing
surface normals at those particles [Becker and Teschner 2007; Hu
and Adams 2006; Müller et al. 2003]. Second, since the curvature
is proportional to the second derivative of the color field, a direct
estimation is sensitive to particle disorder, which is especially criti-
cal close to the free surface where particles have fewer neighbors
[Becker and Teschner 2007; He et al. 2015b]. While we note that
there exist approaches that try to mitigate said problems [He et al.
2015b; Hu and Adams 2006], to avoid any difficulties associated
with the approximation of second order derivatives, we propose a
new surface detection method that does not rely on the gradient of
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the color field, but instead utilizes number density estimations to
detect surface particles. For this, at each fluid particle 𝑓 and bound-
ary particle 𝑏 we compute an SPH number density summation to
approximate contributions 𝐶 towards interfaces to other phases:

𝐶FV
𝑓 = 1 −

∑︁
𝑓𝑓

𝑉 0
𝑓𝑓
𝑊 ST

𝑓 ,𝑓𝑓
−

∑︁
𝑓𝑏

𝑉 0
𝑓𝑏
𝑊 ST

𝑓 ,𝑓𝑏
(8a)

𝐶FF
𝑓 =

∑︁
𝑓𝑓 ∉𝐹

𝑉 0
𝑓𝑓
𝑊 ST

𝑓 ,𝑓𝑓
(8b)

𝐶FB
𝑓 =

∑︁
𝑓𝑏

𝑉 0
𝑓𝑏
𝑊 ST

𝑓 ,𝑓𝑏
(8c)

𝐶BV
𝑏 = 1 −

∑︁
𝑏𝑓

𝑉 0
𝑏𝑓
𝑊 ST
𝑏,𝑏𝑓
−

∑︁
𝑏𝑏

𝑉 0
𝑏𝑏
𝑊 ST
𝑏,𝑏𝑏

(8d)

𝐶BF
𝑏 =

∑︁
𝑏𝑓

𝑉 0
𝑏𝑓
𝑊 ST
𝑏,𝑏𝑓

. (8e)

𝑊 ST denotes the SPH smoothing kernel with a support range ℏST
used for surface tension related SPH interpolations. The sum over
𝑓𝑓 ∉ 𝐹 includes all fluid neighbors of 𝑓 that are not part of the same
fluid phase 𝐹 as 𝑓 . Fluid particles that neighbor a boundary particle
𝑏 are denoted by 𝑏 𝑓 , boundary neighbors of 𝑏 are written as 𝑏𝑏 .
Note that by using number densities, the approximation of interface
contributions𝐶 naturally returns zero if no interface is detected and
approaches one if a particle is completely surrounded by the other
phase. This also holds true for the interface to the vapor phase. We
now want to transform the interface contributions 𝐶 into estimates
of how much actual area𝐴 a particle contributes to an interface. For
this, we need to clamp𝐶 at zero to prevent nonphysical negative area
estimates when𝐶FV becomes smaller than zero inside a compressed
fluid. Additionally, we want 𝐴 to have a vanishing derivative for 𝐶
close to zero in order to be robust against weak noise due to SPH
approximation errors in the estimation of interface contributions
𝐶 inside a fluid body. Thus, instead of simply clamping values of
𝐶 , we perform a clamping using the smoothed maximum function
max𝜖 defined by

max
𝜖
(𝐶, 0) ≡ −𝜖 +

√︃
max (𝐶, 0)2 + 𝜖2 . (9)

Figure 3 shows a plot of max𝜖 and its derivative. In section 5.1
we discuss the effects and an optimal value for 𝜖 in greater detail.
To compute the interface areas 𝐴 of a particle, we now scale the
corresponding softly clamped 𝐶 by some rest area 𝐴0:

𝐴 = 𝐴0max
𝜖
(𝐶, 0) (10)

for all possible interface areas𝐴FV,𝐴FF,𝐴FB,𝐴BV and𝐴BF. Depend-
ing on which interface area 𝐴 is estimated, the generic placeholder
𝐶 is substituted by the respective interface contribution from eq. (8).
In section 5.2 we further discuss the values given to 𝐴0, for the
derivation of forces it suffices to know that all 𝐴0

𝑓
and all 𝐴0

𝑏
are

equal and constant over time.

3.2.1 Surface Force Derivation. Surface tension forces FST (N) act-
ing at a fluid particle 𝑓 are equal to the negative derivative of the
surface tension potential 𝐸 described in eqs. (6) to (10) with respect

𝛾FV

𝛾BV 𝛾FB

𝛾BF

𝛾FF

𝛾FB

𝛾BF
𝛾FB

𝛾BF

𝛾FF

𝛾FV
𝛾FV

Fig. 2. Surface tension parametrization by defining surface energy densities
𝛾 . Surface tension acts towards minimal interface areas scaled by their
respective 𝛾 . In our implementation we allow users to define 𝛾 per fluid for
the fluid-vapor interface (FV), fluid-fluid interfaces (FF) and fluid-boundary
interfaces (FB). Similarly, for each boundary the user can specify the energy
density 𝛾 of boundary-vapor (BV) and boundary-fluid (BF) interfaces. We
sketched the direction of the individual surface tension force components at
three exemplary locations. Note that when using this parametrization, the
forces minimizing fluid-fluid and fluid-boundary interfaces are the result
of a combination of the respective surface tension parameters 𝛾 from both
adjacent phases.
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0.2

0.4
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𝐶

max𝜖 (𝐶, 0)
𝜕
𝜕𝐶 max𝜖 (𝐶, 0)

Fig. 3. The smoothedmaximum functionmax𝜖 (𝐶, 0) and its derivative with
respect to𝐶 for a selection of different values given to 𝜖 . The dark blue curves
are plotted using 𝜖 = 0. In this edge case, max𝜖 (𝐶, 0) equals max (𝐶, 0) for
positive𝐶 . As such, it has a derivative of one with a discontinuity around
zero. The curves displayed in lighter blue and greenish colors use 𝜖 equal
to 0.05, 0.1 and 0.2 respectively. We can see that higher 𝜖 causes stronger
smoothing of max𝜖 (𝐶, 0) and its derivative. While the derivative always
equals zero at𝐶 = 0 as long as 𝜖 > 0, for larger𝐶 the smoothed maximum
function max𝜖 (𝐶, 0) approaches a linear shape with a derivative of one.
Note that later in the text, we introduce the shorthand notation for the
derivative 𝑆 ≡ 𝜕

𝜕𝐶
max𝜖 (𝐶, 0) .
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to particle position x𝑓 :

FST𝑓 = − 𝜕

𝜕x𝑓
𝐸

=
∑︁
𝑓𝑓

(
𝐴0
𝑓𝑉

0
𝑓𝑓
𝛾FV𝑓 𝑆FV𝑓 +𝐴0

𝑓𝑓
𝑉 0
𝑓 𝛾

FV
𝑓𝑓
𝑆FV𝑓𝑓

)
∇𝑊 ST

𝑓 ,𝑓𝑓

+
∑︁
𝑓𝑓 ∉𝐹

(
−𝐴0

𝑓𝑉
0
𝑓𝑓
𝛾FF𝑓 𝑆FF𝑓 −𝐴0

𝑓𝑓
𝑉 0
𝑓 𝛾

FF
𝑓𝑓
𝑆FF𝑓𝑓

)
∇𝑊 ST

𝑓 ,𝑓𝑓

+
∑︁
𝑓𝑏

(
𝐴0
𝑓𝑉

0
𝑓𝑏
𝛾FV𝑓 𝑆FV𝑓 +𝐴0

𝑓𝑏
𝑉 0
𝑓 𝛾

BV
𝑓𝑏

𝑆BV𝑓𝑏

)
∇𝑊 ST

𝑓 ,𝑓𝑏

+
∑︁
𝑓𝑏

(
−𝐴0

𝑓𝑉
0
𝑓𝑏
𝛾FB𝑓 𝑆FB𝑓 −𝐴0

𝑓𝑏
𝑉 0
𝑓 𝛾

BF
𝑓𝑏
𝑆BF𝑓𝑏

)
∇𝑊 ST

𝑓 ,𝑓𝑏
.

(11)

For better readability we introduced the shorthand notation

𝑆 ≡ 𝜕

𝜕𝐶
max
𝜖
(𝐶, 0) = max (𝐶, 0)√

𝐶2 + 𝜖2
. (12)

Constructed from our surface energy potential 𝐸, this purely particle-
based surface tension force naturally conserves momentum exactly,
as shown in appendix C, while only requiring a first order derivative
approximation. Note that compared to pairwise surface tension for-
mulations [Akinci et al. 2013; Becker and Teschner 2007; Jeske et al.
2023], eq. (11) shares the similarly intuitive attractive and repulsive
force components between neighboring particles. However, as a
crucial difference to pairwise approaches, the inclusion of 𝑆 has the
effect that surface tension forces only act between particles that are
part of the interface, not inside the whole fluid body. We further
evaluate the role of 𝑆 in section 6.2 and demonstrate its relevance
for computing physically correct surface tension forces.

3.2.2 Discussion. Existing surface tension models usually neglect
the influence of the boundary-vapor interface tension 𝛾BV at the
fluid-boundary-vapor contact line [Akinci et al. 2013; Becker and
Teschner 2007; He et al. 2015b; Jeske et al. 2023; Morris 2000; Müller
et al. 2003; Wang et al. 2017]. Instead, typically a simple param-
eter is used to scale surface tension forces at the fluid-boundary-
vapor interface, without distinguishing between boundary-vapor
and boundary-fluid tension [Akinci et al. 2013; Becker and Teschner
2007; Jeske et al. 2023; Wang et al. 2017]. As shown in section 6.1.4,
the correct incorporation of 𝛾BV and 𝛾BF into the surface tension
computation allows us to replicate effects such as complete wetting
or hydrophobic droplet behavior with an intuitive parametrization.

Our surface force formulation in eq. (11) assumes that the bound-
ary is sampled with particles. This way, we can easily distinguish
between boundary parts that belong to the boundary-fluid interface
where particles have 𝑆BF close to one and parts of the boundary-
vapor interface where 𝑆BV is approximately one. Alternative bound-
ary descriptions often promise a smoother boundary representation
[Bender et al. 2019; Bodin et al. 2012; Fujisawa and Miura 2015;
Koschier and Bender 2017]. However, to be viable in combination
with our surface tension, these boundary descriptions must be able
to separate parts of the boundary covered by fluid from parts in
contact with the vapor phase. Only then it is possible to define an
interface energy potential equivalent to eq. (7b) and derive surface
tension forces from it.

3.3 Boundary Friction
The last force we want to consider here stems from friction between
fluid and solid boundary. In this section we present the basic formu-
lation of our particle-based Coulomb friction which will be used in
section 4 to build an implicit force computation. The Coulomb law
requires the magnitude of friction forces FF (N) to be smaller than
or equal to the product between the friction coefficient 𝜇 and the
magnitude of a normal force F𝑁 (N) [Bender et al. 2014]:

FF𝑓 ∈ F𝑓 (13a)

F𝑓 ≡
{
F ∈ R3 �� F · F𝑁𝑓 = 0 and |F| ≤ 𝜇𝑓 |F𝑁𝑓 |

}
. (13b)

Similar to the rigid body friction model presented by Probst and
Teschner [2023], as an estimate for the normal force F𝑁

𝑓
we extract

the part of the pressure force described in eq. (4) at fluid particle 𝑓
that is due to the adjacent boundary:

F𝑁𝑓 = −𝑉 0
𝑓

∑︁
𝑓𝑏

𝑉 0
𝑓𝑏
𝑝 𝑓 ∇𝑊

F
𝑓 ,𝑓𝑏

. (14)

Here,𝑊 F denotes the SPH smoothing kernel with a support range
ℏF used for friction related SPH interpolations. F𝑁

𝑓
not only gives us

a good approximation of the boundary normal at fluid particle 𝑓 , it
also encodes the actual normal force employed in our simulation in
the form of pressure forces at 𝑓 . In addition to eq. (13), friction forces
at fluid particles 𝑓 should act in tangential direction to the contacting
boundary. The principle of maximum dissipation constrains the
direction in which friction forces act by [Erleben 2017]

FF𝑓 = argmin
F∈F𝑓

F · vtang
𝑓

(15)

with vtang
𝑓

representing the relative velocity vrel
𝑓

between particle
𝑓 and its adjacent boundary, projected onto the tangential contact
plane. Note that in our case we model isotropic friction, so for
vtang
𝑓

≠ 0, eq. (15) simply states that friction forces should oppose
the relative slidingmotion of a particle 𝑓 with themaximum strength
allowed by the Coulomb constraint. Also inspired by Probst and
Teschner [2023], the tangential component vtang

𝑓
of the relative

velocity vrel
𝑓

is estimated using

vtang
𝑓

=
©«I −

F𝑁
𝑓
F𝑁
𝑓
⊤

|F𝑁
𝑓
|2

ª®¬ vrel𝑓 (16a)

vrel𝑓 =
∑︁
𝑓𝑏

𝑉 0
𝑓𝑏

(
v𝑓 − v𝑓𝑏

)
𝑊 F

𝑓 ,𝑓𝑏
(16b)

with identity matrix I. Here, we used the normal force F𝑁
𝑓
to deter-

mine the boundary normal required to project vrel
𝑓

onto the tangen-
tial contact plane. A simple SPH summation is used to approximate
vrel
𝑓
. We want to point out that while our friction approach shares

similarities with the dry friction model by Probst and Teschner
[2023] concerning basic particle-based approximations of surface
normals and relative velocities, in contrast to Probst and Teschner
[2023] we formulated our friction model in such a way that we
directly solve for friction forces FF instead of abstract friction multi-
pliers. This not only makes our friction optimization problem more
intuitive, we are also no longer required to perform a costly friction
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processing step to transform friction multipliers into actual friction
forces.

4 Solver Implementation
Previously in section 3, the main concepts and formulations for
a particle-based pressure, surface tension and friction force have
been presented. Building on this foundation, we can now evolve
the concepts into an actual simulation method. Inspired by previous
work that unifies the computation of multiple forces into one solving
procedure [Jeske et al. 2023; Liu et al. 2022;Macklin et al. 2014; Probst
and Teschner 2023; Takahashi and Batty 2020; Wang et al. 2020],
in this section we develop an implicit unified solver that is able to
simultaneously compute pressure, surface tension and fluid friction.
We showcase the results of our combined solving mechanism and
compare it to the separated approach in section 6.4.

4.1 Implicit Formulation
When computing forces implicitly, one does not consider the cur-
rent particle-state at time 𝑡 , but instead the predicted state at time
𝑡 + Δ𝑡 with simulation timestep Δ𝑡 . Since particle positions and
velocities at time 𝑡 + Δ𝑡 already depend on the forces computed at
time 𝑡 , a system needs to be solved in order to obtain the unknown
forces. Revisiting the pressure, surface tension and friction force
descriptions in eqs. (2), (11) and (15), an equivalent implicit problem
formulation reads as

0 ≤ 𝑝 𝑓 ⊥ 𝑉 err
𝑓 (𝑡 + Δ𝑡) ≥ 0. (17a)

FST𝑓 = − 𝜕

𝜕x𝑓
𝐸 (𝑡 + Δ𝑡) (17b)

FF𝑓 = argmin
F∈F𝑓

F · vtang
𝑓
(𝑡 + Δ𝑡). (17c)

Here, for the pressure computation we now consider the volume
errors 𝑉 err at the next timestep 𝑡 + Δ𝑡 , for the surface tension force
we consider the surface energy potentials 𝐸 at time 𝑡 +Δ𝑡 just as we
consider the tangential parts of the relative velocities vtang at time
𝑡 +Δ𝑡 for the friction computation. As shown by Erleben [2017] and
Probst and Teschner [2023], all three optimization problems can be
converted into equivalent fixed-point problems [Courtecuisse and
Allard 2009; Schindler et al. 2011]

𝑝 𝑓 = proxP𝑓
(
𝑝 𝑓 −𝜛𝛼P𝑓𝑉 err

𝑓 (𝑡 + Δ𝑡)
)

(18a)

FST𝑓 = FST𝑓 −𝜛𝛼ST𝑓

(
FST𝑓 +

𝜕

𝜕x𝑓
𝐸 (𝑡 + Δ𝑡)

)
(18b)

F∗𝑓 = proxF𝑓
(
−𝛼F𝑓 v

tang
𝑓
(𝑡 + Δ𝑡)

)
FF𝑓 = proxF𝑓

(
FF𝑓 +𝜛F∗𝑓

) (18c)

with P𝑓 being the set of all valid pressure values and F𝑓 the set of
all friction forces allowed by the Coulomb constraint:

P𝑓 ≡
{
𝑝 ∈ R

�� 𝑝 ≥ 0
}

(19)

F𝑓 ≡
{
F ∈ R3 �� F · F𝑁𝑓 = 0 and |F| ≤ 𝜇𝑓 |F𝑁𝑓 |

}
.

((13b) revisited)

The proximal operator proxS (𝑥) ≡ argmin𝑠∈S |𝑠 − 𝑥 | projects its
input 𝑥 onto the nearest point in some given set S. Note that the
pressure projection in eq. (18a) corresponds to the clamping of neg-
ative pressure values employed by IISPH [Ihmsen et al. 2014a]. The
projection into F in eq. (18c) can be implemented with proxF𝑓 (F) =
min(𝜇𝑓 |F𝑁𝑓 |/|F|, 1)F, assuming that input F is already perpendicular
to F𝑁 . To improve the stability of the fixed point iterations, we
follow Probst and Teschner [2023] and split the friction fixed-point
problem into a two-step iteration with intermediate target forces
F∗. A detailed discussion on why this version of the friction update
should be preferred over a one-step formulation is given in Probst
and Teschner [2023].

4.1.1 Step size. Solving the fixed point problem in eq. (18) gives
us the unknown pressure 𝑝 , surface tension forces FST and friction
FF. To do so, we choose strictly positive scalar values for 𝛼P, 𝛼ST
and 𝛼F according to Erleben [2017] and Probst and Teschner [2023],
such that eq. (18) is equivalent to one iteration of a projected relaxed
Jacobi solver. By repeatedly applying eq. (18) we obtain a robust
Jacobi solving procedure that is able to implicitly compute 𝑝 , FST and
FF. Since the basic ideas concerning the update step sizes 𝛼 of Jacobi
iterations are already well explained by e.g. Ihmsen et al. [2014a],
Bender and Koschier [2015], Gissler et al. [2019], Koschier et al.
[2022] and Probst and Teschner [2023], we move the discussion of
optimal values and efficient computation procedures for 𝛼P, 𝛼ST and
𝛼F to appendix A. The relaxation coefficient𝜛 can be used to balance
solver convergence speed and robustness. Following previous work
[Ihmsen et al. 2014a; Koschier et al. 2022], we always use 𝜛 =

0.5. Note that the provided values for 𝛼 and 𝜛 do not guarantee
solver convergence on an analytical level, but instead are based on
experience from earlier publications that demonstrate reliable solver
convergence for a large selection of simulation scenarios [Bender
and Koschier 2015; Erleben 2017; Gissler et al. 2019; Ihmsen et al.
2014a; Koschier et al. 2022; Probst and Teschner 2023; Solenthaler
and Pajarola 2009].

4.2 Unified Forces
Equation (18) gives us a description of the main solver update used
to implicitly compute 𝑝 𝑓 , FST𝑓 and FF

𝑓
for all fluid particles 𝑓 . This

section discusses the required computations necessary to carry out
one update step of unknown 𝑝 , FST and FF as described in eq. (18).
In order to unify the computation of pressure, surface tension and
friction, all forces must be able to already consider the effects of
the other two forces that are computed simultaneously. To achieve
this, after each solver update we estimate new predicted velocities
v𝑓 (𝑡 + Δ𝑡) including pressure forces FP

𝑓
, surface tension forces FST

𝑓
and friction forces FF

𝑓
:

v𝑓 (𝑡 + Δ𝑡) = v𝑓 (𝑡) + Δ𝑡
FP
𝑓
+ FST

𝑓
+ FF

𝑓

𝑚𝑓
(20)

where𝑚𝑓 = 𝑉 0
𝑓
𝜌0
𝑓
is the particle mass and 𝜌0

𝑓
the fluid rest density.

We assume that all explicit forces such as gravity and viscous forces
are already included in v𝑓 (𝑡). Pressure forces FP𝑓 are computed from
the current pressure 𝑝 using eq. (4). With the current predicted
velocities v𝑓 (𝑡 + Δ𝑡) at hand, we can then update the prediction for
𝑉 err
𝑓
(𝑡 + Δ𝑡), − 𝜕

𝜕x𝑓 𝐸 (𝑡 + Δ𝑡) and vtang
𝑓
(𝑡 + Δ𝑡), which are required
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in the next solver update. In the following, we describe the update
step in greater detail.

4.2.1 Pressure. Starting with the volume errors required in the
pressure update (eq. (18a)), we compute

𝑉 err
𝑓 (𝑡 + Δ𝑡)

= 1 −𝑉 0
𝑓

∑︁
𝑓𝑓

𝑊 P
𝑓 ,𝑓𝑓
(𝑡) −𝑉 0

𝑓

∑︁
𝑓𝑏

𝑊 P
𝑓 ,𝑓𝑏
(𝑡)

−𝑉 0
𝑓

∑︁
𝑓𝑓

Δ𝑡
(
v𝑓 (𝑡 + Δ𝑡) − v𝑓𝑓 (𝑡 + Δ𝑡)

)
· ∇𝑊 P

𝑓 ,𝑓𝑓
(𝑡)

−𝑉 0
𝑓

∑︁
𝑓𝑏

Δ𝑡
(
v𝑓 (𝑡 + Δ𝑡) − v𝑓𝑏 (𝑡 + Δ𝑡)

)
· ∇𝑊 P

𝑓 ,𝑓𝑏
(𝑡) .

(21)

Here, we follow Ihmsen et al. [2014a] and employ a linear approxi-
mation of𝑉 err

𝑓
(𝑡 + Δ𝑡) (compare to eq. (3)). The kinematic boundary

is not affected by forces, so we can set v𝑓𝑏 (𝑡 + Δ𝑡) = v𝑓𝑏 (𝑡). Since
v𝑓 (𝑡 + Δ𝑡) contains information about friction and surface tension
forces as well as pressure forces acting at particle 𝑓 , 𝑉 err

𝑓
(𝑡 + Δ𝑡)

not only considers the effects of fluid pressure 𝑝 , but is also directly
influenced by the current guess for FF and FST. This way, the pres-
sure force computation is sensitized to be consistent with friction
and surface tension.

4.2.2 Surface Tension. Similar to the pressure iteration, the surface
tension solver update from eq. (18b) requires an updated estimate
of − 𝜕

𝜕x𝑓 𝐸 (𝑡 + Δ𝑡) based on the current v𝑓 (𝑡 + Δ𝑡). For this, we re-
consider eqs. (8), (11) and (12):

− 𝜕

𝜕x𝑓
𝐸 (𝑡 + Δ𝑡)

=
∑︁
𝑓𝑓

(
𝐴0
𝑓𝑉

0
𝑓𝑓
𝛾FV𝑓 𝑆FV𝑓 (𝑡 + Δ𝑡) +𝐴0

𝑓𝑓
𝑉 0
𝑓 𝛾

FV
𝑓𝑓
𝑆FV𝑓𝑓 (𝑡 + Δ𝑡)

)
∇𝑊 ST

𝑓 ,𝑓𝑓
(𝑡)

+
∑︁
𝑓𝑓 ∉𝐹

(
−𝐴0

𝑓𝑉
0
𝑓𝑓
𝛾FF𝑓 𝑆FF𝑓 (𝑡 + Δ𝑡) −𝐴0

𝑓𝑓
𝑉 0
𝑓 𝛾

FF
𝑓𝑓
𝑆FF𝑓𝑓 (𝑡 + Δ𝑡)

)
∇𝑊 ST

𝑓 ,𝑓𝑓
(𝑡)

+
∑︁
𝑓𝑏

(
𝐴0
𝑓𝑉

0
𝑓𝑏
𝛾FV𝑓 𝑆FV𝑓 (𝑡 + Δ𝑡) +𝐴0

𝑓𝑏
𝑉 0
𝑓 𝛾

BV
𝑓𝑏

𝑆BV𝑓𝑏 (𝑡 + Δ𝑡)
)
∇𝑊 ST

𝑓 ,𝑓𝑏
(𝑡)

+
∑︁
𝑓𝑏

(
−𝐴0

𝑓𝑉
0
𝑓𝑏
𝛾FB𝑓 𝑆FB𝑓 (𝑡 + Δ𝑡) −𝐴0

𝑓𝑏
𝑉 0
𝑓 𝛾

BF
𝑓𝑏
𝑆BF𝑓𝑏 (𝑡 + Δ𝑡)

)
∇𝑊 ST

𝑓 ,𝑓𝑏
(𝑡)

(22)
with

𝑆 (𝑡 + Δ𝑡) = max (𝐶 (𝑡 + Δ𝑡), 0)√︁
𝐶 (𝑡 + Δ𝑡)2 + 𝜖2

(23)

and

𝐶FV
𝑓 (𝑡 + Δ𝑡) = 1 −

∑︁
𝑓𝑓

𝑉 0
𝑓𝑓
𝑊 ST

𝑓 ,𝑓𝑓
(𝑡 + Δ𝑡)

−
∑︁
𝑓𝑏

𝑉 0
𝑓𝑏
𝑊 ST

𝑓 ,𝑓𝑏
(𝑡 + Δ𝑡)

(24a)

𝐶FF
𝑓 (𝑡 + Δ𝑡) =

∑︁
𝑓𝑓 ∉𝐹

𝑉 0
𝑓𝑓
𝑊 ST

𝑓 ,𝑓𝑓
(𝑡 + Δ𝑡) (24b)

𝐶FB
𝑓 (𝑡 + Δ𝑡) =

∑︁
𝑓𝑏

𝑉 0
𝑓𝑏
𝑊 ST

𝑓 ,𝑓𝑏
(𝑡 + Δ𝑡) (24c)

𝐶BV
𝑏 (𝑡 + Δ𝑡) = 1 −

∑︁
𝑏𝑓

𝑉 0
𝑏𝑓
𝑊 ST
𝑏,𝑏𝑓
(𝑡 + Δ𝑡)

−
∑︁
𝑏𝑏

𝑉 0
𝑏𝑏
𝑊 ST
𝑏,𝑏𝑏
(𝑡 + Δ𝑡)

(24d)

𝐶BF
𝑏 (𝑡 + Δ𝑡) =

∑︁
𝑏𝑓

𝑉 0
𝑏𝑓
𝑊 ST
𝑏,𝑏𝑓
(𝑡 + Δ𝑡). (24e)

Since

𝑊 ST
𝑖, 𝑗 (𝑡 + Δ𝑡) ≡𝑊

(
x𝑖 (𝑡) + Δ𝑡v𝑖 (𝑡 + Δ𝑡)

−x𝑗 (𝑡) − Δ𝑡v𝑗 (𝑡 + Δ𝑡), ℏST
)
,

(25)

we can see that − 𝜕
𝜕x𝑓 𝐸 (𝑡 + Δ𝑡) depends on v(𝑡 + Δ𝑡) and as such the

surface tension computation procedure directly takes into considera-
tion what effects the simultaneously computed pressure and friction
forces have on fluid particles. Note that in contrast to the linear
expansion of𝑊 employed by IISPH and shown in eq. (21) [Ihmsen
et al. 2014a], to improve the estimation accuracy of 𝐶 (𝑡 + Δ𝑡), in
eq. (24) we directly plug in the newly predicted positions x(𝑡 + Δ𝑡)
in the kernel function𝑊 ST.

4.2.3 Friction. Friction at particles 𝑓 is calculated dependent on the
predicted tangential relative velocity to the boundary vtang

𝑓
(𝑡 + Δ𝑡).

We can easily incorporate current pressure and surface tension
forces in the friction solving process by using v𝑓 (𝑡 + Δ𝑡) in the
estimation of vtang

𝑓
(𝑡 + Δ𝑡) as shown in eq. (16):

vtang
𝑓
(𝑡 + Δ𝑡) = ©«I −

F𝑁
𝑓
F𝑁
𝑓
⊤

|F𝑁
𝑓
|2

ª®¬ vrel𝑓 (𝑡 + Δ𝑡) (26a)

vrel𝑓 (𝑡 + Δ𝑡) =
∑︁
𝑓𝑏

𝑉 0
𝑓𝑏

(
v𝑓 (𝑡 + Δ𝑡) − v𝑓𝑏 (𝑡 + Δ𝑡)

)
𝑊 F

𝑓 ,𝑓𝑏
(𝑡) . (26b)

Note that while F𝑁
𝑓
changes in magnitude during the solving pro-

cedure, and as such the set of allowed friction forces F𝑓 defined in
eq. (13b) also varies, looking at eq. (14) it is clear that the direction
of F𝑁

𝑓
, which is the only thing relevant for the velocity projection,

stays constant. This way we end up with the desired property that
only the magnitude of F𝑁

𝑓
depends on 𝑝 𝑓 , but the normal direction is

purely defined by the geometry of neighboring boundary particles.

4.3 Jacobi Solver
Here, to present a better overview of the whole force computation
procedure, we want to give a short summary of a basic Jacobi solver
that can be used to find solutions to eq. (18). An illustration of the
individual solver steps is shown in algorithm 1. After first initializing
the unknown pressure 𝑝 and forces FST and FF with zero similar
to other pressure solvers [Bridson 2008], we enter the main solver
loop. Each solver iteration starts by computing pressure forces FP
from 𝑝 since they are required to estimate v(𝑡 + Δ𝑡). Normal forces
F𝑁 are also recalculated using the current 𝑝 , since we need them
later on during the Jacobi update step of friction forces FF (line 21).
With the current predicted velocities v(𝑡 + Δ𝑡) at hand, we can
then update 𝑆FV

𝑓
(𝑡 + Δ𝑡), 𝑆FF

𝑓
(𝑡 + Δ𝑡) and 𝑆FB

𝑓
(𝑡 + Δ𝑡) for all fluid

particles 𝑓 , as well as 𝑆BV
𝑏
(𝑡 + Δ𝑡) and 𝑆BF

𝑏
(𝑡 + Δ𝑡) for boundary

particles 𝑏. For the last step, we compute current predicted volume
errors 𝑉 err (𝑡 + Δ𝑡), surface energy derivatives − 𝜕

𝜕x𝐸 (𝑡 + Δ𝑡) and
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tangential relative velocities v tang (𝑡 + Δ𝑡), which are then used in
the actual Jacobi update step, as described in eq. (18), in order to
obtain the updated guesses for pressure 𝑝 , surface tension FST and
friction FF.

1 p← 0
2 FST ← 0
3 FF ← 0
4 while not converged do
5 p, FST, FF← Jacobi (p, FST, FF)

6 Function Jacobi (p, FST, FF):
7 foreach fluid particle 𝑓 do
8 Compute FP

𝑓
⊲ eq. (4)

9 Compute F𝑁
𝑓

⊲ eq. (14)
10 Compute v𝑓 (𝑡 + Δ𝑡) ⊲ eq. (20)
11 foreach fluid particle 𝑓 do
12 Compute all 𝑆𝑓 (𝑡 + Δ𝑡) ⊲ eqs. (23) and (24)
13 foreach boundary particle 𝑏 do
14 Compute all 𝑆𝑏 (𝑡 + Δ𝑡) ⊲ eqs. (23) and (24)
15 foreach fluid particle 𝑓 do
16 Compute 𝑉 err

𝑓
(𝑡 + Δ𝑡) ⊲ eq. (21)

17 Compute − 𝜕
𝜕x𝑓 𝐸 (𝑡 + Δ𝑡) ⊲ eq. (22)

18 Compute vtang
𝑓
(𝑡 + Δ𝑡) ⊲ eq. (26)

19 Update 𝑝 𝑓 ⊲ eqs. (18a) and (19)
20 Update FST

𝑓
⊲ eq. (18b)

21 Update FF
𝑓

⊲ eqs. (13b) and (18c)

22 return p, FST, FF

Algorithm 1: The projected relaxed Jacobi solver loop to si-
multaneously solve for all pressures p, surface tension FST and
friction forces FF. The function Jacobi performs one Jacobi iter-
ation. As such, it is the basic building block of the Jacobi solver
presented here. Note that in line 12, 𝑆𝑓 (𝑡 + Δ𝑡) is computed for
the fluid-vapor (FV), fluid-fluid (FF) and fluid-boundary (FB)
interface. Similarly, in line 14, 𝑆𝑏 (𝑡 + Δ𝑡) is computed for both
the boundary-vapor (BV) and the boundary-fluid (BF) interface.

4.3.1 Convergence criterion. The Jacobi solver described in algo-
rithm 1 iterates until a user defined convergence criterion is reached.
In order to ensure that values for pressure, surface tension and fric-
tion forces have converged to a satisfying degree, we propose to
take into account the averaged residual errors of all forces:

0.1 % · num. fluid particles ≥
∑︁
𝑓

max
(
0,−𝑉 err

𝑓

)
+
∑︁
𝑓

|FST𝑓 +
𝜕

𝜕x𝑓
𝐸 (𝑡 + Δ𝑡) |

+
∑︁
𝑓

|FF𝑓 − proxF𝑓
(
FF𝑓 + F∗𝑓

)
|.

(27)

The clamped contributions of volume errors 𝑉 err and the threshold
of 0.1 % are inspired by Ihmsen et al. [2014a].

4.4 NNCG
The solver described in this section is able to robustly compute
unknown pressure, surface tension and friction. However, Jacobi
solvers are well known for their slow convergence speed. In order
to improve convergence behavior, Silcowitz-Hansen et al. [2010]
proposed a nonsmooth nonlinear conjugate gradient (NNCG) method
that acts on top of Jacobi iterates such as the one described in al-
gorithm 1. Both, Erleben [2017] and Probst and Teschner [2023]
suggest that significant speedups can be achieved this way compared
to basic Gauss-Seidel and Jacobi solvers. Motivated by their recom-
mendation, in appendix B we describe how the NNCG algorithm
can be used to accelerate our solving procedure.

5 Calibration
We use this section to discuss remaining details concerning values
given to parameters. Section 5.1 discusses the effects of surface
tension kernel support ℏ and the interface smoothing coefficient
𝜖 onto the surface detection. Next, in Section 5.2 we analyze the
necessity to define rest areas 𝐴0 that scale the estimated interface
areas 𝐴 and as such influence the strength of surface tension forces.

5.1 Interface Detection
Our surface force computation as shown in eq. (11) heavily relies
on the estimation of 𝑆 as it governs how strong particles attract and
repulse each other due to surface tension forces. In contrast to the
pairwise model [Akinci et al. 2013; Becker and Teschner 2007; Jeske
et al. 2023], this allows us to distinguish between particles at the
interface to other phases and particles inside a fluid body, which
in turn makes it possible for us to formulate physically meaningful
surface tension forces that only act at the actual interface. The
estimation of 𝑆 is a two-step process:

5.1.1 Surface Tension Kernel Support. First, for all particles 𝑓 and
interfaces we estimate how much 𝑓 contributes to the respective
interface using eq. (8). Here, the relation between the employed
kernel support radius in the pressure solver that ensures incom-
pressibility and the kernel radius used in the approximation of the
interface contributions 𝐶𝑓 is important to consider. As fig. 4 shows,
the surface tension kernel radius must be larger than the radius used
in the pressure solver in order to reliably detect surface particles.
Otherwise, we can see in fig. 4a that for equal kernel support radii,
the number density estimation from eq. (8) would return one for
particles at the surface, which is indistinguishable from particles
inside the fluid body. Following Ihmsen et al. [2014a], in all our sim-
ulations we use kernel radius ℏ = 2ℎ with particle spacing ℎ inside
SPH approximations that are part of the pressure solver (eqs. (4)
and (21)). Thus, for a robust detection of surface particles, we found
that using a kernel radius of at least 3ℎ is recommended. Any radius
larger than 3ℎ is still suitable to detect surface particles as shown in
fig. 4d, but a larger number of particles is considered part of the sur-
face, smoothing the otherwise sharply defined interface. Even more
important, increasing the kernel support to values above 3ℎ severely
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(a) ℏST = 2ℎ (b) ℏST = 2.5ℎ (c) ℏST = 3ℎ (d) ℏST = 4ℎ

Fig. 4. A cutaway view onto a fluid droplet. We visualize the magnitude of
detected surface contributions𝐶 depending on the surface tension kernel
support radius ℏST. White particles have small𝐶 , red particles have larger𝐶 .
In this example, the volume and pressure computation use a kernel support
radius of 2ℎ with particle spacing ℎ. We can see that in order for the surface
detection to work, a kernel support larger than the one used for the volume
estimation is required. Otherwise, surface particles are not able to detect
being part of the surface since the estimated number density used in the
surface detection (compare eq. (8)) is close or equal to one. The surface
detection is already working quite well when using ℏST = 2.5ℎ for the
surface tension kernel, except for light noise in the estimation of𝐶 at the
surface and inside the fluid body. In our experiments we found that using
both ℏST = 3ℎ or ℏST = 4ℎ results in a robust and reliable detection of surface
particles. To keep the required computational effort to a minimum, in all
our simulations we chose ℏST = 3ℎ as the surface tension kernel support
radius.

impacts simulation performance as neighborhood list sizes grow cu-
bically with kernel support ℏ. We want to point out that in contrast
to Akinci et al. [2013] and Jeske et al. [2023], our surface tension
computation does not rely on highly-specialized kernel functions
that were specifically designed to prevent particle clustering. All
our simulations were carried out using the default cubic spline ker-
nel function [Monaghan 1992] for SPH interpolations and gradient
approximations. Additionally, our surface tension formulation does
not require any modifications to the pressure computation such as
employed in He et al. [2015b] to counteract tensile instability.

5.1.2 Interface Smoothing. With the estimated surface contribu-
tions 𝐶 for all fluid and boundary particles and for all respective
interfaces at hand, we use eq. (12) to calculate 𝑆 . As we can see in
fig. 3, the parameter 𝜖 has great influence on how fast 𝑆 approaches
one with growing 𝐶 . Since 𝑆 is used in eq. (11) to compute surface
tension forces, 𝜖 governs how easily a particle is considered to be
part of the interface depending on its respective interface contribu-
tion𝐶 . Figure 5 visualizes this effect. For high smoothing strength 𝜖
such as in fig. 5a, particles require a large estimation of 𝐶 in order
to exert relevant surface tension forces. At the same time however,
light noise in the estimation of interface contributions at particles
inside the fluid body resulting in 𝐶 > 0 is smoothed away and does
not cause unwanted surface tension forces. In contrast, as displayed
in fig. 5c, smaller values for 𝜖 allow interface particles to exert ad-
equate surface tension, but small values of 𝐶 due to noise in the
SPH estimation could already be enough to consider the particle as
part of an interface, giving rise to unwanted tension forces inside
the fluid body. In our tests we found that using 𝜖 = 0.05 reliably
eliminates noise inside the fluid body while resulting in reasonable
forces at the fluid interface. As a comparison, in fig. 5d 𝑆 is set to
one for all fluid particles, equivalent to the pairwise surface tension

(a) 𝜖 = 0.5 (b) 𝜖 = 0.05 (c) 𝜖 = 0.01 (d) pairwise

Fig. 5. A cutaway view onto a fluid droplet to demonstrate the effect of
the interface smoothing strength 𝜖 . We color the magnitude of 𝑆FV

𝑓
which

represents how strong the surface tension forces are pulling neighboring
particles towards particle 𝑓 . White particles 𝑓 have 𝑆FV

𝑓
= 0, cyan particles

have 𝑆FV
𝑓

= 1. We can see that for 𝜖 = 0.5, the magnitude of 𝑆FV
𝑓

of particles
at the free surface is barely greater than zero. For 𝜖 = 0.05we get the desired
result, surface particles are reliably detected while particles inside the fluid
body have 𝑆FV

𝑓
close to zero. For 𝜖 = 0.01 the interface detection is too

sensitive, small deviations from rest density inside the fluid are interpreted
as an interface causing unwanted surface tension forces inside the fluid
body. As a reference, fig. 5d illustrates that in the pairwise surface tension
model all particles, including the ones inside the fluid body, are pulling onto
each other. This is equivalent to setting 𝑆FV

𝑓
= 1 for all fluid particles 𝑓 , and

gives rise to nonphysical surface forces inside the fluid body.

model where all neighboring particles are attracting each other,
independent of whether they are part of an interface or not. Follow-
ing eq. (11), this causes surface tension forces inside the fluid body
which, as we will demonstrate in section 6.2, lead to nonphysical
behavior of the droplet.

5.2 Rest Areas
Given the information from section 5.1, we know how to reliably
detect particles belonging to an interface between different phases in
the simulation. However, as illustrated in figs. 4 and 5, the sharpness
and thickness of the interface can be defined with some degrees
of freedom. Kernel support ℏST and smoothing strength 𝜖 both
influence the estimated values for 𝑆 and as such have direct impact
on the magnitude of computed surface tension forces. Fortunately,
given a configuration of the parameters ℏST and 𝜖 , it is easy to
renormalize forces such that our simulated surface tension remains
physically consistent. For this, rest areas 𝐴0 introduced in eq. (10)
are defined in such a way that spherical fluid droplets experience
the right amount of surface tension. One can think of 𝐴0 as the
interface area a particle spans when it is completely surrounded by
another phase. Since the interface area is directly proportional to
the interface energy, with 𝐴0 we can scale the maximum amount of
interface energy a single particle can cause. We recommend using
a kernel support radii ℏP and ℏF equal to 2ℎ for the friction and
pressure computation, ℏST = 3ℎ for surface tension and 𝜖 = 0.05.
With this configuration, we performed a calibration of 𝐴0 through
measurements of surface tension strength in a simulation and found
that choosing 𝐴0 = 𝜋

4 ℎ
2 results in the correct amount of surface

tension for all curvatures in three dimensions. By adopting this value
for𝐴0, we define that a single particle surrounded by another phase
spans a surface area equivalent to a sphere with radius ℎ

4 . For a two-
dimensional setting we recommend using 𝐴0 = 1

7ℎ. Note that while
𝐴0 indeed should be reevaluated when ℏ or 𝜖 are altered, the process
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of doing so is rather simple: one measures the average pressure
inside a spherical droplet and compares it to the analytical pressure
as shown in section 6.2. Rest areas 𝐴0 are then scaled according
to the relation between measured and expected pressure. We also
like to mention that our recommended parameter configuration
works well for all scenarios displayed in section 6, which is why we
speculate that there is actually rarely a need to reevaluate 𝐴0.

6 Results
In this section, we want to demonstrate the validity, correctness and
versatility of our solver and the forces calculated by it. In section 6.1,
we start with some well-known scenarios that have been repeat-
edly shown in earlier work to visualize the effects of surface tension.
Next, in section 6.2 we analyze the strength of surface tension forces
resulting from different surface tension formulations and compare
them with analytic results. In section 6.3, we present scenarios that
showcase our new fluid friction formulation. In order to indicate
that a unified force computation has advantages over separated ap-
proaches, in section 6.4 we compare different solver set-ups. Solver
performance is evaluated in section 6.5. Last, section 6.6 displays a
selection of simulation scenarios that outline the capabilities of our
proposed simulation method.

6.1 Visual Evaluation
Previous works on particle-based surface tension formulations [Ak-
inci et al. 2013; Becker and Teschner 2007; He et al. 2015b; Hyde
et al. 2020; Jeske et al. 2023; Yang et al. 2016, 2017] often use similar
scenarios to show that their methods produce plausible surface ten-
sion effects. Here, we display simulation results of some of those
basic scenarios using our solver.

6.1.1 Crown, Chain, Bell and Sphere. Starting with a water crown,
fig. 6 shows that our surface tension can handle thin sheets of
fluid and produces the expected secondary upward splash due to
water refilling the gap caused by the initial impact of the droplet
on the fluid surface. Inspired by Jeske et al. [2023], we also present
a water chain and a water bell in figs. 7 and 8. In both scenarios,
the colliding water jets first broaden the surface of the fluid stream.
Surface tension forces act towards a minimal surface area. As such,
they pull the fluid stream back together. In fig. 7, the oscillating
stream thickness loosely resembles the outline of a chain. Another
well known test setting consists of a water jet colliding with a sphere
as shown in fig. 9. With strong enough surface tension forces, the
fluid is able to flow around the sphere and merges into a single
stream below. Note that after the fluid stream stops, droplets are
able to stick to the sphere even at inclined surfaces due to our fluid-
solid friction force. In all scenarios, we use the viscosity formulation
proposed by Weiler et al. [2018].

6.1.2 Two Dimensions. Our surface tension formulation can be
directly employed in two-dimensional settings. To demonstrate this,
we simulate a two-dimensional Rayleigh instability with low and
high interface tension𝛾FF. The results are visualized in fig. 10. As we
can see in fig. 10b, compared to low 𝛾FF, the high interface tension
forces are able to notably minimize the fluid-fluid contact areas,
causing much smoother interfaces with less detail.

Fig. 6. A droplet falls into water, the splashes form a water crown. Our
surface tension is able to replicate the thin water sheets at the side of the
crown. The fluid body has a diameter of 0.08m and 𝛾FV = 0.01Nm−1.

Fig. 7. A water chain is forming due to two water jets colliding midair. We
chose 𝛾FV = 0.25Nm−1, the distance between source and sink is 5m.

Fig. 8. Two vertical water jets are colliding. Due to surface tension, the
water that was initially pushed outwards is pulled together until it merges
into a single water stream. The fluid has 𝛾FV = 0.16Nm−1, the distance
between fluid collision and sink is 2m.

ACM Trans. Graph., Vol. 44, No. 1, Article 7. Publication date: December 2024.



Unified Pressure, Surface Tension and Friction for SPH Fluids • 7:13

Fig. 9. A water stream hits a sphere. Due to surface tension forces, the
water stream is able to flow around the sphere and merge below. Note that
after we stop the stream, droplets are able to stick to the sphere at sloped
surfaces due to our friction force. The sphere has a diameter of 0.2m and
we set 𝛾 = 0.35Nm−1.

(a) low 𝛾FF

(b) high 𝛾FF

Fig. 10. Rayleigh-Taylor instability of three fluids as an exemplary two-
dimensional fluid simulation including surface tension. With low surface
tension the fluids easily mix as we can see in fig. 10a. Due to higher surface
tension, the fluid interface shapes in fig. 10b are much smoother.

6.1.3 Capillary Action. Less often shown in existing work, even
though its cause can be attributed to surface tension, is capillary
action. If the surface energy density at the solid-vapor interface
𝛾BV is bigger than the surface energy density at the solid-fluid
interface 𝛾BF, fluid is pulled into narrow spaces due to the surface
tension pushing towards an energetically more favorable state. The
thinner the gap, the higher the distance the fluid can travel until
gravitational forces balance surface tension forces. As we can see in
fig. 11, our surface tension formulation is able to replicate this effect.
Fluid pillars rise in the capillaries, and we observe higher pillars the

(a) Capillary rise

(b) fluid-vapor interface (c) fluid-boundary interface

Fig. 11. Fluid rises upwards in 0.15m high capillaries due to a boundary-
vapor surface energy density 𝛾BV = 0.04Nm−1 that is larger than the
boundary-fluid surface energy density 𝛾BF = 0Nm−1. The fluid pillars grow
until gravitational forces match the boundary surface tension forces. In
capillaries with smaller radius, this allows the fluid to rise higher compared
to fluid in thicker capillaries. Figure 11b displays the underlying particle
representation and the fluid-vapor interface detection. Particles colored in
cyan have 𝑆FV close to one and as such exert fluid-vapor surface tension
forces onto neighboring particles, particles in white have small𝑆FV. Similarly,
fig. 11c visualizes the fluid-boundary interface detection. Here, particles
colored yellow have 𝑆FB close to one. Note that particles at the edge between
fluid, boundary and vapor can be part of the fluid-vapor and the fluid-
boundary interface simultaneously.

thinner the capillaries are. Additionally, we want to mention that in
this scenario the parametrization of our surface tension formulation
is intuitive and values for 𝛾BV, 𝛾BF and 𝛾FV can be directly looked
up in literature (e.g. Speight [2017]). This is in contrast to many
other approaches where surface tension parametrization has either
no direct relation to actual physical forces [Akinci et al. 2013; Becker
and Teschner 2007; Jeske et al. 2023], or parameters must be newly
translated for each simulation setting to achieve the desired forces
[He et al. 2015b]. We discuss this further in section 6.2.

6.1.4 Parametrization. To get a better feeling for the surface ten-
sion parameters 𝛾FV, 𝛾FF, 𝛾FB, 𝛾BV, 𝛾BF, we present two scenarios
where we focus on the individual effects of some selected parameter
configurations. Four tumbling boards are displayed in fig. 12. At
the very top of each board, droplets are spawned whereby each
droplet is considered as an individual fluid. The blue fluid droplets
in the left board are given no surface tension at all. As such, they
are able to merge into each other and splash when hitting an ob-
stacle on their way downwards. The green droplets have a positive
fluid-vapor surface energy density 𝛾FV. As such, surface tension
tries to minimize the fluid-vapor interface area. This causes the
droplets to stick to each other and to the boundary. For the third
configuration, we now also increase the fluid-boundary interface
energy density 𝛾FB. The orange droplets are still minimizing their
fluid-vapor surface because of 𝛾FV > 0, but they no longer stick to
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the boundary since creating fluid-boundary interfaces now requires
some potential energy too. The red droplets are additionally given a
non-zero fluid-fluid interface energy density 𝛾FF. This way, droplets
do not merge anymore since surface tension forces work against
the formation of fluid-fluid interfaces. Each droplet now tries to
minimize its own surface due to 𝛾FV, but without creating interfaces
to other fluids and the boundary. We can see that our surface tension
parametrization is able to produce vastly different fluid behavior
while still being quite intuitive to use.

Next, we take a closer look at the two remaining parameters 𝛾BV
and 𝛾BF. A droplet resting on a solid creates some contact angle 𝜃
between the solid surface and the fluid surface. The Young equation
relates 𝜃 to surface energy densities 𝛾FV, 𝛾BV and 𝛾BF with [Young
1805]

cos𝜃 =
𝛾BV − 𝛾BF

𝛾FV
. (28)

Figure 13 visualizes the droplet shape for three different parameter
configurations. In all configurations we have 𝛾FV > 0 so that the
fluid behaves like an actual droplet which tends to reduce its free sur-
face area. For the first parameter setting, we choose 𝛾FV = 𝛾BF > 0
and 𝛾BV = 0. In this case, spanning a fluid-vapor surface costs
as much energy as a boundary-fluid interface, so surface tension
forces minimize the sum of fluid-vapor and boundary-fluid interface
area. As a result, the droplet forms a sphere that rests on the solid
with contact angle 𝜃 approaching 180◦, as predicted by the Young
equation. In the second setting, the boundary-fluid interface en-
ergy density 𝛾BF is reduced to zero. Forming a fluid-solid interface
now costs no energy causing the surface tension forces to minimize
the fluid-vapor interface area only. The Young equation predicts a
contact angle of 90◦, which is in good accordance to the observed
simulation result in fig. 13b. As the last configuration, we now in-
crease the boundary-vapor surface energy density 𝛾BV to a value
slightly bigger than 𝛾FV. Surface tension forces push to minimize
the boundary-vapor surface area and since 𝛾BV > 𝛾FV this force
component is stronger than the forces trying to minimize the fluid-
vapor interface area. In fig. 13c we can see that our surface tension
formulation is able to replicate the expected complete wetting of a
surface up until the fluid sheet is only one particle thick. In the last
two figs. 13d and 13e we reverse the parameter changes. However,
due to our employed friction forces, the droplet is not able to pull it-
self together in one piece. Instead, it breaks up into smaller droplets
which each on their own exhibit the expected contact angles. Ex-
isting surface tension and adhesion approaches often neglect the
distinction between boundary-fluid and boundary-vapor interfaces
[Akinci et al. 2013; Becker and Teschner 2007; He et al. 2015b; Jeske
et al. 2023; Morris 2000; Müller et al. 2003; Wang et al. 2017]. This
way, they are not able to define droplet behavior at the boundary
through a physically meaningful parametrization of 𝛾BF and 𝛾BV as
we do in fig. 13.

6.2 Analytical Evaluation
In the previous section we validated our experiments by eyeballing
the results and decided that they match the expected outcome. Now,
we want to measure the strength of surface tension forces depending
on the curvature of a droplet. Goal is to demonstrate that our surface

(a) 𝛾FV = 0

𝛾FF = 0

𝛾FB = 0

(b) 𝛾FV > 0

𝛾FF = 0

𝛾FB = 0

(c) 𝛾FV > 0

𝛾FF = 0

𝛾FB > 0

(d) 𝛾FV > 0

𝛾FF > 0

𝛾FB > 0

Fig. 12. Droplets tumble down a board with obstacles. To demonstrate
the versatility of fluid behavior that is possible with our surface tension
formulation, we simulate four different parameter settings. On the left,
fluid-vapor surface energy density 𝛾FV, fluid-fluid interface energy density
𝛾FF and fluid-boundary interface energy density 𝛾FB are set equal to zero.
The result is a homogeneous fluid that shows no surface tension effects.
Second from left, we increase 𝛾FV while 𝛾FF and 𝛾FB remain zero. Thus, the
droplets tend to minimize their free surface by merging with each other
and sticking to the boundary. For the third configuration, we now also
increase 𝛾FB so that 𝛾FF is the only interface energy density that remains
zero. We can see that droplets still merge with each other, but due to the
increased energy density at the fluid-boundary interface, droplets no longer
stick to the boundary. In the rightmost configuration, to prevent droplets
from merging with each other, we increase 𝛾FF. Individual droplets now
bounce off each other since fluid-fluid interfaces hold potential energy. The
tumbling board model was created by iolalla.

tension solver produces the right amount of surface tension for all
curvatures. We compare our formulation to a pairwise approach as
employed in Tartakovsky and Meakin [2005], Becker and Teschner
[2007], Jeske et al. [2023], and Yang et al. [2016, 2017] and the robust
CSF formulation proposed by He et al. [2015b]. Similar to Huber
et al. [2015], we do not consider the additional air pressure, two
scale pressure estimation and anisotropic pressure filtering that was
also introduced in He et al. [2015b]. Instead, we found that using
a kernel support radius of 3ℎ alleviates any problems concerning
tensile instability. Since surface tension coefficients are not directly
comparable between existing surface tension formulations [Akinci
et al. 2013; He et al. 2015b; Huber et al. 2015; Jeske et al. 2023], for the
pairwise surface tension model and the robust CSF formulation we
chose the coefficients such that they match the desired result best. In
this experiment, we measure the average pressure inside a spherical
droplet. The theoretical relation between surface tension 𝛾FV and
pressure 𝑝 derived from the Young-Laplace equation [Gennes et al.
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(a) 𝛾FV > 0

𝛾BV = 0

𝛾BF > 0

(b) 𝛾FV > 0

𝛾BV = 0

𝛾BF = 0

(c) 𝛾FV > 0

𝛾BV > 0

𝛾BF = 0

(d) 𝛾FV > 0

𝛾BV = 0

𝛾BF = 0

(e) 𝛾FV > 0

𝛾BV = 0

𝛾BF > 0

Fig. 13. The contact angles between a fluid droplet and the boundary de-
pends on the surface energy density parameter configuration. We start this
scenario with a hydrophobic surface that has a boundary-fluid interface
energy density 𝛾BF much higher than the boundary-vapor interface en-
ergy density 𝛾BV. In this configuration the droplet tends to minimize the
boundary-fluid interface area, resulting in the desired hydrophobic material
behavior. Next, in fig. 13b we equalize 𝛾BF and 𝛾BV. The droplet can now
freely minimize its free surface, and as such develops a half-spherical shape.
In fig. 13c we increase 𝛾BV to a value bigger than 𝛾FV. Now, a complete
wetting of the surface is the energetically most favorable state. Our surface
tension formulation is able to replicate the wetting by deforming the droplet
into a fluid sheet with a thickness of a single particle. We then reverse the
parameter configuration by setting 𝛾BV back to zero. Same as in fig. 13b, in
fig. 13d the droplet minimizes its free surface. However, due to friction forces
the thin fluid sheet is not able to contract into one droplet, but instead
breaks apart into multiple smaller ones. Last, fig. 13e shows the smaller
droplets resting on the original hydrophobic surface material.

2004] is given by

𝑝 = 2𝛾
FV

𝑟
(29)

with droplet radius 𝑟 . As we see, the smaller 𝑟 is, the larger the pres-
sure 𝑝 inside the droplet. In fig. 14, the measured average pressure
is plotted for a range of droplet radii 𝑟 . We can see that the pairwise
approach causes an average pressure inside the fluid droplets that is
approximately constant for all radii 𝑟 . For small droplets consisting
out of very few particles, the surface tension forces even reduce in
magnitude. We suspect that this is caused by insufficiently filled
particle neighborhoods. For a constant particle size as shown in
fig. 14a and an appropriate parameter setting, our implementation
of robust CSF [He et al. 2015b] is able to match the expected pressure
quite well. However, when the droplet radius is changed by varying
the particle size as done in fig. 14b, the surface tension parameter
employed in robust CSF [He et al. 2015b] needs to be reevaluated
for each particle resolution. Otherwise, surface tension forces scale

incorrectly. We want to mention that He et al. [2015b] seem to be
aware of this as they titled their parameter that scales surface ten-
sion forces a squared gradient energy coefficient with unit N instead
of the commonly used [𝛾] = Nm−1 = J m−2. In both constellations,
our surface tension formulation matches the desired pressure. Only
for small droplets made out of few particles, in fig. 14a we observe a
slight underestimation of surface tension forces. We believe this is
caused by an insufficient number of neighboring particles, similar
to the pairwise approach.

6.2.1 Visual Example. Even though pairwise approaches do not
scale surface tension forces correctly, earlier work shows that they
usually can produce visually satisfying and expected surface tension
effects [Akinci et al. 2013; Huber et al. 2015; Jeske et al. 2023; Tar-
takovsky and Meakin 2005; Yang et al. 2016, 2017]. Here, we want
to give a counterexample to demonstrate a case where pairwise
surface tension simulations produce a different result compared to
a surface tension force that correctly scale with curvature. For this,
we consider two droplets of different sizes which are connected
through a thin tube. Due to the pressure difference in the droplets,
the smaller droplet should merge into the bigger one. As we can see
in fig. 15, our surface tension formulation can replicate this dynamic
while the pairwise approach struggles to.

6.3 Friction
Our friction formulation at the fluid-boundary interface allows us
to simulate droplets resting on inclined surfaces. As a first proof of
concept, in fig. 16 we show a range of droplets resting on sloped
planes. Over time, we reduce the coefficient of friction 𝜇, causing the
droplets to roll downwards. As one would expect, bigger droplets
and steeper slopes require larger 𝜇 to allow the droplet to stick to
the boundary.

6.3.1 Window. To point up the effects of our friction force on the
behavior of fluids in a more practical scenario, we simulate rain
falling onto a window. As fig. 17 depicts, without friction forces, the
small droplets simply slide down the window pane. When including
friction forces, the droplets stick to the pane, allowing them to
accumulate into bigger droplet. After reaching a critical mass, larger
droplets are able to roll down the window. We can also observe that
friction causes droplets to leave wet trails behind them, which mark
preferred paths for other droplets to roll down the pane.

6.4 Unified Solver
In section 4we repeatedly emphasized that in our simulationmethod
pressure, friction and surface tension forces are solved in a unified
manner such that they can be consistent with each other. Otherwise,
constraints enforced by one solver, such as incompressibility or
correct surface tension, may be violated by another solver [Zhang
et al. 2012]. The benefits of a combined pressure and friction compu-
tation are already discussed in Probst and Teschner [2023]. For us,
it is more interesting to analyze the interplay between the pressure
and surface tension solver as pressure and surface tension forces
counteract each other to a large degree. In fig. 18 we simulate a
droplet under gravity that lies on a flat surface. Figures 18a and 18b
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Fig. 14. The average pressure inside a spherical droplet with 𝛾FV =

0.072Nm−1 depending on its radius. Pressure counteracts the surface ten-
sion forces acting at the droplet and as such can be used as a measuring
tool for the surface tension strength. The black line represents the expected
pressure 𝑝 = 2𝛾FV/𝑟 with droplet radius 𝑟 . Smaller droplets have a higher
average pressure than larger droplets. As we can see, pairwise surface ten-
sion formulations such as employed in Becker and Teschner [2007], Akinci
et al. [2013] and Jeske et al. [2023] fail to capture this property, average
pressure is approximately constant for all 𝑟 . Additionally, as demonstrated
in fig. 14a, for droplets made out of few particles only, the pairwise approach
can suffer from missing particle neighbor contributions causing weaker sur-
face tension forces. For a constant particle size (fig. 14a) and an appropriate
parameter setting, our implementation of robust CSF [He et al. 2015b] is
able to match the analytic pressure inside the droplets quite well for all
radii 𝑟 . However, when varying particle size (fig. 14b), the surface tension
parametrization needs to be adapted to each particle resolution, otherwise
surface tension forces scale incorrectly with droplet radius 𝑟 as we can see
in fig. 14b. Our surface tension formulation matches the desired pressure
in both constellations. Only for small droplets consisting out of very few
particles, in fig. 14a we observe a slight underestimation of surface tension
forces. Similar to the pairwise approach, we suspect that this is caused by
an insufficient number of neighboring particles.

(a) pairwise (b) ours

Fig. 15. Two droplets of different sizes are connected after the valve wheel is
turned open. Due to higher internal pressure, the smaller droplet is expected
to merge into the larger one. However, independent of surface curvature,
pairwise surface tension approaches produce equal pressure in both droplets,
as already illustrated in fig. 14. Thus, on the left-hand side we can see that
the fluid inside the droplets is not accelerated in either direction. In contrast,
using our surface tension formulation, the smaller droplet experiences higher
surface tension forces due to higher curvature, and its fluid is correctly
pushed into the larger droplet. We set 𝛾FV = 1Nm−1, the bigger droplet
has a diameter of 0.02m. The surface tension coefficient for the pairwise
approach was chosen such that the average pressure inside the fluid is
approximately the same as in our approach. The valve wheel model was
created by JohnEdwa.

(a) 𝜇 = 0.05

(b) 𝜇 = 0.02

Fig. 16. Droplets of different sizes are able to rest on a range of slopes
due to friction between the droplets and the underlying surface. The outer
surfaces are placed horizontally, the slope in the middle is vertical. All
droplets are given the same surface tension parametrization 𝛾FV = 4Nm−1,
𝛾FF = 0Nm−1, and 𝛾FB = 0.5Nm−1 and coefficient of friction 𝜇. The
bigger droplets have a diameter of approximately 9mm, the middle ones
are 7mm and the smallest droplets on the top measure 5mm. Over time,
the value of 𝜇 is continuously reduced. We observe that larger droplets on
steeper slopes are the first to roll down the ramp. Smaller droplets experience
less gravitational pull and greater surface tension forces at the same time,
allowing them to stick to the sloped plane for a longer time.
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(a) no friction

(b) with friction

Fig. 17. Droplets with 1.5Nm−1 rain against a 1.5m wide window. Without
friction between the droplets and the window pane, the small droplets
immediately slide down the pane. With friction, the droplets stick to the
window and accumulate into bigger droplets over time. After reaching a
critical mass, the droplets roll down the pane. In the accompanying video,
we can observe that when droplets merge, the resulting bigger droplets
are able to pick up more speed. Friction forces also cause droplets to leave
wet trails behind them. Fluid covering the window allows subsequent fluid
particles to flow on top of it, causing less frictional resistance compared to
a direct fluid-window contact. As such, the wet trails are preferred paths
for other droplets that roll down the window.

are the result of a simulation where we separated our surface ten-
sion solver from the pressure solver. We can see in fig. 18a, when
computing surface tension after pressure forces, the surface tension
disturbs the particle volume prediction the pressure solver relies on.
As a consequence, the fluid particles stay in motion, and the droplet
is not able to come to rest. In contrast, when computing pressure
after surface tension is applied, the pressure forces seem to hinder
the surface tension. While the droplet is now able to come to rest,
unexpected dents remain in the droplet’s surface. Only a combined
computation of forces, as shown in fig. 18c, results in the desired
droplet shape.

(a) friction and pres-
sure before surface ten-
sion

(b) surface tension be-
fore friction and pres-
sure

(c) surface tension, fric-
tion and pressure com-
bined

Fig. 18. Comparison between different solver constellations. A droplet is
placed on a flat surface where it should come to rest. Velocities are color
coded with white particles having high velocity. In figs. 18a and 18b we used
our surface tension solver, but separated it from the pressure and friction
solver. We can clearly see in fig. 18a that when computing pressure and
friction forces before surface tension forces, the fluid is not able to come
to rest. A different problem arises when first computing surface tension
forces as shown in fig. 18b. Here, surface tension forces are not able to
shape the droplet as one would expect, instead particles seem to interlock
and nonphysical dents remain in the droplet’s surface. Only a combined
computation of surface tension, pressure and friction produces the desired
result.

Fig. 19. Performance and scalability analysis by simulating a droplet resting
on a flat surface. The droplet always has the same radius, but particle size
ℎ and timestep Δ𝑡 is varied between measurements in table 3.

6.5 Solver Performance
This section further analyzes the scalability and convergence be-
havior of our solver. We again chose to simulate a droplet resting
on a flat surface as our test scenario as visualized in fig. 19. The
average required solver iterations and computation time per sim-
ulated second are measured and displayed in table 3 for a range
of different timesteps Δ𝑡 and particle resolutions ℎ. We also dis-
tinguish between the Jacobi solver as shown in algorithm 1 and a
solver version with NNCG acceleration as described in appendix B.
As expected, the number of required Jacobi and NNCG iterations
increase with larger timestep and higher particle count. Thus, the
highest possible timestep does not always yield the best simulation
performance. In most cases, the NNCG solver outperforms the Jacobi
solver by requiring fewer iterations, which is especially significant
for more demanding configurations. This is also reported by Probst
and Teschner [2023] who compare the performance of Jacobi and
NNCG for the computation of pressure forces. Only in some simple
constellations, the NNCG solver causes some overhead in iteration
count when compared the Jacobi solver.
Next, using the same test scenario, we measured the required

computation times of the individual steps in our simulation method.
The result is given in table 4. A major part of the time is spent inside
the solver loop. This is expected for an implicit force solver with an
average of 18 solver iterations. Within the loop, the update of 𝑉 err,
−𝜕/𝜕x 𝐸 and vtang requires the most computation time. In contrast,
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Table 3. Average required solver iterations and computation time per simulated second for a simulation of a sessile droplet as shown in fig. 19. We measured
solver performance for particle resolution ℎ equal to 1.0mm, 0.5mm and 0.25mm, timesteps Δ𝑡 set to 0.04ms, 0.08ms and 0.12ms, with and without NNCG
acceleration. As expected, higher timesteps and more particles inside the droplet require higher iteration count. The biggest timestep is not always the best
choice regarding simulation performance as an increased number of required solver iterations might outweigh larger timesteps. In most constellations, the
NNCG solver is able to significantly reduce solver iterations, especially when considering more demanding configurations. Only in simple scenarios, the
NNCG solver sometimes seems to cause some overhead in iteration count compared to the basic Jacobi solver.

Jacobi NNCG
ℎ fluid particles Δ𝑡 iterations time per simulated s iterations time per simulated s

1.0mm 4,100 0.04ms 2 0.12 h 2 0.13 h
0.08ms 2 0.06 h 3 0.08 h
0.12ms 7 0.09 h 6 0.08 h

0.5mm 33,300 0.04ms 2 0.20 h 4 0.27 h
0.08ms 12 0.29 h 8 0.21 h
0.12ms 18 0.28 h 9 0.16 h

0.25mm 267,700 0.04ms 12 2.62 h 8 1.91 h
0.08ms 26 2.53 h 12 1.32 h
0.12ms 42 2.67 h 18 1.25 h

Table 4. Required computation times of the individual steps of our simula-
tion method. The measurement was done for the same scenario shown in
fig. 19 with 267,700 fluid particles and Δ𝑡 = 0.12ms. We employ an OpenCL
implementation of the neighbor search proposed by Band et al. [2020] and
the implicit viscosity solver from Weiler et al. [2018] running on an NVIDIA
GeForce RTX 4090 graphics card. Our own solver is implemented on the
GPU as well. As expected for an implicit method, a major part of the com-
putation time is spent inside the solver loop. On average, the solver did 18
Jacobi iterations accelerated with NNCG. Within the loop, the update of
𝑉 err, −𝜕/𝜕x 𝐸 and vtang is the most involved. We can also see that little time
is required for the NNCG update as no SPH interpolations are computed
here. Thus, the small computational overhead due to the NNCG extension is
easily compensated by its increased convergence speed, as already indicated
in table 3.

time per step ratio
neighbors search 26ms 4.4 %
gravity and viscosity 23ms 3.9 %
diagonal elements 𝛼 45ms 7.7 %
solver loop 487ms 83.7 %
update FP, F𝑁 and v 125ms 21.5 %
update 𝑆 111ms 19.0 %
update 𝑉 err, − 𝜕

𝜕x𝐸 and vtang 243ms 41.7 %
update 𝑝 , FST and FF 2ms 0.3 %
NNCG update 7ms 1.2 %

integrate x 1ms 0.2 %
total 581ms 100 %

computations related to the NNCG acceleration are relatively cheap
as no SPH interpolations have to be carried out here. As such, the
small increase in computation time per solver iteration is usually
overcompensated by the reduction of required iterations through
NNCG.
Last, we compare the convergence behavior of the Jacobi solver

with the NNCG accelerated version in fig. 20. Again, the sessile
droplet was used as a test setting. We can see that the residual
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Fig. 20. Convergence behavior of the Jacobi solver and the NNCG solver.
The same test configuration as in tables 3 and 5 and shown in fig. 19 is
used here. As we can see, the NNCG solver converges faster compared to
the Jacobi solver, but Jacobi iterates are converging in a smoother fashion.
During the first few iterates the error initially grows for both solvers which
can be explained by surface tension and pressure forces counteracting each
other. Still, the solver is able to find a combined solution of forces, as we
can see by the continuously decreasing residual afterward.

error initially increases in the first few solver iterations. This can
be explained by the fact that newly computed pressure and sur-
face tension forces counteract each other and drive up each other’s
residual. In subsequent iterations however, the forces converge to-
wards a combined solution indicated by the continuously decreasing
residual. The NNCG solver converges significantly faster towards a
solution than the Jacobi solver. On the other hand, the Jacobi iterates
seem to converge in a smoother, more predictable manner.
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Fig. 21. A water lily is cleaned of dirt by rain. Initially, dirt particles cover
the whole 0.2m wide flower. When it starts to rain, water droplets fall onto
the petals. Smaller droplets are able to stick due to the surrounding dirt,
but as they grow larger they start to roll down the leaf, picking up any dirt
particles in their way. This way, over time the flower is washed clean of the
dirt. The particles representing dirt are given a relatively large coefficient of
friction 𝜇 = 0.8 and zero interface energy densities 𝛾 . The rain droplets have
𝛾FV = 0.14Nm−1 to model the surface tension and 𝛾FB = 0.28Nm−1 to
replicate the hydrophobic property of the flower. The parameter 𝛾FF is set
to zero to make sure that dirt particles are able to stick to the fluid droplets.
With this simulation example we want to demonstrate how intuitive it is
for a user of our simulation method to parametrize the surface tension and
friction computation, even when considering a complex interplay between
various materials and fluid phases. The water lily model was created by
guppyk.

6.6 Versatility
In this last section, we want to showcase a selection of scenarios
that shall demonstrate the flexibility and versatility of our friction
and surface tension solver. For a realistic assessment of the compu-
tational costs, in table 5 we list the computation times required for
the following five simulations.

6.6.1 Water Lily. Starting with the simulation of a cleaning process
of a water lily, fig. 21 shows the flower which is initially covered
in dirt. The dirt particles are simulated as a fluid with high friction
and no surface tension. When it starts to rain, fluid droplets hit
the flower petals. Due to the hydrophobic petal surface and high
𝛾FV of the droplets, the dirt particles stick to the droplets. Small
droplets are stopped by the covering dirt particles, but as they grow
larger they are able to roll down the flower, picking up any dirt
particles in their way. After some time, most of the dirt particles
are cleaned of the petals. This example indicates how effortless a
user can parametrize our surface tension and friction force in order
to achieve a complex interplay between various fluid phases and
materials.

6.6.2 Sponge. Sponges are able to soak up water effectively due
to their large hydrophilic surface areas. Capillary forces caused by
surface tension pull the fluid into one of many small cavities inside
the sponge. We are able to replicate this phenomenon with our

(a) no surface tension

(b) with surface tension

Fig. 22. Droplets rain on an elastic sponge model. When considering surface
tension forces with 𝛾FV = 0.01Nm−1 as done in fig. 22b, the sponge is able
to soak up the droplets. By squeezing the sponge, the fluid is forced out of
the sponge and drips through the grate. Neglecting surface tension forces
as shown in fig. 22a results in cubic droplets that disintegrate into particle
spray when colliding with the sponge’s surface. Note that the employed
particle-based linear elasticity model proposed by Peer et al. [2018] is not
able to completely prevent the sponge from penetrating through the grate.
The sponge model was originally created by feklee and further modified by
us. The rubber duck model was made by willie.

surface tension formulation and an elastic sponge that is simulated
with the linear elasticity solver proposed by Peer et al. [2018]. As
we can see in fig. 22, only when considering surface tension forces,
the sponge soaks up droplets until it is almost completely filled with
water. To better visualize the volume of the absorbed fluid, we then
squeeze the sponge to eject most of the water caught inside.

6.6.3 Bubbles. Soap Bubbles are fragile structures made of a gas
volume that is captured inside a thin sheet of soapy fluid. The fluid
experiences surface tension forces which determine the shape of
the bubbles. Single bubbles are spherical while multiple touching
bubbles form characteristic metastable clusters. Our unified solver
is able to replicate the behavior of soap bubbles as shown in fig. 23.
For this demonstration, we create gas bubbles modeled by a second
particle fluid with lower rest density inside a water basin. The gas
bubbles first accumulate on the fluid surface (fig. 23b), and then
pinch off to rise up (fig. 23c). Too large strain can cause bubbles to
burst, as depicted in fig. 23d. Even though surface thickness is often
less than 2 particle diameters, bubbles can be robustly simulated
using our surface tension formulation.

6.6.4 Lucy. Being a purely particle-based simulation method, our
pressure, surface tension and friction solver naturally handles com-
plex boundary geometry without difficulties. For demonstration,
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(a)

(b) (c) (d)

Fig. 23. We create soap bubbles by generating gas inside a pool of fluid. The
gas is sampled with fluid particles that are given a low rest density such that
they are pulled upwards by buoyancy forces, resulting in a cluster of bubbles
on the fluid surface as displayed in fig. 23b. Figure 23c shows a close-up
image of a bubble detaching from the cluster. Strain on a bubble’s surface
can become too large, causing it to burst midair as shown in fig. 23d. When
hitting the ceiling, some bubbles popwhile others are able to stay intact. Even
though the thickness of bubbles is often less than two particle diameters,
our unified fluid solver is able to robustly replicate the formation, motion
and bursting of the shown gas bubbles. The soap has 𝛾FV = 0.1Nm−1,
𝛾FF = 0.1Nm−1 towards the gas inside the bubbles and 𝛾FB = 0Nm−1
towards the boundary.

we simulate a Lucy statue standing in the rain. Multiple effects
one intuitively recognizes from real-life experience can also be ob-
served in fig. 24: the small rain droplets colliding with exposed
surfaces first stick to the statue due to surface tension and friction.
By merging with other droplets they grow larger and eventually
start rolling downwards. In the accompanying video one can see
how droplets gain speed when picking up additional volume on

(a)

(b) (c) (d)

Fig. 24. Rainfall on a Lucy statue with a height of 1m. We can see in
figs. 24a and 24b that droplets first accumulate on exposed surfaces. Due to
our friction and surface tension force, small droplets are able to truly stick
to the statue. When droplets have grown sufficiently large, they start rolling
downwards. In some places, merging droplets form continuous fluid streams.
Figure 24c shows the formation of fluid streams similar to fig. 17 due to
fluid particles experiencing less frictional resistance when the boundary is
already covered by fluid. These streams sometimes shape themselves in a
wavy pattern one may recognize from rain water flowing down a window at
relatively high speed. In fig. 24d we can see that droplets also adhere to the
statue due to 𝛾FV = 1Nm−1 > 𝛾FB = 0Nm−1. The Lucy statue is originally
from the Stanford 3D Scanning Repository. We use a version modified by
Melllla.

their way down. Due to our friction force, rolling droplets leave
behind wet trails. Other droplets tend to follow these trails as they
impose less frictional resistance compared to a dry surface area.
Small water streams are formed in places where many droplets
meet. The streams sometimes shape themselves in a wavy pattern
as shown in fig. 24c. In fig. 24d we can see that droplets need to gain
a critical mass before they are able to overcome adhesion forces and
detach from the statue. As a whole, such thin film fluid effects have
so far been shown in only a few publications such as Stomakhin
et al. [2019] and Stomakhin et al. [2023]. Towards the end of the
simulation, the water on the statue is sampled by over 10 million
actively simulated fluid particles.

6.6.5 Inkjet Printing. Inkjet printers propel small ink droplets onto
paper to create text and images.Wemimic this mechanic, but instead
of using paper that soaks up the ink, friction forces are employed
to keep the ink in place on the vertical plane. Figure 25 shows the
printing process and the final text. After the whole text is printed,
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(a) 𝑡 = 4 s

(b) 𝑡 = 7 s

(c) 𝑡 = 9 s

(d) 𝑡 = 10 s

Fig. 25. Inkjet printing by shooting many ink droplets with 𝛾FV = 1Nm−1
onto a piece of paper. Surface tension and friction forces keep the ink in place
on the vertical plane. After the text is printed, we decrease the coefficient of
friction 𝜇 causing the letters to merge into fluid streams that run down the
surface.

friction coefficient 𝜇 is reduced. As a consequence, the ink flows
downwards with gravity.

7 Limitations and Future Work
Our surface tension computation requires a kernel support radius
ℏ larger than the one employed in the pressure computation, as
illustrated in section 5.1. In case that ℏ = 2ℎ is used in the pressure
solver, we propose ℏ = 3ℎ as a kernel support radius for all SPH
approximations associated with surface tension. On the one hand,
this reliably detects all particles belonging to an interface. Further,
it alleviates the need for specialized kernel function shapes [Akinci
et al. 2013; Jeske et al. 2023] and additional stabilization steps such
as the consideration of air pressure [He et al. 2015b; Schechter and
Bridson 2012], two-scale pressure estimation [He et al. 2015b] and
anisotropic pressure filtering [He et al. 2015b] in order to prevent
tensile instability. On the other hand however, in three dimensions,
our pressure and friction computation on average only has to con-
sider thirty neighbors in their SPH interpolations, while a kernel
support of 3ℎ used to compute surface tension is equivalent to an
average of around one hundred neighbors inside the support radius.
This causes the surface tension calculations to be computationally
heavier compared to pressure and friction. Future work might be
able to further improve simulation performance by finding ways to
reduce the required surface tension support radius ℏ.

Some Coulomb friction formulations distinguish between static
friction where the tangential relative velocity at contact vtang is
zero and kinetic friction where vtang ≠ 0. The value given to the
coefficient of friction 𝜇 depends on this distinction [Baraff 1991, 1993;
McHale et al. 2022]. To keep things simple, in our implementation
we follow Erleben [2017], Andrews and Erleben [2021] and others
[Bender et al. 2014; Macklin et al. 2019; Peiret et al. 2019], and only
considered one value for 𝜇. We believe, however, that if desired,
our method could be easily extended to support static and kinetic
friction coefficients 𝜇.
Finally, table 5 shows that small rain particles travelling at high

speeds in figs. 17, 21 and 24 significantly impact simulation per-
formance. Future work might be able to implement an individual
timestep method [Goswami and Batty 2014; He et al. 2015a; Hern-
quist and Katz 1989; Hut and McMillan 1986; Makino et al. 2006;
Saitoh and Makino 2009] to separate the timestep used to integrate
positions of free-falling fluid particles from the timestep used for
particles with high neighbor interaction.

8 Conclusion
In this paper, we presented an implicit fluid solver that considers
pressure, surface tension and friction forces within an SPH envi-
ronment. While the employed pressure computation is a variant
of IISPH [Ihmsen et al. 2014a], new formulations have been de-
veloped for the surface tension and friction solver. Our surface
tension combines the robust and intuitive properties of existing
pairwise tension formulations with the physical correctness of CSF
approaches. We achieve this by considering number densities to
detect particles belonging to an interface and compute surface ten-
sion forces depending on a particle’s contribution to the interface.
The experiments in section 6 show that our surface tension not
only produces visually pleasing results, but also causes the correct
amount of tension for all surface curvatures.
Using Coulomb friction at the SPH fluid-boundary interface ap-

pears to be a newer concept, only few related works can be found
in the literature. Still, our tests demonstrated that our final fric-
tion solver allows us to replicate well-known real life phenomena.
This includes, in particular, lifelike looking stick-slip transitions of
droplets at inclined surfaces, which have not yet gained much at-
tention within the SPH community, despite their significant impact
on perceived realism of droplet behavior.
Following the recent trend to solve forces in a unified manner,

our solver simultaneously computes pressure, surface tension and
friction forces that are consistent with each other. Our experiments
indicate that this improves simulation stability and correctness of
results, allowing us to simulate the behavior of fluids in complex
and challenging scenarios.
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Table 5. Computational costs of the simulation scenarios presented in section 6.6. From left to right we list the maximum number of fluid particles present
in the simulation, number of boundary particles, particle size ℎ, average timestep Δ𝑡 , average solver iterations, computation time required per simulation
step and computation time required per simulated second. All computations are performed on a 24-core 5.4GHz Intel Core i9-13900K workstation. The SPH
neighbor search and basic particle accelerations such as gravity are performed on the CPU, an OpenCL implementation of our solver runs on an NVIDIA
GeForce RTX 4090 graphics card. Note the relatively small timestep Δ𝑡 used in the Water Lily and Lucy scenario. In both cases, the simulation requires a low
Δ𝑡 to catch the collision between small fluid particles raining with high speed on the solid boundaries. Together with the large number of simulated particles,
this results in significant computation times. We want to mention that fast moving particles threaten the performance of numerical simulations in general
[Makino et al. 2006; Saitoh and Makino 2009] and are not a difficulty in proposed method in particular.

computation time per
fluid particles boundary particles ℎ Δ𝑡 solver iter. step simulated s

Water Lily 1,300,000 4,100,000 0.1mm 0.10ms 8 2.0 s 5.6 h
Sponge 1,400,000 1,600,000 0.5mm 0.33ms 10 2.1 s 1.8 h
Soap Bubbles 4,600,000 1,700,000 0.5mm 0.26ms 10 6.2 s 6.6 h
Lucy 10,200,200 21,000,000 1.0mm 0.04ms 8 7.0 s 48.8 h
Inkjet Printing 500,000 26,200,000 0.7mm 1.00ms 15 1.1 s 0.3 h

BY 4.0. The water lily model by guppyk from fig. 21 is licensed under
CC BY 4.0. The sponge model by feklee, modified by us and used in
fig. 22 to generate the elastic object, is licensed under CC BY 4.0. The
rubber duck model by willie used in the same scenario is licensed
under CC0 1.0. The Lucy statue used in figs. 1 and 24, originally
from the Stanford 3D Scanning Repository and modified by Melllla,
is licensed under the MIT License.
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Jacobi update step by choosing appropriate values for 𝛼P

𝑓
, 𝛼ST

𝑓
and

𝛼F
𝑓
.

A.1 Pressure
As an estimate of a safe update step size, Jacobi pressure solvers use
a value for 𝛼P
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2022]:

𝛼P𝑓 =

(
𝜕

𝜕𝑝 𝑓
𝑉 err
𝑓 (𝑡 + Δ𝑡)

)−1
. (30)

If 𝑉 err
𝑓

changes much for small variations of 𝑝 𝑓 , 𝛼P𝑓 will be small.
As a consequence, one fixed-point iteration of eq. (18a) will only
cause a small difference in the iterates of 𝑝 𝑓 . This way, the solver is
able to adapt its step size to the sensitivity of the underlying system.
In order to compute 𝛼P

𝑓
we need to evaluate 𝜕

𝜕𝑝𝑓
𝑉 err
𝑓
(𝑡 + Δ𝑡) using

eqs. (4), (20) and (21):
𝜕

𝜕𝑝 𝑓
𝑉 err
𝑓 (𝑡 + Δ𝑡)

= −𝑉 0
𝑓

∑︁
𝑓𝑓

Δ𝑡

(
𝜕

𝜕𝑝 𝑓
v𝑓 (𝑡 + Δ𝑡) −

𝜕

𝜕𝑝 𝑓
v𝑓𝑓 (𝑡 + Δ𝑡)

)
· ∇𝑊 P

𝑓 ,𝑓𝑓
(𝑡)

−𝑉 0
𝑓

∑︁
𝑓𝑏

Δ𝑡

(
𝜕

𝜕𝑝 𝑓
v𝑓 (𝑡 + Δ𝑡) −

𝜕

𝜕𝑝 𝑓
v𝑓𝑏 (𝑡 + Δ𝑡)

)
· ∇𝑊 P

𝑓 ,𝑓𝑏
(𝑡)

(31)

with
𝜕

𝜕𝑝 𝑓
v𝑓 (𝑡 + Δ𝑡) = −

Δ𝑡

𝑚𝑓
𝑉 0
𝑓

∑︁
𝑓𝑓

𝑉 0
𝑓𝑓
∇𝑊 P

𝑓 ,𝑓𝑓
(𝑡)

− Δ𝑡

𝑚𝑓
𝑉 0
𝑓

∑︁
𝑓𝑏

𝑉 0
𝑓𝑏
∇𝑊 P

𝑓 ,𝑓𝑏
(𝑡)

(32a)

𝜕

𝜕𝑝 𝑓
v𝑓𝑓 (𝑡 + Δ𝑡) = −

Δ𝑡

𝑚𝑓
𝑉 0
𝑓𝑓
𝑉 0
𝑓 ∇𝑊

P
𝑓𝑓 ,𝑓
(𝑡) (32b)

𝜕

𝜕𝑝 𝑓
v𝑓𝑏 (𝑡 + Δ𝑡) = 0. (32c)

A.1.1 Summary. One can compute 𝛼P
𝑓
for a fluid particle 𝑓 by iter-

ating twice over its neighbors. First, 𝜕/𝜕𝑝 𝑓 v𝑓 (𝑡 + Δ𝑡) is evaluated
as shown in eq. (32a). Afterwards, 𝜕/𝜕𝑝 𝑓𝑉 err

𝑓
can be computed us-

ing eq. (31) where 𝜕/𝜕𝑝 𝑓 v𝑓𝑓 (𝑡 + Δ𝑡) and 𝜕/𝜕𝑝 𝑓 v𝑓𝑏 (𝑡 + Δ𝑡) are com-
puted on the fly with eqs. (32b) and (32c). The whole procedure is
also summarized in algorithm 2.

1 foreach fluid particle 𝑓 do
2 Compute 𝜕

𝜕𝑝𝑓
v𝑓 (𝑡 + Δ𝑡) ⊲ eq. (32a)

3 Compute 𝜕
𝜕𝑝𝑓

𝑉 err
𝑓
(𝑡 + Δ𝑡) ⊲ eqs. (31), (32b) and (32c)

4 Compute 𝛼P
𝑓

⊲ eq. (30)

Algorithm 2: The computation procedure for all 𝛼P
𝑓

A.2 Surface Tension
Similar to𝛼P

𝑓
,𝛼ST

𝑓
governs the step size used in a fixed-point iteration

of surface tension forces FST described in eq. (18b). In a standard
Jacobi solver, 𝛼ST

𝑓
is chosen as

𝛼ST𝑓 =
©« 𝜕

𝜕FST
𝑓

(
FST𝑓 +

𝜕

𝜕x𝑓
𝐸 (𝑡 + Δ𝑡)

)ª®¬
−1

. (33)

This works well when assuming that the solver is able to converge
exactly. In reality however, this is rarely the case. Typically, we exit
the solver loop shown in algorithms 1 and 5 when the remaining
residual is sufficiently small, even though no exact solution has yet
been found. In the case of surface tension, this residual can cause
forces FST to not conserve momentum exactly. We can prevent the
violation of momentum conservation by ensuring that the Jacobi
update for surface tension forces FST uses an equal step size for all
fluid particles 𝑓 , which is the case if 𝛼ST

𝑓
is given the same value for

all 𝑓 . To make sure that the solving process remains stable, in our
implementation we choose 𝛼ST for all fluid particles to be equal to
the lowest 𝛼∗

𝑓
of all fluid particles 𝑓 :

𝛼ST = min
𝑓

𝛼∗𝑓 (34a)

𝛼∗𝑓 =
©«13 tr


𝜕

𝜕FST
𝑓

(
FST𝑓 +

𝜕

𝜕x𝑓
𝐸 (𝑡 + Δ𝑡)

)ª®¬
−1

(34b)

where tr (x) returns the trace of x. Note that in contrast to eq. (33),
we consider the trace to obtain a scalar value whose magnitude can
be compared in order to find the smallest 𝛼∗

𝑓
. In our experiments we

found that 𝛼∗
𝑓
is typically close to one for all fluid particles 𝑓 . Thus,

by using the smallest 𝛼∗
𝑓
, only an insignificant amount of solver

convergence speed is sacrificed. To compute 𝛼ST, we reconsider
eqs. (20) and (22) to (24):

𝜕

𝜕FST
𝑓

(
FST𝑓 +

𝜕

𝜕x𝑓
𝐸 (𝑡 + Δ𝑡)

)
= I +

∑︁
𝑓𝑓

(
𝐴0
𝑓𝑉

0
𝑓𝑓
𝛾FV𝑓

𝜕

𝜕FST
𝑓

𝑆FV𝑓 (𝑡 + Δ𝑡)

+ 𝐴0
𝑓𝑓
𝑉 0
𝑓 𝛾

FV
𝑓𝑓

𝜕

𝜕FST
𝑓

𝑆FV𝑓𝑓 (𝑡 + Δ𝑡)
)
∇𝑊 ST

𝑓 ,𝑓𝑓
(𝑡)

+
∑︁
𝑓𝑓 ∉𝐹

(
− 𝐴0

𝑓𝑉
0
𝑓𝑓
𝛾FF𝑓

𝜕

𝜕FST
𝑓

𝑆FF𝑓 (𝑡 + Δ𝑡)

− 𝐴0
𝑓𝑓
𝑉 0
𝑓 𝛾

FF
𝑓𝑓

𝜕

𝜕FST
𝑓

𝑆FF𝑓𝑓 (𝑡 + Δ𝑡)
)
∇𝑊 ST

𝑓 ,𝑓𝑓
(𝑡)

+
∑︁
𝑓𝑏

(
𝐴0
𝑓𝑉

0
𝑓𝑏
𝛾FV𝑓

𝜕

𝜕FST
𝑓

𝑆FV𝑓 (𝑡 + Δ𝑡)

+ 𝐴0
𝑓𝑏
𝑉 0
𝑓 𝛾

BV
𝑓𝑏

𝜕

𝜕FST
𝑓

𝑆BV𝑓𝑏 (𝑡 + Δ𝑡)
)
∇𝑊 ST

𝑓 ,𝑓𝑏
(𝑡)

+
∑︁
𝑓𝑏

(
− 𝐴0

𝑓𝑉
0
𝑓𝑏
𝛾FB𝑓

𝜕

𝜕FST
𝑓

𝑆FB𝑓 (𝑡 + Δ𝑡)

− 𝐴0
𝑓𝑏
𝑉 0
𝑓 𝛾

BF
𝑓𝑏

𝜕

𝜕FST
𝑓

𝑆BF𝑓𝑏 (𝑡 + Δ𝑡)
)
∇𝑊 ST

𝑓 ,𝑓𝑏
(𝑡).

(35)
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The exact derivative of 𝑆 (𝑡 + Δ𝑡) is given by
𝜕

𝜕FST
𝑆 (𝑡 + Δ𝑡)

=


0 if 𝐶 (𝑡 + Δ𝑡) < 0(

1√
𝐶2 (𝑡+Δ𝑡 )+𝜖2 −

𝐶2 (𝑡+Δ𝑡 )
(𝐶2 (𝑡+Δ𝑡 )+𝜖2 ) 32

)
𝜕

𝜕FST𝐶 (𝑡 + Δ𝑡) otherwise.

(36)
However, since 𝑆 (𝑡 + Δ𝑡) is nonlinear in 𝐶 (𝑡 + Δ𝑡), its derivative
changes with 𝐶 (𝑡 + Δ𝑡). In order to obtain a value for 𝛼ST that is
constant during the solving process, in our implementation we
approximate 𝐶 (𝑡 + Δ𝑡) with 𝐶 (𝑡):

𝜕

𝜕FST
𝑓

𝑆 𝑗 (𝑡 + Δ𝑡)

≈

0 if 𝐶 𝑗 (𝑡) < 0©« 1√︃

𝐶2
𝑗
(𝑡 )+𝜖2

− 𝐶2
𝑗
(𝑡 )(

𝐶2
𝑗
(𝑡 )+𝜖2

) 3
2

ª®¬ 𝜕
𝜕FST

𝑓

𝐶 𝑗 (𝑡 + Δ𝑡) otherwise.

(37)

where 𝑗 acts as a placeholder for 𝑓 , 𝑓𝑓 and 𝑓𝑏 . The only unknown
terms remaining are 𝜕/𝜕FST

𝑓
𝐶𝑓 (𝑡 + Δ𝑡) for the fluid-vapor inter-

face (FV), the fluid-fluid interface (FF) and the fluid-boundary in-
terface (FB), as well as 𝜕/𝜕FST

𝑓
𝐶𝑓𝑓 (𝑡 + Δ𝑡) with 𝑓𝑓 ∉ 𝐹 for the

fluid-vapor interface (FV) and the fluid-fluid interface (FF), and last
𝜕/𝜕FST

𝑓
𝐶𝑓𝑏 (𝑡 + Δ𝑡) for the boundary-vapor (BV) and the boundary-

fluid interface (BF):
𝜕

𝜕FST
𝑓

𝐶FV
𝑓 (𝑡 + Δ𝑡) = −

Δ𝑡2

𝑚𝑓

∑︁
𝑓𝑓

𝑉 0
𝑓𝑓
∇𝑊 ST

𝑓 ,𝑓𝑓

− Δ𝑡2

𝑚𝑓

∑︁
𝑓𝑏

𝑉 0
𝑓𝑏
∇𝑊 ST

𝑓 ,𝑓𝑏

(38a)

𝜕

𝜕FST
𝑓

𝐶FF
𝑓 (𝑡 + Δ𝑡) =

Δ𝑡2

𝑚𝑓

∑︁
𝑓𝑓 ∉𝐹

𝑉 0
𝑓𝑓
∇𝑊 ST

𝑓 ,𝑓𝑓
(𝑡) (38b)

𝜕

𝜕FST
𝑓

𝐶FB
𝑓 (𝑡 + Δ𝑡) =

Δ𝑡2

𝑚𝑓

∑︁
𝑓𝑏

𝑉 0
𝑓𝑏
∇𝑊 ST

𝑓 ,𝑓𝑏
(𝑡) (38c)

𝜕

𝜕FST
𝑓

𝐶FV
𝑓𝑓
(𝑡 + Δ𝑡) = Δ𝑡2

𝑚𝑓
𝑉 0
𝑓 ∇𝑊

ST
𝑓𝑓 ,𝑓
(𝑡) (38d)

𝜕

𝜕FST
𝑓

𝐶FF
𝑓𝑓
(𝑡 + Δ𝑡) = −Δ𝑡

2

𝑚𝑓
𝑉 0
𝑓 ∇𝑊

ST
𝑓𝑓 ,𝑓
(𝑡) (38e)

𝜕

𝜕FST
𝑓

𝐶BV
𝑓𝑏
(𝑡 + Δ𝑡) = Δ𝑡2

𝑚𝑓
𝑉 0
𝑓 ∇𝑊

ST
𝑓𝑏 ,𝑓
(𝑡) (38f)

𝜕

𝜕FST
𝑓

𝐶BF
𝑓𝑏
(𝑡 + Δ𝑡) = −Δ𝑡

2

𝑚𝑓
𝑉 0
𝑓 ∇𝑊

ST
𝑓𝑏 ,𝑓
(𝑡). (38g)

Note that eq. (38e) is only true for particles 𝑓𝑓 ∉ 𝐹 , but looking at
eq. (35) it is clear that we only ever evaluate 𝜕/𝜕FST

𝑓
𝐶FF
𝑓𝑓
(𝑡 + Δ𝑡) for

𝑓𝑓 ∉ 𝐹 .

A.2.1 Summary. Similar to pressure, we can compute 𝛼∗
𝑓
for a

particle 𝑓 by iterating twice over its neighbors. First, the terms
𝜕/𝜕FST

𝑓
𝐶FV
𝑓
(𝑡 + Δ𝑡), 𝜕/𝜕FST

𝑓
𝐶FF
𝑓
(𝑡 + Δ𝑡) and 𝜕/𝜕FST

𝑓
𝐶FB
𝑓
(𝑡 + Δ𝑡) are

evaluated using eqs. (38a) to (38c). They can be directly transformed
into 𝜕/𝜕FST

𝑓
𝑆FV
𝑓
(𝑡 + Δ𝑡), 𝜕/𝜕FST

𝑓
𝑆FF
𝑓
(𝑡 + Δ𝑡) and 𝜕/𝜕FST

𝑓
𝑆FB
𝑓
(𝑡 + Δ𝑡)

with eq. (37). In the second step, we can then evaluate eq. (35) where
the expressions 𝜕/𝜕FST

𝑓
𝑆FV
𝑓𝑓
(𝑡 + Δ𝑡) and 𝜕/𝜕FST

𝑓
𝑆FF
𝑓𝑓
(𝑡 + Δ𝑡) as well

as 𝜕/𝜕FST
𝑓
𝑆BV
𝑓𝑏
(𝑡 + Δ𝑡) and 𝜕/𝜕FST

𝑓
𝑆BF
𝑓𝑏
(𝑡 + Δ𝑡) are computed on the

fly using eqs. (37) and (38d) to (38g). Last, we search for the smallest
𝛼∗
𝑓
to find 𝛼ST as shown in eq. (34). The whole procedure is again

summarized in algorithm 3.

1 foreach fluid particle 𝑓 do
2 Compute 𝜕/𝜕FST

𝑓
𝑆FV
𝑓
(𝑡 + Δ𝑡) ⊲ eqs. (37) and (38a)

3 Compute 𝜕/𝜕FST
𝑓
𝑆FF
𝑓
(𝑡 + Δ𝑡) ⊲ eqs. (37) and (38b)

4 Compute 𝜕/𝜕FST
𝑓
𝑆FB
𝑓
(𝑡 + Δ𝑡) ⊲ eqs. (37) and (38c)

5 Compute 𝛼∗
𝑓

⊲
eqs. (34b), (35), (37)
and (38d) to (38g)

6 𝛼ST ← min𝑓 𝛼∗𝑓
Algorithm 3: The computation procedure for 𝛼ST. All quanti-
ties that are explicitly mentioned are computed and temporarily
stored as they are repeatedly used in subsequent steps. Quanti-
ties not mentioned, such as 𝜕/𝜕FST

𝑓
𝐶FV
𝑓𝑓
(𝑡 + Δ𝑡) for example, are

computed on the fly as soon as they are required.

A.3 Friction
The update of friction forces during a Jacobi step as displayed in
eq. (18c) requires a value for 𝛼F

𝑓
. This value needs to be a scalar

[Probst and Teschner 2023] and should relate the change in tangen-
tial relative velocity between fluid particle 𝑓 and the boundary to its
friction force FF

𝑓
. Note that even though we directly solve for forces

FF
𝑓
as we did in the surface tension computation, since momentum

conservation is less of a concern when interacting with the static
boundary, small residual errors in the friction computation are not
a serious problem. This is why for the friction solver, we are able to
use an individual value 𝛼F

𝑓
that is optimal for each respective 𝑓 . In

our implementation, we set

𝛼F𝑓 =
©«13 tr


𝜕

𝜕FF
𝑓

vtang
𝑓
(𝑡 + Δ𝑡)

ª®¬
−1

(39)

where 𝜕/𝜕FF
𝑓
vtang
𝑓
(𝑡 + Δ𝑡) is computed with

𝜕/𝜕FF𝑓 v
tang
𝑓
(𝑡 + Δ𝑡) = ©«I −

F𝑁
𝑓
F𝑁
𝑓
⊤

|F𝑁
𝑓
|2

ª®¬ 𝜕/𝜕FF𝑓 vrel𝑓 (𝑡 + Δ𝑡) (40a)

𝜕/𝜕FF𝑓 vrel𝑓 (𝑡 + Δ𝑡) =
Δ𝑡2

𝑚𝑓
I
∑︁
𝑓𝑏

𝑉 0
𝑓𝑏
𝑊 F

𝑓 ,𝑓𝑏
(𝑡) (40b)

as shown in eq. (26). We mentioned earlier in section 4.2.3 that the
magnitude of F𝑁

𝑓
changes during the solving procedure. Its direc-

tion on the other hand stays constant, allowing us to precompute
𝛼F
𝑓
for the whole solving process. The computation of 𝛼F

𝑓
is again

summarized in algorithm 4.
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1 foreach fluid particle 𝑓 do
2 Compute 𝜕/𝜕FF

𝑓
vrel
𝑓
(𝑡 + Δ𝑡) ⊲ eq. (40b)

3 Compute 𝜕/𝜕FF
𝑓
vtang
𝑓
(𝑡 + Δ𝑡) ⊲ eqs. (14) and (40a)

4 Compute 𝛼F
𝑓

⊲ eq. (39)

Algorithm 4: The computation procedure for all 𝛼F
𝑓

B Nonsmooth Nonlinear Conjugate Gradient
Jacobi methods are known for their simplicity and flexibility, but
they also often suffer from slow convergence speed, especially when
applied to poorly conditioned problems [Cottle et al. 2009; Erleben
2013; Poulsen et al. 2010; Silcowitz et al. 2009]. To improve con-
vergence behavior, Silcowitz-Hansen et al. [2010] proposed a non-
smooth nonlinear conjugate gradient (NNCG) method that is used
on top of the Jacobi iterates shown in algorithm 1. The NNCG algo-
rithm considers differences between iterates 𝑘 + 1 and 𝑘 of pressure
p, surface tension FST and friction FF as residuals r:(

rP𝑘 , r
ST
𝑘 , rF𝑘

)
≡

(
p𝑘+1 − p𝑘 , FST𝑘+1 − FST𝑘 , FF𝑘+1 − FF𝑘

)
= Jacobi

(
p𝑘 , F

ST
𝑘 , FF𝑘

)
−

(
p𝑘 , F

ST
𝑘 , FF𝑘

)
.

(41)

Here, the function Jacobi returns the iterates of p, FST and FF after
applying one Jacobi solver iteration as described in lines 6 to 22.
This allows us to define a function 𝑓 as

𝑓 (rP𝑘 , rST𝑘 , rF𝑘 ) ≡
1
2 |r

P
𝑘 |2 +

1
2 |r

ST
𝑘 |2 +

1
2 |r

F
𝑘 |2 . (42)

Note that searching for roots of 𝑓 is equivalent to solving the original
fixed-point problem from eq. (18) by finding values for p𝑘 , FST𝑘 and
FF
𝑘
that satisfy

Jacobi
(
p𝑘 , F

ST
𝑘 , FF𝑘

)
−

(
p𝑘 , F

ST
𝑘 , FF𝑘

)
= 0. (43)

The Fletcher-Reeves nonlinear conjugate gradient method can be
employed to find a local minimum of 𝑓 since it only requires in-
formation about the gradient ∇𝑓 with respect to p𝑘 , FST𝑘 and FF

𝑘
[Andrews and Erleben 2021; Nocedal and Wright 2006; Silcowitz-
Hansen et al. 2010], which is equal to the negative residual vector
−(rP

𝑘
, rST
𝑘
, rF
𝑘
). The final NNCG solver algorithm used in our simula-

tion is illustrated in algorithm 5.

C Conservation of Momentum
Here, we want to give a short proof that shows how our surface
tension force FST described in section 3.2.1 conserves momentum
exactly. Interactions with kinematic boundaries are ignored since in
this case momentum conservation is violated on purpose by not con-
sidering forces acting on the boundary. Starting with conservation
of linear momentum, we need to show that∑︁

𝑓

FST𝑓 = 0. (44)

1 p0 ← 0
2 FST0 ← 0
3 FF0 ← 0

4 p1, FST1 , FF1 ← Jacobi (p0 , FST0 , FF0 ) ⊲ algorithm 1

5 rP0 ← p1 − p0
6 rST0 ← FST1 − FST0
7 rF0 ← FF1 − FF0
8 sP0 ← −rP0
9 sST0 ← −rST0

10 sF0 ← −rF0
11 𝑘 ← 1
12 while not converged do
13 p𝑘+1, FST𝑘+1, F

F
𝑘+1 ← Jacobi (p𝑘 , FST

𝑘
, FF

𝑘
) ⊲ algorithm 1

14 rP
𝑘
← p𝑘+1 − p𝑘

15 rST
𝑘
← FST

𝑘+1 − FST𝑘
16 rF

𝑘
← FF

𝑘+1 − FF𝑘
17 𝛽P ← rP

𝑘
/rP

𝑘−1
18 𝛽ST ← rST

𝑘
/rST

𝑘−1
19 𝛽F ← rF

𝑘
/rF

𝑘−1
20 if 𝛽P > 1 then
21 sP

𝑘
← 0

22 else
23 p𝑘+1 ← p𝑘+1 + 𝛽PsP𝑘−1
24 sP

𝑘
← 𝛽PsP

𝑘−1 − rP𝑘
25 if 𝛽ST > 1 then
26 sST

𝑘
← 0

27 else
28 FST

𝑘+1 ← FST
𝑘+1 + 𝛽STsST𝑘−1

29 sST
𝑘
← 𝛽STsST

𝑘−1 − rST𝑘
30 if 𝛽F > 1 then
31 sF

𝑘
← 0

32 else
33 FF

𝑘+1 ← FF
𝑘+1 + 𝛽FsF𝑘−1

34 sF
𝑘
← 𝛽FsF

𝑘−1 − rF𝑘
35 𝑘 ← 𝑘 + 1
Algorithm5:Our implementation of the NNCG solver proposed
by Silcowitz-Hansen et al. [2010] to simultaneously compute
strongly coupled pressure p, surface tension FST and friction
FF. The Jacobi iteration shown in algorithm 1 is used as a basic
building block to estimate ∇𝑓 which is required to find a local
minimum of our objective function 𝑓 (see eq. (42)).

Plugging in the definition of FST from eq. (11) gives us

0 =
∑︁
𝑓

FST𝑓 =
∑︁
𝑓

[∑︁
𝑓𝑓

(
𝐴0
𝑓𝑉

0
𝑓𝑓
𝛾FV𝑓 𝑆FV𝑓 +𝐴0

𝑓𝑓
𝑉 0
𝑓 𝛾

FV
𝑓𝑓
𝑆FV𝑓𝑓

)
∇𝑊 ST

𝑓 ,𝑓𝑓

+
∑︁
𝑓𝑓 ∉𝐹

(
−𝐴0

𝑓𝑉
0
𝑓𝑓
𝛾FF𝑓 𝑆FF𝑓 −𝐴0

𝑓𝑓
𝑉 0
𝑓 𝛾

FF
𝑓𝑓
𝑆FF𝑓𝑓

)
∇𝑊 ST

𝑓 ,𝑓𝑓

]
.

(45)
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For 𝑓𝑓 = 𝑓 , the contribution to the double summation is zero as
∇𝑊 ST

𝑓 ,𝑓
= 0. For each fluid particle neighbor pair 𝑖 and 𝑗 , the double

summations always consider the contribution for 𝑓 = 𝑖 and 𝑓𝑓 = 𝑗 as
well as for 𝑓 = 𝑗 and 𝑓𝑓 = 𝑖 exactly once. Since ∇𝑊 ST

𝑓 ,𝑓𝑓
= −∇𝑊 ST

𝑓𝑓 ,𝑓and as such (
𝐴0
𝑓𝑉

0
𝑓𝑓
𝛾FV𝑓 𝑆FV𝑓 +𝐴0

𝑓𝑓
𝑉 0
𝑓 𝛾

FV
𝑓𝑓
𝑆FV𝑓𝑓

)
∇𝑊 ST

𝑓 ,𝑓𝑓

+
(
−𝐴0

𝑓𝑉
0
𝑓𝑓
𝛾FF𝑓 𝑆FF𝑓 −𝐴0

𝑓𝑓
𝑉 0
𝑓 𝛾

FF
𝑓𝑓
𝑆FF𝑓𝑓

)
∇𝑊 ST

𝑓 ,𝑓𝑓

= −
(
𝐴0
𝑓𝑓
𝑉 0
𝑓 𝛾

FV
𝑓𝑓
𝑆FV𝑓𝑓 +𝐴

0
𝑓𝑉

0
𝑓𝑓
𝛾FV𝑓 𝑆FV𝑓

)
∇𝑊 ST

𝑓𝑓 ,𝑓

−
(
−𝐴0

𝑓𝑓
𝑉 0
𝑓 𝛾

FF
𝑓𝑓
𝑆FF𝑓𝑓 −𝐴

0
𝑓𝑉

0
𝑓𝑓
𝛾FF𝑓 𝑆FF𝑓

)
∇𝑊 ST

𝑓𝑓 ,𝑓
,

(46)

the two contributions add up to zero. We see that each contribution
to the double summation is either zero for 𝑓 = 𝑓𝑓 , or is canceled out
by the contribution to the double summation with flipped indices.
Thus, the double summation in eq. (45) indeed equals zero and
linear momentum is conserved. Angular momentum is conserved
by surface tension forces if the total torque exerted on all fluid
particles equals zero for an arbitrary r ∈ R3:∑︁

𝑓

(
x𝑓 − r

)
× FST𝑓 = 0. (47)

We plug in the definition of our surface tension forces FST (eq. (11))
which gives us

0 =
∑︁
𝑓

(
x𝑓 − r

)
× FST𝑓

=
∑︁
𝑓

[ ∑︁
𝑓𝑓

(
𝐴0
𝑓𝑉

0
𝑓𝑓
𝛾FV𝑓 𝑆FV𝑓 +𝐴0

𝑓𝑓
𝑉 0
𝑓 𝛾

FV
𝑓𝑓
𝑆FV𝑓𝑓

) (
x𝑓 − r

)
× ∇𝑊 ST

𝑓 ,𝑓𝑓

+
∑︁
𝑓𝑓 ∉𝐹

(
−𝐴0

𝑓𝑉
0
𝑓𝑓
𝛾FF𝑓 𝑆FF𝑓 −𝐴0

𝑓𝑓
𝑉 0
𝑓 𝛾

FF
𝑓𝑓
𝑆FF𝑓𝑓

) (
x𝑓 − r

)
× ∇𝑊 ST

𝑓 ,𝑓𝑓

]
.

(48)
It is easy to see that for 𝑓 = 𝑓𝑓 the contribution to the double sum
again equals zero due to∇𝑊 ST

𝑓 ,𝑓
= 0. Similar to before, we now want

to demonstrate that for each neighboring fluid particle pair, their
two respective contributions to the double summation cancel out
each other. We do this by showing(

𝐴0
𝑓𝑉

0
𝑓𝑓
𝛾FV𝑓 𝑆FV𝑓 +𝐴0

𝑓𝑓
𝑉 0
𝑓 𝛾

FV
𝑓𝑓
𝑆FV𝑓𝑓

) (
x𝑓 − r

)
× ∇𝑊 ST

𝑓 ,𝑓𝑓

+
(
−𝐴0

𝑓𝑉
0
𝑓𝑓
𝛾FF𝑓 𝑆FF𝑓 −𝐴0

𝑓𝑓
𝑉 0
𝑓 𝛾

FF
𝑓𝑓
𝑆FF𝑓𝑓

) (
x𝑓 − r

)
× ∇𝑊 ST

𝑓 ,𝑓𝑓

= −
(
𝐴0
𝑓𝑓
𝑉 0
𝑓 𝛾

FV
𝑓𝑓
𝑆FV𝑓𝑓 +𝐴

0
𝑓𝑉

0
𝑓𝑓
𝛾FV𝑓 𝑆FV𝑓

) (
x𝑓𝑓 − r

)
× ∇𝑊 ST

𝑓𝑓 ,𝑓

−
(
−𝐴0

𝑓𝑓
𝑉 0
𝑓 𝛾

FF
𝑓𝑓
𝑆FF𝑓𝑓 −𝐴

0
𝑓𝑉

0
𝑓𝑓
𝛾FF𝑓 𝑆FF𝑓

) (
x𝑓𝑓 − r

)
× ∇𝑊 ST

𝑓𝑓 ,𝑓
.

(49)

Flipping the kernel gradients with ∇𝑊 ST
𝑓𝑓 𝑓

= −∇𝑊 ST
𝑓 𝑓𝑓

and moving
all terms to one side gives us

0 =

(
𝐴0
𝑓𝑉

0
𝑓𝑓
𝛾FV𝑓 𝑆FV𝑓 +𝐴0

𝑓𝑓
𝑉 0
𝑓 𝛾

FV
𝑓𝑓
𝑆FV𝑓𝑓

) (
x𝑓 − r − x𝑓𝑓 + r

)
× ∇𝑊 ST

𝑓 ,𝑓𝑓

+
(
−𝐴0

𝑓𝑉
0
𝑓𝑓
𝛾FF𝑓 𝑆FF𝑓 −𝐴0

𝑓𝑓
𝑉 0
𝑓 𝛾

FF
𝑓𝑓
𝑆FF𝑓𝑓

) (
x𝑓 − r − x𝑓𝑓 + r

)
× ∇𝑊 ST

𝑓 ,𝑓𝑓
.

(50)
Since kernel gradients ∇𝑊 ST

𝑓 ,𝑓𝑓
by construction point in the same

or opposite direction as x𝑓 − x𝑓𝑓 , the cross products equal zero.

Thus, eqs. (49) and (50) are valid and each contribution to the total
torque computed in eq. (48) adds up to zero per particle pair, causing
the total torque due to surface tension to be equal to zero as well.
In summary, we were able to show that both linear and angular
momentum are exactly conserved by our surface tension force.
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